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Abstract: In fuzzy control, there is a large amount of parameters involved in the system design. 
Due to their interdependency, these parameters are sometimes conflicting causing an 
unavoidable trade-off among performance indices. It is difficult to discern the best combination 
of fuzzy parameters with respect to a given range of some performance indices. In this case, a 
clustering technique represents a powerful tool to deal with the problem. Main clusters of fuzzy 
controllers having similar behavior with respect to some performance indices are discovered. In 
order to precisely characterize rule bases and transform them to a quantifiable entity, transition 
between topological and numerical form of fuzzy rule bases is studied. Formulating a vector 
space structure and a base of relationships between fuzzy sets represents one of the main foci of 
the research. Adding logic parameters and defuzzification procedures to the formulated vectors 
is required to apply the clustering technique. In fact, this latter requires the existence of 
quantifiable fuzzy controllers. The obtained vectors are then treated by a fuzzy-neural 
clustering algorithm. Membership nuance to a cluster allows better legibility to evaluate 
relevance and relative interest of fuzzy controller parameters according to performance indices. 
 
Keywords: Fuzzy logic, Fuzzy Logic Controllers, Vector Space, Classes of Fuzzy Controllers, 
Clustering and Learning 
Categories: I.2, I.5 

1 Introduction 

Mamdani’s Fuzzy Logic Controllers (FLCs) [Mamdani, 74] consisting of a collection 
of linguistic fuzzy rules, are the most common fuzzy rule based systems (FRBSs). 
The structure analysis of these systems is an active research field in the area of fuzzy 
control theory. FLCs can be specified by three families of parameters: "K" the 
knowledge base parameters, "L" the logical parameters and "D" the defuzzification 
procedures. The "K" family includes fuzzy rules, membership functions (MFs), fuzzy 
partition, shape of the membership functions and some parameters related to the size 
of the fuzzy system: number of membership functions, number of rules and number of 
condition part in a rule. The "L" family includes the fuzzy logic operators applied for 
AND, OR and implication. The "D" family includes aggregation operations and 
defuzzification methods. An optimal control depends on a combination and a 
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judicious choice of these parameters according to the specified performance indices 
(overshoot%, response time, rise time, etc.). The carelessness of the interdependence 
between parameters leads to a temporary and an instable choice [Chenaina and 
Chouigui, 00]. In fact, an eventual performance evolution facing designers, leads to 
the control degradation. This latter is a consequence of reasoning non-conformity ("L" 
family) with knowledge ("K" family). In the fuzzy control framework, the parameters, 
adjustment is a critical point. A fundamental question faced by designers concerns the 
right choice of fuzzy parameters class.  

By analyzing the literature of the fuzzy modeling, it seems that the choice of these 
parameters is based on FRBSs tuning component [Alcalá et al., 07a] and/or fixed by 
experimentation on real applications [Chavez et al., 12 ], [Gacto et al., 12]. Most of 
the works that are characterized by their ability to self-learn their structures, have 
solved part of the problem. However, most of them focus on non-transparent 
optimizations of parameters by using neural networks or genetic algorithms. The 
optimal adjustment of fuzzy partition by learning techniques characterizes this 
tendency. This partly explains the evolution of the fuzzy control to the "all numerical" 
evolution discrepant with the main motivation of the fuzzy sets theory’s development: 
the visibility. 

Works on artificial neural networks has contributed significantly to the field of 
knowledge engineering. The knowledge, however, is represented at a sub-symbolic 
level in terms of connections and weights. Neural networks act like black boxes 
providing little insight into how decisions are made. They have no explicit, 
declarative knowledge structure that allows the representation and generation of 
explanation structures. Thus, knowledge captured by neural networks is not 
transparent to users and cannot be verified by domain experts. To solve this problem, 
researchers are interested in developing a humanly understandable representation for 
neural networks. Multi-objective constrained optimization models in which criteria 
such as accuracy, transparency and compactness have been taken into account are 
proposed [Gacto et al., 12] [Perez et al., 13]. 

This paper attempts to deal with these issues by using a clustering technique of 
Mamdani’s FLCs parameters. An alternative identification method of fuzzy 
parameters is proposed, in order to first allow relating fuzzy parameters to 
performance indices and then placing them in the nearest cluster. This synthesis 
provides FLCs’ designers with more efficient and transparent means to assess the 
relevance and the relative interest of parameters with regards to some performance 
indices. The aim of clustering is to find the best setting for FLCs’ parameters and not 
only to fine independently specific parameters.  

This paper is organized as follows: Section 2 presents different approaches of 
Fuzzy Systems Modeling; their advantages and disadvantages are highlighted. Section 
3 focuses on the passage from topological form of a fuzzy rule base (RB) to its 
numerical form, in order to carry out accurate identification rule bases, able to 
characterize different FLCs. From a computing point of view, this passage relates 
symbolic and numerical data. The specificity of our approach is the development of a 
vector space structure and relations base between fuzzy sets needed for quantifying 
fuzzy partition. We put in relation trapezoidal fuzzy sets and Allen’s intervals [Allen 
and Koomen, 83]. Then realizable relations between fuzzy sets are determined and a 
vector space base of relations is constructed. Finally, parameters characterizing a 
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fuzzy partition for a given rule base are determined. The trapezoidal model as shown 
in Fig. 1, presents the advantage of an easy adjustment of the membership functions in 
a computerized treatment of data. Furthermore, the choice of this model is justified by 
the fact that cores and supports are identified as intervals. They fall within Allen’s 
interval algebra. In Section 4 we proceed to a classification of these vectors (FLCs) 
according to some performance indices. A clustering algorithm of FLCs is proposed, 
its principle relies on a non-supervised learning method of a neural network 
[Simpson, 93]. This latter considers the activation function of a neuron taking into 
account the membership degree calculation of a parameters’ combination to classify 
in the cluster. Section 5 presents the experimental results and describes their 
significance. In section 6 soundness and justification of the work are discussed. 
Finally Section 7 summarizes the paper. 

2 Fuzzy Systems Modeling 

The basic objective of fuzzy systems modeling is to identify the parameters of a fuzzy 
inference system in order to reach a desired behavior. Fuzzy control systems 
modeling involve at least two basic parts: parameters identification and structure 
identification. This latter is related to; the variables’ identification, the determination 
of MFs’ number for each variable and the determination of discourse universes. The 
following are some approaches of fuzzy systems modeling: 

1. Fuzzy modeling based knowledge engineering is inspired by the knowledge 
engineering methods used in expert systems. The first based knowledge approach, 
proposed by Zadeh [Zadeh, 73], tries to build a fuzzy model directly from the expert 
knowledge. However, there is no general methodology for the implementation of this 
approach, which involves heuristic knowledge and intuition. The magnitude of the 
problem space has motivated the use of automatic approaches to fuzzy modeling.  

2. Approaches based on classic identification algorithms [Schiavo and Luciano, 
01] deal with an iterative estimation of MFs, which are applied to a pre-defined model 
structure in order to approximate an expected behavior. In some fuzzy modeling 
techniques, the pre-defined parameters do not guarantee that a desired behavior can be 
reached. 

3. In constructive learning approaches [Rojas et al., 00], a priori expert 
knowledge is used to guide the search process instead of being used to directly 
construct the fuzzy system. After an expert-guided definition of logic parameters, 
relevant variables and universes of discourse, a sequence of learning algorithms was 
progressively applied to construct an adequate final fuzzy model.  

4. The hybridization of fuzzy systems with genetic algorithm and neural 
networks known as Genetic Fuzzy Systems (GFSs) and Neural Fuzzy Systems (NFSs) 
are applied to improve the automatic design of Fuzzy Logic Systems (FLSs). A recent 
example of GFS is presented by Chavez et al. [Chavez et al., 12] to improve laser spot 
system detection by means of MFs’ tuning. In NFSs approach the Fuzzy-rule 
extraction technique extracts from the knowledge embedded in trained neural 
networks a set of fuzzy rules [Duch et al., 01]. The advantage of this kind of 
representation is that such hybrid systems can be optimized via powerful, well-known 
neural-network learning algorithms. The main disadvantage of this technique is that 
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the access to the knowledge requires a previous rule-extraction phase and that they are 
intended to maximize accuracy, ignoring human interpretability. 

5. Multi-objective Evolutionary Algorithms (MOEAs) which appeared only in 
the last decade, are used to search on large and complex search spaces [Coello et al., 
07]. Fuzzy modeling can be considered as an optimization process where the 
parameters of a fuzzy system constitute the search space. Works investigating the 
application of MOEAs have been divided into two subcategories: MFs tuning and 
inference parameters tuning [Alcalá et al., 07a]. Recent example of MOEAs is 
presented by Gacto et al. [Gacto et al., 12] to improve the performance of Heating, 
Ventilating and Air Conditioning System.  

The main objective of FLCs theory is to obtain fuzzy models with good 
interpretability. The interpretability of fuzzy control systems depends on several 
parameters; especially the fuzzy partition, the number of input variables, the number 
of rules, the number of condition part in a rule, etc. Some works have attempted to 
define objective criteria that facilitate the automatic modeling of interpretable fuzzy 
systems. Alcalá et al. [Alcalá et al., 11] conclude on the importance of completely 
determining appropriate granularities (number of fuzzy sets) and fuzzy partition. 
Gacto et al. [Gacto et al., 11] has analyzed and classified the universalities of 
interpretability measures. To carry out the trade-off between interpretability and 
accuracy, Gacto et al. have proposed a taxonomy with four levels: 
 

i. Complexity at the rule base level 
ii. Complexity at the level of fuzzy partitions 

iii. Semantics at the rule base level 
iv. Semantics at the level of fuzzy partitions 

 
They conclude that there are well-known measures to quantify complexity such as 

the number of rules, the number of condition part in a rule, etc. However, well-
established definitions for interpretability of fuzzy systems at the level of rule base or 
fuzzy partitions can’t be defined. Indeed, the interpretability that expresses the 
behavior of the real system in an understandable way remains a subjective property 
depending on the designer’s requirements.  

The optimal adjustment of fuzzy partition by learning techniques characterizes 
several works of fuzzy modeling. This justifies our interest to provide an accurate 
measure to evaluate the fuzzy partition. 

3 Vector Space of Relationships between Fuzzy Sets 

Tuning approaches use symbolic translation of a fuzzy set [Alcalá et al., 07a], a lateral 
displacement and the amplitude variation of the fuzzy set support [Alcalá et al, 07b]. 
In fuzzy interpolation, many works [Chen and Ko, 08], [Yang and Shen, 11]  perform 
geometric manipulation to define the representative value of a trapezoidal fuzzy set. 
They apply geometric operations on MF’s supports and cores to capture the overall 
location of the fuzzy set. In [Yang and Shen, 11] the representative value of fuzzy set is 
defined by:  
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Where "a", "b", "c" and "d" represent the parameters of the trapezoidal fuzzy set 
A (Fig. 1), w0 and w1 are the weights of the support and the core of fuzzy set A.  
[Chen and Ko, 08] and [Yang and Shen, 11] use respectively (2) and (3): 
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Looking on these propositions it can be concluded that the representative value of 
a trapezoidal fuzzy set depends on the relationship between supports and cores. In the 
present contribution, in order to define the representative value of fuzzy sets 
distributions associated with linguistic variables we will consider a study of 
relationships that can exist between cores and supports of fuzzy sets. 

3.1 Representation of Fuzzy Sets by Intervals 

The trapezoidal model as shown in Fig. 1, presents the advantage of an easy 
adjustment of the membership functions in a computerized treatment of data.  
 

 

a      b             c      d   

Figure 1: A fuzzy set T represented by four parameters. T = (a, b, c, d)  [-1,1] 4 

The study of the relative position between fuzzy sets requires relationships 
between four dimensions space. The representation by intervals presents two 
advantages. First, it allows working in two dimensions space. Second, it permits the 
unification of fuzzy sets relationships with Allen's interval algebra [Allen and 
Koomen, 83]. Temporal relationships between two time intervals can be expressed by 
one of the 13 relations [Allen and Koomen, 83] as shown in Table 1.  

 
Note 1.  

1) B is the set of the 13 relations as shown in Table 1.  
 2) 2B is the set of composed relations; "°" is the composition relation. Table 4 
shows the composition of some relationships. 
 3) The addition of two sets S1 and S2 is defined by: S1+S2 = (S1S2)  (S2S1) =  
(S1S2)  (S1S2). The addition operation coincides with the exclusive disjunction.  

(2B,+, °) is an algebra over the Boolean body [Allen and Koomen, 83]. The set of 
the 13 relations (Table l) forms a base of elementary binary relations [Allen and 
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Koomen, 83]. Let E be a vector space of B. Taking into account this result, the 
purpose of the following sections is to build a vector space E  EE of relations 
between fuzzy sets.  
 

Table 1:  Relationships between time intervals 

Definition 1. The set T of fuzzy sets is defined by:  
T = {(I1, I0)  II, / I1  I0} 

I is the discourse universes, I1 and I0 are respectively the core and the support of 
the fuzzy set T T. if T1 and T2  T, it can be written: 

T1 = (I1, I0) / I1 = [B1, C1] and I0 = [A1, D1] / I1  I0 (i.e.) A1B1C1D1. 
T2 = (J1, J0) / J1 = [B2, C2] and J0 = [A2, D2] / J1  J0 (i.e.) A2B2C2D2. 

 
A fuzzy set can be considered as a couple of two intervals: support and core. Let 

T1 = (I1, I0) and T2 = (J1, J0) are two elements of T. The idea is to combine the relative 
positions of supports and cores, in order to determine the realizable relations between 
T1 and T2. In fact, a relation is designed by a couple (x, y) of BxB, where x and y 
represent respectively the relation between cores (I1, J1) and supports (I0, J0). 
 
Example 1. 
 

 

Figure 2: The relationships (m ,s) and (m ,d) 

T1 (m, s) T2 and T1 (m, d) T2 produce two different fuzzy sets. In the following, a 
formal approach to reduce the large number of relations between fuzzy sets is 
presented.  
 
Theorem 1. The Boolean value set {0, 1} with addition and multiplication, defined 
respectively by Table 2 and Table 3 has a body structure. 
 
 
 

Symbolic Constraints Reverse  Constraints Time  
b:I before J  b’ : J after I  
e:I equals J  e  : J equals I  
m:I meets J m’ : J met-by I  
o:I overlaps J o’ : J overlapped-by I  
s:I starts J s’: J started-by I  
d: I during  J d’: J contains I  
f:I finishes J f’ : J finished-by I  
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+ 0 1  • 0 1 
0 0 1 0 0 0 
1 1 0 1 0 1 

                             Table 2:  Exclusive Disjunction          Table 3:  Logic Conjunction 

Lemma 1. Let (E, +) be a commutative group with an additive law "+", "0E" is its 
neutral element. (E, +) is a vector space over ({0, l}, +, •), if and only if: x E, x + x 
= 0E. 
 
Note 2. The proof of theorem1 is evident. The body ({0, l}, +, •) defines the Boolean 
coefficients of linear combinations of relationships between fuzzy sets. Thus, "1» 
represent the existence of relationship, "0" the non-existence. The lemma will be 
useful for the calculus simplification.  

3.2 Realizable Relationship 

In this section, we seek to find realizable relations. In fact, some irrelevant couples 
can be formed from the set B ={e, b, m, o, d, s, f, b', m' o', d', s', f'}, such as the 
relation (d, b) which is not realizable on T. 
 
Definition 2. (x, y)  BB is realizable on T is equivalent to  T1  T, if T1(x, y) T2 
then T2  T. 
 
Theorem 2. The relationships (x, x) and (x, d) are realizable for any x  B. 
 
Proof. a) Let's show  x  B, the elementary relationship (x, d) is realizable between 
two elements of T. Let's suppose that (I0 d J0) (the support of T1 is during the support 
of T2). Let's show any relationship among the 13 base primitives may relate the cores 
I1 and J1, as T1 and T2  T. Now let us consider that:  
 

A1  B1  C1  D1     I1 (s+d+f+e) I0 

A2  B2  C2  D2     J0 (s’+d’+f’+e) J1 
 

we have: {I1(s+d+f+e)I0 and I0dJ0 and J0 (s’+d’+f’+e) J1} = {I1((s+d+f+e)°d° 
(s’+d’+f’+e))J1}=((s+d+f+e)°d)°(s’+d’+f’+e)=((s°d)+(d°d)+(f°d)+(e°d))°(s’+d’+f’+e) 
=  (d+d+d+d)°(s’+d’+f’+e) = °(s’+d’+f’+e). 

Refer to table 4 and Lemma 1. (xB, x+x =,  is the neutral element of +) = 
(°s’)+(°d’)+(°f’)+(°e) = . 

This leads to the conclusion regarding the feasibility of the relationship x B. 
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q°r B d m o s f e 
s B d b bmo s d s 
f B d m osd d f f 
d B d b bmosd d d d 
e B d m o s f e 

sfde       sfde 

 
q°r b’ m’ o’ s’ f’ d’ 

s b’ m’ fdo’ ses’ bmo bmof’d’ 
f b’ b’ b’m’o’ b’m’o’ fef’ b’m’o’s’d’ 
d b’ b’ fdb’m’o’ fdb’m’o’ bmosd 
e b’ m’ o’ s’ f’ d’ 

sfde    fdse sdfe bmob’m’o’f’s’d’ 

Table 4: The composition law "°" is a deduction law. Let I, J and K be three intervals 
such that   " I b J" (I before J ) and " J o K" (J overlaps K ), the only thing that can be 
deduced is (J before K ) or (J meets K ) or (J overlaps K ), i.e. (J bmo K ) or (J 
b+m+o K ), where + is the exclusive disjunction. The relationship  expresses an 
indeterminacy; if "I d J " and "J d’ K"  then we can deduce nothing about the relative 
position of J and K, d ° d’ = . 

b) Let's show xB, the couple of elementary relations (x, x) is realizable 
between two elements of T. According to (a), the relation (d, d) is realizable. It 
remains to prove the feasibility of (x, x), x B - {d}. 
 Consider that {I1(s+d+f+e) I0 and I0 x J0 and J0 (s’+d’+f’+e) J1} =                             
{I1 ((s+d+f+e)°x°(s’+d’+f’+e)) J1}. We need to calculate ((f+d+s+e)°x°(f’+d’+s’+e)  
x  B-{d}, for x  {b,m,o,s,f,b’,m’,o’}:((s+f+d+e)°x)°(s’+f’+d’+e) = °(s’+f’+d’+e) 
= . 

Refer to table 4 so (I1xJ1) is realizable, then  x {b,m,o,s,f,b’,m’,o’}, (x, x) is 
realizable.  

For x = e: ((s+f+d+e)°e°(s’+f’+d’+e)) =   
for x=s': ((f+d+s+e)°s’°(f’+d’+s’+e)) =  
for x = f': ((f+d+s+e)°f’°(f’+d’+s’+e)) =   
for x = d': ((f+d+s+e)°d’°(f’+d’+s’+e)) =  

 
Hence (e, e), (s', s'), (f', f'), (d’, d’) are realizable. 

 
Theorem 3. The set B = {(x, x), (x, d) / x  B} is a free system of the product vector 
space EE over the Boolean body ({0, l}, +, •). (The proof is provided in the 
Appendix A). 
 
Note 3.  

1) Any relationship can be written as a linear combination with Boolean 
coefficients of elementary realizable relationships.  
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2) Let "r" 2B, length(r) is the cardinal of the subset "r". 
 

Theorem 4.  
a) The vector space E of realizable relationships between two fuzzy sets of T over 

the body ({0, 1}, +, •) is equal to the following set: R = {(r0, r1) EE / length (r0) + 
length (r1) is even}.  

b) The set B = {(x, x); (x, d) / xB} is a base of the realizable elementary 
relationships of the vector space E. (The proof is provided in the Appendix A). 

 
Example 2. 
i) Length (dmo + efd) = length (d+m+o+e+f+d) = length (moef) = 4. Consequently 
length (dmo) + length (efd) - 2  number of simplifications = 3 + 3 - 21 = 4. 
 
ii) Length (mbo + m’b’bo) = length (mm’b’) = 3. Length (mbo) + length (m’b’bo) - 2 
 number of simplifications = 3 + 4 - 2  2 = 3. 

Showing that E  R = {(r0, r1)  EE / length (r0) + length (r1) is even}. Let (x,y) 
 E  EE  

1st case: if (x, y) is an elementary relation i.e. (x, y)  BB then length(x) + 
length(y) =1+1=2 is even then (x, y)  R. Therefore, E  R. 

2nd case: if (x, y) is not an elementary relation then the relation (x, y) is written as 
a disjunction of realizable elementary relations. Therefore, length (x) + length (y) =   
(2 x number of terms of the sum) – (2 x number of simplifications). This number is 
even, thus (x, y) R, it can be concluded that E  R. 
 
Note 4. 
x  B, the relations (x,) and (,x)  E since their length = 1.  
 
Example 3. 

i) The relationship (mdo, m) is written as a linear combination with Boolean 
coefficients of elementary realizable relations: (mdo, m) = (m, m) + (d, d) + (0, d), so 
it belongs to E. On the other hand, length (mdo) + length (m) = 3 + 1  =4 =  2x3 - 2x1 
is even. Consequently, the relation (mdo, m)  R.  

ii) Let (bb ', d) = (b, d) + (b', d) + (, d). Since (, d) is not an elementary 
relation, (bb’, d)  E. On the other hand, length (bb') + length (d) = 2+1 = 3 is odd.  
 
Note 5. The relation (x, y) of E, is written in the base B as: (x, y) = (x, d) + (y, d) + 
(y, y)  

3.3 Evaluation of Fuzzy Partition over the Universe of Discourse 

The fuzzy sets partition is based on the realizable relationships study. The base B 
allows to restrict the study to the following 25 relationships:  

Every product relationship between sets is written as a disjunction of these 
relationships. The relationships analysis allowed to retain two main proprieties: the 
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overlapping and the spacing proprieties. Therefore, it is possible to define numerical 
parameters able to characterize a given fuzzy partition.  

 
 
 
 
 
 
 
 

 

Table 5: The relationships base 

Definition 3. The function (x,y)  associates with each relation  (x, y) of E, a fuzzy set 
Tij T 

 (x,y): E  T 
(x, y)  (x,y) = Tij= Ti Tj 
 (x,y)  E, (x, y) = (x, d) + (y, d) + (y, y)  
 Ti, Tj  T / Ti(x, y)Tj, we have:  
Ti (x, y) Tj = Ti ((x, d) + (y, d) + (y, y)) Tj = (Ti (x, d) Tj )+ (Ti (y, d) Tj )+ 
(Ti (y, y) Tj ) = 
(x,y)  (y,d)  (y,y) 

( is the symmetric difference between two sets)  
 
Example 4. 
 

A1      B1      A2    C1     B2          C2           D2        D1

T1

T2

 
Figure 3: The relation (b, d’) 

 
(b, d’) = (b,d) + (d’,d) + (d’,d’)  (b,d’) = (b,d)  (d’,d)  (d’,d’) = 
{A1, A1B1  A2B2, C1D1  A2B2, D1 } {A1, A1B1  A2B2, B2, C2, C1D1  C2D2, 
D1} {A2, B2, C2, D2}= {A2, C1D1  A2B2, C1D1  C2D2, D2} 
 
Note 6. The point (A1B1  A2B2) which is not defined for the case (b, d'), is 
simplified in calculation.  

3.4 Overlapping Degree  

The overlapping (oij) between two fuzzy sets Ti and Tj is calculated by the following 
formula:  
 
                                                      Oij = 2  AOij / (Ai + Aj)                                        (4) 

(b, d) (e, d) (m, d) (0, d) (d, d) 
(s, d) (f, d) (b', d) (m', d) (0', d) 
(d', d) (s', d) (f', d) (b, b) (e, e) 
(m, m) (0,0) (s, s) (f, f) (b', b') 
(m', m') (0', 0') (d', d') (s', s ') (f', f') 
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where: AOij is the area of Ti  Tj and  (Ai + Aj) is the area sum of Ti and Tj. 
Let us note that Oij  [0,1], if Ti = Tj then Oij = 1. The overlapping degree (OLV) 

of a fuzzy partition associated with a linguistic variable is defined by:  
 

                                                              
2
n

ji

ij

OLV
C

O


                                                 
(5) 

where "n" is the number of fuzzy sets associated with the linguistic variable. The 
overlapping degree of a rule can be defined by the same formula where "n" is the 
number of premises and conclusion parts of the fuzzy sets. The rule base overlapping 
can be defined by an arithmetic average on the overlapping degrees of each rule.  
 
Example 5. Let the rule base: 

if X is A1 and Y is B1 then Z is C1  
if X is A2 and Y is B2 then Z is C2  
if X is A3 and Y is B3 then Z is C3  

 
T1

T2

T3

 

Figure 4: The fuzzy sets partition of a linguistic variable 

O12 = O21 = 2 A12 / (A1 + A2) 
O13 = O31 = 2 A13 / (A1 + A3)  
O23 = O32 = 2 A23 / (A2 + A3) 
OX = (O12 + O13 + O23) / 3 

3.5 Spacing measure 

An evaluation of the spacing Sij of two fuzzy sets Ti and Tj describing the distance 
between Ti and Tj is carried out as shown in Fig. 5.  
 

 Ti                               Tj 

Sij  
Figure 5: Spacing between two fuzzy sets 

 
 Sij= inf(J0) - sup(I0)  if  (TiTj)= and (I0 b J0) else  Sij= 0, where I0 and I1 are 
respectively supports of Ti and Tj 

The spacing between two fuzzy sets of a linguistic variable or a rule is calculated 
by the following formula:  
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(6) 

 
Sij is the distance between Ti and Tj. "n" is the fuzzy sets’ number of the linguistic 

variable. The rule base spacing can be calculated by an arithmetic average on the 
spacing degrees of each rule.  

Distance is obvious when a membership function is interpreted in terms of 
similarity. This has been very often done in clustering [Precup et al., 13] and more 
generally in many applications of fuzzy sets for the definition of fuzzy numbers    
[Rao and Shankarb, 12]. The most widely used distances for fuzzy sets are the 
Euclidean distance and the Hamming distance.  

Furthermore, to impose constraints on fuzzy sets at the fuzzy partition level, other 
many works use a distance between the centers of fuzzy sets. Gacto et al. affirm that 
when the value of the distance is smaller, the number of acceptable fuzzy sets per 
domain will increase, increasing the number of rules and also increasing the 
complexity of the model. On the other hand, as the value of the distance increases the 
number of fuzzy sets per domain decreases, reducing the number of rules [Gacto et 
al., 11]. 

In this work, the base of relationships between fuzzy sets as a result of the 
previous analysis leads to two characteristics; the overlapping degree (4) and the 
distance (6) between the closest extremities of fuzzy sets’ supports. The modeling 
process of an accurate FLC could lead to complex fuzzy partitions, which could make 
the interpretability of the system by a designer difficult. This latter can vary in the 
overlap and the distance between fuzzy sets respecting the fuzzy partition semantics 
by preserving some properties as: Completeness, Normalization, Distinguishability 
and Complementarity [Gacto et al., 11]. 

4 Fuzzy Control Systems Clustering 

As a result of the previous analysis, the rule base can be considered as vector (7) with 
coordinates the degree of overlapping (ov) and of spacing (sp). Other coordinates 
indicating the number of rules (nr), number of linguistic variables (nv), sets 
associated with each variable (sv) and two Booleans reflecting the partition’s 
symmetry (sy) and equidistance (eq) can be added.  

 
                                                 (ov, sp, nr, nv, sv sy, eq)T                                      (7) 
 

Assuming that it is possible to classify a given FLC as having a characteristic 
behavior model, then it can be associated with the corresponding vector (7). In other 
words it is an association of a particular configuration of fuzzy parameters. The 
obtained numerical model of a rule base provides a realistic framework that is able to 
classify FLCs according to performance indices.  

The presented study in this paper is based on the "Fuzzy min-max neural network 
clustering" method [Simpson, 93]. It clearly illustrates the association between neural 
networks and the fuzzy sets. The neural network compares a sample of inputs with a 
set of examples. If neurons represent separated categories (clusters) then, the more the 
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input introduced inside the cluster, the more the output value of this neuron is raised.  
Without relearning, the used method allows parallel processing to provide new 
individuals classification, again. The cluster’s sizes are dynamically determined 
during the learning process. This method does not need a similarity measure between 
individuals. Such measure strongly affecting results is hardly evaluated in the FLCs’ 
case. In order to achieve certain flexibility between clusters’ barriers, fuzzy clustering 
technique is used. It is interesting to know the FLC belonging degree to one cluster. 
In other words, we can determine parameters combination which responds to 
performance indices better than others. 

4.1 The Membership Function 

The main objective of using fuzzy logic in the clustering algorithm is to refine the 
membership of fuzzy systems (FLCs) to different clusters. The neural network is a 
powerful framework for aggregation with efficiency and speed of calculation. The 
neural network compares an input with a sample of fuzzy systems (FLCs) stored in 
the memory. The activation function of a neuron calculates the membership degree of 
a fuzzy system to the cluster associated with that neuron. If neurons represent clusters, 
then the more the fuzzy system is introduced into the cluster, the greater the value of 
the output corresponding to this neuron is high. Each neuron (cluster) is considered as 
a fuzzy set and its activation function is identified with the membership function of 
this fuzzy set. 

"Fuzzy min-max neural networks clustering" method provides hypercubes 
clusters form (([0,1]n  n). In this work, two performance indices are used to 
regroup FLCs: overshoot percentage ("ov %") and response time ("RT"). Hence, a 
square will be used instead of an hypercube (Fig. 6). The fuzzy sets are completely 
defined by the "min" and "max" points. Therefore, it is possible to describe the degree 
with which a FLC belongs to a cluster (square) or to another. 

The aim of the clustering is to regroup fuzzy systems "sj" according to a set of 
performance indices (c = 1 for "ov %", c=2 for "RT", ...), and to interpret these 
clusters with a synthesis of results. Each index corresponds to a dimension of space. 
Since it is difficult to visualize these systems in spaces greater than two dimensions, 
we seek to represent these systems in subspaces (planes) so that the representation is 
simple and easily interpretable. It should be noted that when the clustering is 
performed on large spaces, the graph can be obtained by projections on different 
planes that constitute the subspace. 

Let sj be the jth FLC of the  set (j = 1...n), n is the number of FLCs. sj = (sj1, sj2) 
 2, sjc is the cth component of the jth FLC, on each dimension (c =1, 2).  Let i be the 
ith square definite by (8). 
 
                   Ci  = {mi, Mi, µi(sj, mi, Mi)}                                  (8) 

where mi = (mi1, mi2)  2, the minimum of Ci and    Mi = (Mi1, Mi2)  2, the 
maximum of Ci. 
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Figure 6: Cluster Structure 

                      i (sj, mi, Mi) =1/2 


2

1
 

c
[1- f (sjc -Mic, )-f (mic - sjc, )]                       (9) 

where : 0 i (sj, mi, Mi)  1  
 

      f (x, )  =1                if   x  *     > 1  
                     x *   if  0 <= x *  <=1 
         0                if   x  *    < 0 
 

Membership function i (sj, mi, Mi) measures membership degree indicating the 
proximity between the FLC sj and the cluster Ci formed by the couple of points min-
max (mi, Mi). This is considered as a measure of frontier distance of the square, 
indicating, how much each component is greater (less) than the value from the "max" 
("min") point. The closer the FLC we get to square, the more the membership degree 
approaches 1. If the FLC is inside the square the membership degree equals 1. 

 is a sensitivity parameter measuring the decrease rate of the membership 
function as far as a FLC "sj" is separated from the cluster core.  regulates the speed 
with which membership function values decrease when a FLC "sj" is separated from 
the cluster’s core. When  is small, the fuzzy set becomes less contracted, however, 
when  is big, the fuzzy set becomes more contracted. The value of  (sensitivity 
parameter) and  (square size) are provided by the user at the beginning of the 
program,  changes during learning. 

4.2 The Learning  Process 

Membership degree of the FLC to be classified in the corresponding cluster is 
calculated by the neuron activation function. Clusters containing the provided FLCs 
are constructed by the learning process.  If a cluster cannot be found, that is, it does 
not verify the extension criteria, then new cluster will be formed and added to the 
system. Overlap between the formed clusters can be generated by extension. 
Membership degree of 1 implies that the FLC belongs to several clusters causing 
ambiguity. To avoid this problem (if it exists), a contraction procedure will be used. 
 
 Extension test: Considering a FLC "sj", in order to find the cluster Ci with the 

highest membership degree and allowing the extension, the following test should 
be verified: 

 
                                            ( max (Mic, sjc) - min (mic, sjc) )                      (10) 
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If (10) is verified, the couple min-max is then adjusted by (11) and (12). If all 

squares are examined without any possibilities of extension then a new square should 
be built.  

 
 Overlapping test: Suppose that the square Ci is to be extended. A comparison 

between Ci and previously found squares, noted Ck is to be led. The extension 
creates an overlapping between Ci and Ck if and only if one of the following four 
conditions is verified, for c = 1, 2: 
 

a. mic  < mkc < Mic< Mkc 
b. mkc < mic  < Mkc< Mic 
c. mic < mkc <= Mkc< Mic 
d. mkc< mic<= Mic< Mkc                                                    (13) 

 Contraction procedure: The four overlapping cases previously described, are 
respectively eliminated by the following instructions : 

 
a. mkc = Mic  (mkc+ Mic) / 2 
b. mic = Mkc  (mic + Mkc) / 2 
c. if  (Mkc - mic) < (Mic - mkc)  then   mic  Mkc else Mic  mkc 

d. if  (Mic - mkc) < (Mkc - mic)  then   Mic  mkc else mic  Mkc                      (14) 
 

In order to take into account inherent parallelism of extension and contraction 
processes, the implementation of the learning with the help of a neural network is 
interesting, although the clustering approach is not necessarily neuronal. The chosen 
architecture is composed of two layers. The input layer contains "c" neurons; a neuron 
for each performance indice. The output layer contains "g" neurons as shown in  
Fig.7. Each neuron of the output layer represents a cluster and uses the membership 
function described by (9). 

The ith membership function i(sj, mi, Mi) (9) associated with the cluster Ci, 
represents the activation function of the ith neuron of the output layer. The connections 
mic and Mic between the cth neuron of the input layer and the ith neuron of the output 
layer, respectively represent minimal and maximal values with respect to "c" criteria. 

5 Experimental Results 

After obtaining a numerical model of a rule base (7), and adding logical parameters 
("imp", a t-norm "t-n", a t-conorm "t-c") and defuzzification procedures ("defuz"), we 
can therefore completely define a FLC "sj" by vector (15). It can be associated vector 
to each FLC having a characteristic behavior; in other words it can be associated rule 
base, logical operators and defuzzification procedures to a FLC. 
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Table 6.1 and 6.2 show results related to eleven FLCs. The first is an example of 
back-up steering angle control system, taken from [Kong and Kosko, 92] (details are 
provided in the Appendix B). Respecting the symmetry property, the ten others are 
obtained by widening fuzzy set support associated with the control variables. In fact, 
variation in fuzzy sets overlapping  allows distinguishing several FLCs as formulated 
by (16) and reported in Table 6.1 and 6.2. 

The parameter "sp" is set to zero since there is no spacing between fuzzy sets, 
"nr=35", "nv=3",  "sv= (5, 7, 7) ". The parameter "sy" is set to one which indicate that 
the fuzzy set partition is symmetric, "eq" is set to zero which indicate that the fuzzy 
set partition is not equidistant. The parameter "t-c" is set to the "Max" operator. The 
parameters "t-n" is set to the "Min" or "Product" operator, "defuz" is set to the center 
of gravity defuzzification method. The parameter "imp" varies during simulations. It 
is noteworthy that universal approximation framework is adopted, since FLCs can be 
considered universal approximators; they can approximate any real continuous 
function in a compact set to arbitrary accuracy [Herrera et al., 11]. 
 

  Mamdani’s 
implication 

Larsen’s 
implication 

sj ov% RT               ov% RT               ov% 
1 7 0.05968 46.00000   0.07778 42.00000   0.02222 
2 7 0.06984 45.00000   0.06667 42.00000   0.02222 
3 7 0.08045 45.00000   0.07778 42.00000   1.20000 
4 7 0.09114 45.00000   1.34444 42.00000   1.20000 
5 7 0.10192 46.00000   2.51111 42.00000   1.92222 
6 7 0.11284 47.00000   3.61111 42.00000   2.44444 
7 7 0.12390 48.00000   4.43333 43.00000   2.83333 
8 7 0.13515 42.00000   0.11111 41.00000   1.75556 
9 7 0.14642 42.00000   0.00000 41.00000   0.88889 
10 7 0.15760 42.00000   0.06667 41.00000   0.40000 
11 7 0.16861 42.00000   0.00000 41.00000   0.16667 

Table 6.1: The 2nd column presents parameters "ov%" associated with the different 
fuzzy control systems. Columns 3 and 4 present the overshoot percentage «ov%" and 
the response time "RT" associated with FLCs, respectively simulated by Mamdani’s 
implication, Larsen’s implication. 

The clustering results illustrated in Fig. 8 which clearly show that systems (s5, s6, 
s7), (s1, s2, s3, s4) and (s8, s9, s10, s11) form three distinct clusters. In the same 
cluster, systems are equivalent in a given interval of performance. It can be noticed 
that systems having an important overlapping degree present a small "ov%" and a 
short "RT". The clustering results shown in Fig. 9 illustrate bad performance 
(relatively high "ov%" and "RT"), achieved by systems 5, 6 and 7 with Mamdani’s 
implication. 
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  Lukasiewicz’s 

implication 
max-min implication 

of Zadeh 
sj ov% RT               ov% RT               ov% 
1 7 0.05968 -1.00000   22.45556 -1.00000   0.00000 
2 7 0.06984 -1.00000   21.77778 -1.00000   0.00000 
3 7 0.08045 -1.00000   20.41111 -1.00000   0.00000 
4 7 0.09114 -1.00000   20.44444 -1.00000   0.00000 
5 7 0.10192 93.00000  20.70000 -1.00000   0.00000 
6 7 0.11284 87.00000  19.77778 -1.00000   0.00000 
7 7 0.12390 86.00000  19.47778 -1.00000   0.00000 
8 7 0.13515 78.00000  19.52222 -1.00000   0.00000 
9 7 0.14642 75.00000  19.81111 -1.00000   0.00000 
10 7 0.15760 73.00000  19.66667 -1.00000   0.00000 
11 7 0.16861 72.00000  19.56667 -1.00000   0.00000 

Table 6.2: Columns 3and 4 present the overshoot percentage  "ov%" and the response 
time "RT" associated with FLCs, respectively simulated by Lukasiewicz’s implication 
and the max-min implication of Zadeh. The negative value (-1.00000) means that the 
"RT" of the considered system is not defined. 

             ),,,,,,,,,,(s j defuzctntimpeqsysvnvnrspov
jjjjjjjjjjj
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Figure 7: Implementation of the Clustering Algorithm 
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Figure 8: Clustering of FLCs (16), with Mamdani’s implication 

To reach a short "RT" and a low "ov%", it is necessary to try another implication. 
It is worthy to remark that systems 8, 9, 10 and 11 using Mamdani’s implication, and 
systems 1, 2, 3, 4, 5, 8, 9, 10 and 11 using Larsen’s implication are equivalent with 
respect to "RT" (41  RT  42) and "ov%" (0  o%  1.92). The superiority of 
Mamdani’s implication is not always verified; systems s25, s26 and s27 of Fig. 9 show 
poor performance ("ov%" relatively high). 

 
Algorithm: 
Let  = { sj \  j =1, n} 
be the set of FLCs 
Begin 
     read (, ) ;  mi   Mi  sj 
     Repeat 
     research Ci  square containing  sj ; 
           If Ci exists then sj is added to Ci 
           Else 
             If there exists a square verifying the  
             extension criteria Then extension; 
                While overlapping do 

       contraction; 
             Else  
                create a new square such that 
                mi   Mi  sj 
             End if 
           End if 
    Until    all clusters’ min-max couples 
                 do not change during the  successive 
                 presentations of FLCs 
  End.                                                                                    
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Figure 9: Clustering of FLCs "sj"  (16) with several implication. The 5th row of Table 
6.1 and the Mamdani’s implication (number 2) is the corresponding configuration of  
s25 

The obtained results show that systems using the Mamdani's implication and 
having a high overlapping degree in the fuzzy rules present a small "ov %" and a short 
"RT". Systems using Mamdani’s implication and Larsen’s implication (t-norms class) 
have similar performances compared to those using other implications.  

Comparative studies of fuzzy implications operators combined with the center of 
gravity defuzzification method have been treated in several works. It has been shown 
that the t-norms class has the best static behavior [Sakly and Benrejeb, 02]. The t-
norms class guarantees better performances, having much better accuracy than R-
implication [Cupertino et al., 02]. Lukasiewicz implications (R-implication) take very 
little control action and is therefore of little use in fuzzy control [Iancu (12)]. 
Compared with these studies, similar results were obtained with respect to the 
efficiency of fuzzy implications, as shown in Table 6.1 and 6.2. This justifies the 
proposed method by transformation of FLCs to a quantifiable entity and the use of the 
clustering approach. 

6 Discussion 

The aim of this study is to identify FLC’s parameters of nonlinear control systems 
characterized by second-order models to achieve an optimal control performance. 
These systems are encountered in many industrial and non-industrial process 
applications. The quality of control FLC depends on performance indices (response 
time, rise time, etc.). Our main challenge is to find the best setting for all FLCs’ 
parameters as a whole, while reducing such indices and avoiding undesirable 
overshoot. 

It was necessary to establish the vectorization of FLC, particularly its knowledge 
base before carrying out the clustering. The transition between the topological and the 

 

Lukasiewicz’s implication, coded: 0  
Larsen’s implication                     : 1  
Mamdani’s implication                  :2  
max-min rule of  Zadeh                   :3  

4 4 4 4 4 4

2.8

1.9

2.5
2.4

1.3

   

s16 

s26 s27 

s25 
s17 

s21 s22 
s23 s24 

s11 s12 
s15 s13 
s14 s28 
s29 

s18 s19 
s110   s111 

s210 

skj : j
th fuzzy system, using 

an implication of code k

ov% 

RT 

125Chenaina T., Alraddadi A.: Identifying Fuzzy Controllers Parameters ...



 
 

numerical form of FLC’s rule bases is presented in Section 3. The vector space base 
of relationships between fuzzy sets leads to two characteristics qualified to specify a 
given fuzzy partition - the overlapping degree (4) and the distance (6) between the 
closest extremities of fuzzy sets’ supports. As a result of the analysis of section 3, the 
FLC’s rule base can be considered as a vector (7). Then a FLC (rule base, logical 
operators and defuzzification procedures) has been completely defined by a vector 
(15). The obtained numerical model of a FLC provides a realistic framework capable 
of classifying FLCs according to performance indices.  

The design of a FLC depends on the number and shape of the input-output 
membership functions. Generally, it is very difficult to examine all the input-output 
data from a system to find the optimal membership function for a given FLC. That is 
why some recent works [Pelusi, 11b], [Meza et al., 09] based on Genetic Algorithms 
have been applied (with good results), to achieve the membership functions which 
improve the control system performances. Pelusi has carried out some works to 
improve the overshoot and the settling time of a FLC by optimizing membership 
functions, using Genetic Algorithms [Pelusi, 12b]. However, these systems are a time-
consuming adjusting process. In Precup’s work [Precup et al., 13] a model base from 
input–output data has been built using an online clustering procedure. Recent studies 
[Pelusi, 11a] and [Pelusi, 12a] propose genetic-neuro-fuzzy techniques able to 
improve some performance indices of second order control systems. In [Pelusi and 
Mascella 13], an optimization procedure of the membership functions has been 
accomplished through a genetic procedure, in order to improve the overshoot. 
Although, these techniques remain important issues in fuzzy modeling, the accuracy 
of their resulting model is highly dependent on the quality of training data used in its 
identification. In a parallel path, evolutionary algorithms [Riid and Rüstern, 11]   
[Sanz et al., 10] have become popular in recent years; they have proved their 
efficiency in the optimal tuning of fuzzy control systems and have shown an 
improvement in the FLCs interpretability. However, these algorithms which work 
with a family of potential solutions [Riid and Rüstern, 11], are computationally 
expensive and require several iterations to converge. This is often disapproved in 
many applications.    

The main contributions of this paper with respect to the current literature are: 
1. The passage from the topological form of a fuzzy rule base to its numerical 

form, is carried out in order to reach an accurate rule bases identification. This 
contribution is important and advantageous with respect to the current works because: 
 The FLCs’ representation in the form of vectors allows to study how FLCs reach the 

desired performance indices. It also allows to study the various parameters and their 
interaction with respect these indices.  

 The designer can easily individualize FLCs by modifying parameters, and 
accurately locate a FLC with respect to another.  

2. It is seen theoretically that the assessment measure of the fuzzy partition 
depends only on (4) and (6), which justifies the tuning approaches that use either 
symbolic translation of a fuzzy set or a lateral displacement of the fuzzy set support 
[Alcalá et al., 07a] [Alcalá et al, 07b]. 

3. The proposed approach can be seen as an alternative of a FLC’s identification 
method that allows relating fuzzy parameters to performance indices. The advantage 
of this contribution is: 
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 Providing FLCs’ designers with more efficient and transparent means of assessing 
the relevance and the relative interest of parameters with regards to some 
performance indices.  

 Providing FLCs’ designers with a library of clusters reference by identifying 
parameters of the fuzzy controller with those of the nearest cluster. 

 The proposed approach can become complementary to the learning methods. 
Indeed, it is often difficult for a designer to imagine the influence of parameters’ 
interactions on the output. It will be easier to construct well adjusted fuzzy sets. For 
example, it may be noted that the fuzzy set "around zero" is too specific and not 
enough fuzzified. Therefore, the designer will be able to personalize the 
performance indices to his preferences, by adjusting the overlapping degree (4) and 
the spacing measure (6). He should impose some constraints to the MF’s definition 
in order to preserve some properties as Completeness, Normalization, 
Distinguishability and Complementarity [Gacto et al., 11]. 

4. The interpretability is the capacity to express the behavior of the real system 
in an understandable way, which depends on several parameters, especially the fuzzy 
partition. The results of the example included to accompany the theoretical finding 
confirm that the clustering technique (section 4) is an efficient tool for minimizing the 
gap between the accuracy and transparency. Indeed, it allows to handle adequately all 
aspects of an optimal control performance (both the FLCs’ parameters and 
performances indices), taking into account the interdependence between parameters 
and making the analysis of the system’s behavior easier by studying the system’s 
sensitivity to one or more parameters. This technique’s advantages are evident in 
terms of computational complexity compared with other methods such as 
computational evolutionary algorithms or genetic algorithms which are considered as 
grafted foreign objects on the FLC. 

5. The optimal choice of parameters was based on the universal approximation 
propriety which reduces the number of choices and refines the search problems. 
Universal approximation propriety has at least two advantages. First, it provides FLCs 
with the ability to simulate a multitude of fuzzy control systems without being 
attached to a particular context of the controlled process. Second, it reduces the 
parameters space. It also sets some of them, such as t-norms, defuzzification 
procedures, etc. For modeling, the question is whether a FLC is capable of uniformly 
approximating any continuous, nonlinear physical system, without being attached to a 
specific context of controlled process. The responses to this vast question are 
provided in the following: 
 First, when taking into account the context, it is interesting to observe dissimilarity 

between the expert systems approach and the fuzzy control approach. This 
difference is caused by a divergence in the objectives embedded in the two 
approaches. Fuzzy expert systems seek to describe the linguistic knowledge 
meaning in order to calculate automatically imprecise conclusions [Zadeh, 79]. In 
fact, these artificial intelligence systems are characterized by the tasks they realize, 
and not by the programs that they accomplish. These latter are characterized by the 
knowledge that these programs express and the meaning that they possess in the real 
task’s context [Newell, 82]. In other words, making-decisions should have a sense 
with regard to the context. Consequently, the fuzzy parameters choice involved in 
the evaluation of decisions has to depend on the context. The fuzzy control systems 
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do not seek to describe the knowledge meaning during inferences but to interpolate 
functions by constructing control laws from rules.  

 We can consider that the context is represented by the sequences of rules that a 
fuzzy control system uses to control a variable around performances indices. The 
rule base is not considered as a universal affirmation sort, but only applied to a 
specific context in which the model of fuzzy control has been defined. The context 
is represented by the meaning of symbols (fuzzy sets) included in the rules: a 
membership function µF of a fuzzy subset F depends on the context. For example, 
"the temperature is raised" has not the same meaning if it concerns the temperature 
of a room or a gas stove, etc. For two experts the phrase "the temperature is raised" 
does not always mean exactly the same thing. 

7 Conclusion 

Inspired by Allen's interval algebra, a product vector space of relationships between 
cores and supports of fuzzy sets was formulated. A base of relationships specifying 
fuzzy sets partition of a rule base was therefore deduced. Clustering approach based 
on the obtained numerical model of a rule base provides a realistic framework able to 
classify FLCs according to some performance indices. This synthesis provides FLCs’ 
designers with a library of clusters reference by identifying parameters of the fuzzy 
controller to design with those of the nearest cluster. This contribution proposes a 
specific classification that can help better understand which FLC’s parameters can 
lead to a range of some performance indices. A simulation analysis of FLCs and 
comparison of results with those existing in the literature justify the used 
methodology.  

Rather than fully automated learning techniques (black-boxes), fuzzy modeling 
should be seen as an interactive method, facilitating the active participation of the 
designer in the modeling process. The designer is able to personalize the performance 
indices to his preferences, by adjusting the fuzzy partition and some other parameters. 
The clustering technique provides a mean to quantify the interpretability of 
Mamdani’s FLCs – which is still an open problem – with respect to the preferred 
reference fuzzy partitions provided by a designer. The first limit of this work is 
related to the study of the intrinsic parameters, including scaling factors which have a 
contextual component. It is therefore interesting to explore this path. Another 
interesting way is to analyze how we could combine parameters of the different 
families. 
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Appendix A 

Proof of theorem 3 
Let {x, x,  / x  B-{d}} be the Boolean value set verifying the equation:  
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B is a base of the intervals vector space E, so B is a free system. Respectively 

(19) and (20) are deduced from (17) and (18):  
 
                                      x B-{d},   = 0 and   x + x = 0                             (19) 

                                    x  B-{d},  x = 0  and  
dx

0 =  + x

                   

(20) 

 
Combining (19) and (20), it can be deduced that  x  B-{d},  = 0, x = 0 and 

x = 0. It results that B is a free system of the product vector space ExE.  
 
Proof of theorem 4 
a) Showing that E = R {(r0, r1)  EE / length (r0) + length (r1) is even} is a vector 
subspace of ExE. 
 
 Stability by addition 
Let (r0, r1) and (r0’, r1’)  R, we have: (r0, r1) + (r0’, r1’) = (r0 + r0’, r1 + r1’). 

Length (r0 + r0’) = length (r0) + length (r0’) - 2 number of simplifications 
(simplification results from xB, x+x=). Length (r1+ r1’) = length (r1) + length (r1’) 
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- 2 number of simplifications. Therefore: length (r0+ r0’) + length (r1+ r1’) = length 
(r0) + length (r0’) + length (r1) + length (r1’) - 2  number of simplifications. 

(r0, r1)  R, so length (r0) + length (r1) is even. 
(r0’, r1’)  R, so length (r0’) + length (r1’) is even. 

 
It results that length (r0 + r0’) + length (r1+ r1’) is even, so ((r0, r1) + (r0’, r1’))  R, 

thus the stability is proved. 
 
 Stability by the external law '•' 
Let (r0, r1)  R: 0.(r0, r1)=(0•r0, 0•r1)=(, )  R since length +length = 0 is even.    
1•(r0, r1) = (1•r0, 1•r1)=(r0, r1)  R. Thus the stability is proved. Therefore, R is a 
vector space of E. 
 

b) Let's show that B = {(x, x), (x, d) | xB} is a base of realizable relationships 
vector space E.E contains the vector subspace <B> generated by B, this latter is a 
part of the realizable relationships set. We have:  

 <B>  E   R  EE.                  (21) 
Dimension of EE = 26                   (22) 
Dimension of <B> = 25                   (23)  
According to (21), (22) and (23) we obtain: 
25  dim E  dim R  26                 (24) 
According to (24), dimension of E = 25, B is a free system of E (theorem 3) with 

dimension 25, B is a base of E 
 
Explanation of definition 3 

 (x,y)  E, (x,y)  is defined by: 
(b, b) =  
(e, e) = {Ai = Aj, Bi = Bj, Ci = Cj, Di = Dj} 
(m, m) = {Ci = Di = Aj = Bj} 
(f, f) = {Ai, Bi, Ci, Di} 
(o, o) = {Aj, Bj, Ci, Di} 
(s, s) = {Ai, Bi, Ci, Di} 
(d, d) = {Ai, Bi, Ci, Di} 
(b’, b’) =  
(m’,  m’) = {Cj = Dj = Ai = Bi} 
(f’, f’) = {Aj, Bj, Cj, Dj} 
(o’, o’) = {Ai, Bi, Cj, Dj } 
(s’, s’) = {Aj , Bj , Cj , Dj} 
(d’, d’) = {Aj, Bj, Cj, Dj} 
(b, d) = {Ai, AiBi  AjBj, CiDi  AjBj, Di} 
(e, d) = {Ai, Bi, Ci, Di} 
(m, d) = {Ai, AiBi  AjBj, Bj = Ci, Di} 
(f, d) = {Ai, Bi, Ci, Di} 
(o, d) = {Ai, AiBi  AjBj, Bj, Ci, Di} 
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(s, d) = {Ai, Bi, Ci, Di} 
(b’, d) = {Ai, AiBi  CjDj, CiDi  CjDj , Di} 
(m’, d) = { Ai, Bi = Cj, CjDj  CiDi, Di} 
(f’, d) = {Ai, AiBi  AjBj, Bj, Ci = Cj, Di} 
(o’, d) = {Ai, Bi, Cj, CjDj  CiDi, Di} 
(s’, d) = {Ai, Bi, Cj, CjDj  CiDi, Di} 
(d’, d) ={Ai, AjBj  AiBi, Bj, Cj, CjDj  CiDi, Di} 

Appendix B 

Figure 10 shows the geometry of the simulated truck and loading dock. The three 
state variables , x, and y determine the truck position with  specifying the angle of 
the truck with the horizontal. The coordinate pair (x, y) specifies the position of the 
rear center of the truck. We wanted the truck to arrive at the loading dock at a right 
angle (f = 90°) and to align the position (x, y) of the truck with the desired loading 
dock (xf, yf) equaled (50,100). The truck moved backward a fixed distance at every 
stage until the truck hits the border of the loading zone. The loading zone 
corresponded to the plane [0,100] x [0,100]. At every stage the fuzzy controller 
produce the steering angle  that backs up the truck to the loading dock from any 
initial position and from any angle in the loading zone. The coordinate x ranges from 
0 to 100,  ranges from -90 to 270, and  ranges from -30 to 30. 
 

 

Figure 10: Simulated truck 

Figure 11 shows fuzzy membership functions for each linguistic variable x, , and  
. LE being on Left, LC on the Left Center, CE on the Center, RC on the Right 
Center, RI on the Right, RB on the Right Below, RU on the on the Right Upper, RV 
on the Right Vertical, VE on the Vertical, LV on the Left Vertical, LU on the Left 
Upper, LB on the Left Below, NB on the Negative Big, NM on the Negative 
Medium, NS on the Negative Small, ZE on the Zero, PS on the Positive Small, PM 
on the Positive Medium and PB on the Positive Big. 
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Figure 11: Membership functions of x,  and  

The rule base contains 35 rules as shown in table 7.  
 
X 
 

LE LC CE RC RI 

RB 1 PS 2 PM 3 PM 4 PB 5 PB 

RU 6 NS 7 PS 8 PM 9 PB 10 PB 

RV 11 NM 12 NS 13 PS 14 PM 15 PB 

VE 16 NM 17 NM 18 ZE 19 PM 20 PM 

LV 21 NB 22 NM 23 NS 24 PS 25 PM 

LU 26 NB 27 NB 28 NM 29 NS 30 PS 

LB 31 NB 32 NB 33 NM 34 NM 35 NS 

Table 7: The rule base 
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