
Formal Modeling and Verification of Motor Drive Software

for Networked Motion Control Systems

Youngdong Kim1

(University of Seoul, Seoul, Korea

ydkim@uos.ac.kr)

Ikhwan Kim

(University of Seoul, Seoul, Korea

ihkim@uos.ac.kr)

Inhye Kang

(University of Seoul, Seoul, Korea

inhye@uos.ac.kr)

Taehyoun Kim

(University of Seoul, Seoul, Korea

thkim@uos.ac.kr)

Minyoung Sung

(University of Seoul, Seoul, Korea

mysung@uos.ac.kr)

Abstract: This paper presents a model-based approach to the design and verification of motor
drive software for networked motion control systems. We develop a formal model for an Ethernet-
based motion system, where, using timed automata, we describe the concurrent and synchronized
behaviors of the components, i.e., motion controller, motor drives, and communication links. The
drive, in particular, is modeled in enough detail to accurately reflect the software implementa-
tion used in a real drive. We use the design of multitasked drive software with fixed-priority
preemptive scheduling. With UPPAAL model checking, we verify the precision and accuracy
of the rendered motion in terms of the requirements on the actuation delay at each drive and
the actuation deviation between different drives, respectively. The analysis results demonstrate
the benefits of our model-based approach in the safety verification and design space exploration
of motor drive software. We show that it is possible to verify deadlock freeness and real-time
schedulability in an early design phase. And, for varying number of drives and size of messages,
we can successfully determine the combination of task periods that leads to the best precision and
accuracy.

Key Words: Timed automata, Formal methods, Motor drive software, Formal methods, Actua-
tion delay and deviation.

Category: D.2.4, J.7

1 He is currently with Hyundai Autoever Corp., Seoul, Korea (ydkim@hyundai-autoever.com).

Journal of Universal Computer Science, vol. 20, no. 14 (2014), 1903-1925
submitted: 20/3/14, accepted: 28/11/14, appeared: 1/12/14 © J.UCS

1 Introduction

Being used in various mechanical applications such as industrial automation, robotic

surgery, vehicles, and military equipment, motion control systems are becoming in-

creasingly important. A typical motion system comprises a motion controller and mo-

tor drives that cooperate closely with each other. Since the motion controller should

be able to control every motor precisely and synchronize its operation accurately with

others, it has been preferred to connect each motor to the controller one-to-one using

dedicated links [Yu et al. 2009]. Recently, however, as the high-speed industrial Eth-

ernet is rapidly adopted by the industry, Ethernet-based motion systems are gaining

ground [Kim et al. 2012, Vitturi et al. 2011, Benzi et al. 2005].

Networked motion systems have stringent timing constraints. Two of the funda-

mental ones are the requirements on the end-to-end actuation delay and deviation. The

actuation delay is defined as the time taken from the dispatch of a command at the con-

troller to the corresponding actuation by a motor drive. The delay affects the minimum

cycle time at the controller. Since a shorter cycle time usually contributes to the preci-

sion in controlling individual drive, it can be said that, the shorter the actuation delay

is, the higher becomes the precision of single-axis motion. The actuation deviation is

defined as the time difference between the earliest and latest actuation at different drives

in response to the commands of the same controller cycle. Similarly, it can be said that,

the smaller the actuation deviation is, the higher becomes the accuracy of multi-axis

motion.

With real-time Ethernet that provides high-speed deterministic delivery of control

messages, the end-to-end delay primarily relies on the time taken by the drive to actu-

ate in response to the controller command. The growing complexity of modern motion

systems demands sophisticated control software with concurrent tasks. In such systems,

the constraints from desired motion directly relate to the design of the multitasked drive

software. Thus, in order to achieve the highest possible precision and accuracy, a sys-

tematic approach is required for the task decomposition and period synthesis, whose

derived design should maximize the utilization of the drive hardware while satisfying

the functional and timing requirements.

Formal methods provide the mathematical and logical foundations for the specifi-

cation and verification of software design. Formal methods have been used for decades

in various applications including nuclear engineering, medical systems, transport,

and military systems [Woodcock et al. 2009, Pajic et al. 2012, Lahtinen et al. 2012,

Choi 2013, Bon and Dutilleul 2013, Min et al. 2013]. Although there exist other rele-

vant methods such as scenario-based tests and simulation, formal modeling and veri-

fication is recommended because it better copes with the ever-increasing system com-

plexity and scale. Timed automata, in particular, is used for the formal specification and

verification of real-time systems. Timed automata has been applied for many mission-

critical applications, successfully verifying the safety of, for instance, medical sys-

tems [Pajic et al. 2012] and nuclear control systems [Lahtinen et al. 2012].

1904 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 1: Our model-based approach.

This paper introduces a model-based approach for the design of an Ethernet-based

motor drive. Using timed automata, we describe the timing behavior of the motion con-

trol system, and formulate the precision and accuracy of the rendered motion in terms

of the timing requirements on the end-to-end actuation delay and deviation. The drive,

in particular, is modeled in enough detail to accurately reflect the software implemen-

tation that is used in a real drive. For this purpose, we use the design of multitasked

drive software with fixed-priority preemptive scheduling [Kim et al. 2012]. The devel-

oped automata model is then effectively utilized in the design space exploration of the

motor drive software for the synthesis of task periods. The analysis results using UP-

PAAL tool [UPPAAL] show that it is possible to verify the deadlock freeness as well as

the schedulability of real-time tasks. And, for varying number of drives and size of mes-

sages, we can successfully determine the combination of task periods that leads to the

best precision and accuracy. Figure 1 succinctly illustrates our model-based approach.

To the best of our knowledge, our work is the first to formally model and verify the

motion control system using timed automata. It offers numerous benefits summarized

as follows:

– It is possible to assure the correctness of control system specifications in early stages

of the design. In our case study, the timed automata model facilitated the verification

of deadlock-freeness and real-time schedulability of motor drive software.

– The model-based approach supports efficient design space exploration. Our analysis

results show that, for varying number of drives and size of messages, we could suc-

cessfully determine the combination of best task periods together with the predicted

values of actuation delay and deviation.

– By simulation-based tracing and model checking, we can easily produce and correct

potential design problems.

The remainder of this paper is organized as follows. Section 2 reviews the back-

1905Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 2: Industrial robot, an example of Ethernet-based motion systems.

ground to networked motion systems and timed automata and presents the related works.

In Section 3, we describe our timed automata model for the motion control system, and

in Section 4, we verify the timing requirements and discuss the drive software design.

And finally, Section 5 concludes the paper.

2 Background

2.1 Ethernet-based Motion Control System

The networked motion system considered in this paper is composed of a controller and

a number of homogeneous motor drives which are interconnected with each other using

industrial Ethernet. Figure 2 shows an example of such a motion system, an industrial

robot with six degrees of freedom. The motion controller periodically transmits to the

motor drives real-time messages with the commands of target position or velocity. Then,

based on the command information, each drive operates its control loop and actuates

the associated axis by generating proper PWM (Pulse-Width Modulation) signal on

the motor. The drive is also responsible for the feedback of motor status. It reads the

attached sensor inputs and sends back the information to the controller via the real-time

messages. The status information includes current position and velocity, which are used

by the controller for the computation of commands in the next cycle. By coordinating

the multi-axis actuation, the motion system can make the tool point follow the desired

trajectory.

For the design of the software that is used in the motor drive, we have two challenges

to cope with. First, since a motor drive is typically used for mission-critical systems, it

1906 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

is essential to verify its safety and timing correctness. For this purpose, we should be

able to ensure the deadlock freeness as well as the schedulability of real-time tasks of

the software design. In particular, we must guarantee that the tasks for motor actuation

and real-time communication do not miss their deadlines. Second, it is required to be

able to predict and minimize the time for the response to the controller command. To

achieve a high precision in a single-axis control, the motor drive should be as respon-

sive as possible to the command. At the same time, to achieve a high accuracy in the

coordinated motion, the responses by different drives should be highly synchronized.

In this paper, we relate the precision and accuracy of the rendered motion to the timing

requirements on the end-to-end actuation delay and deviation. We define the actuation

delay as the time taken from the dispatch of a command at the controller to the corre-

sponding actuation by a drive. Similarly, the actuation deviation is defined as the time

difference between the earliest and latest actuation at different drives in response to the

commands of the same cycle. Therefore, in order to deliver the highest possible preci-

sion and accuracy, we should be able to optimize the tunable design paramters such as

task periods so that the derived design minimizes the actuation delay and deviation.

For our analysis, we use the software model for EtherCAT servo drive that

has been proposed by Kim et al. [Kim et al. 2012]. EtherCAT is one of the indus-

trial Ethernet standards [Benzi et al. 2005, Jansen and Buttner 2004, Sung et al. 2013,

Robert et al. 2012]. It is widely used for precision automation because it has numerous

desirable features such as short message delivery time, as low as dozens of microsec-

onds and globally synchronized clock with jitter in the sub-microsecond range. In an

EtherCAT-based motion system, the motion controller transmits real-time messages

with control variables such as target position, actual position, and control mode. The

variables are defined as PDOs (Process Data Objects) in accordance with the CANopen

drive profile [CANopen]. Using dedicated switch hardware, each drive relays the mes-

sages to the next one. When a message is relayed in the forward path, the output and

input data in the message is, respectively, written to and read from the memory in the

drive. Once the message frame arrives at the end of the network, it returns to the con-

troller. Although our analysis assumes EtherCAT as the communication link, it is gen-

eral such that, with minor modification of the communication submodel, it can be easily

extended to other drive software using different network technology.

We base our drive model on the multitasked software implementation with a

lightweight real-time kernel [Kim et al. 2012]. To achieve better responsiveness, it uses

two-level preemptive scheduling where all periodic tasks are classified into two groups

according to their priorities, and each group has its own scheduler. The scheduler task

for the lower-priority group can never be executed when a task belonging to the higher-

priority group is executing, thus the tasks in the higher-priority group do not suffer

from the scheduling overhead by the lower-priority tasks. This mechanism is imple-

mented using semaphore operations, i.e., sem pend and sem post. When the scheduler

task wants to release a task, it calls sem post, waking up the task pending on the corre-

1907Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 3: Multitasked drive software with two-level scheduling [Kim et al. 2012].

sponding semaphore.

Figure 3 shows the organization of the drive tasks with their priorities and require-

ments on periods. The higher-priority group is composed of MotorActTask and LvlT-

woScheduler tasks. The MotorActTask performs motor actuation and sensing according

to the commands from the motion controller. Since MotorActTask has the most strin-

gent timing requirement, it is assigned the highest priority next to the first-level sched-

uler, the timer interrupt service routine (TimerISR). The TimerISR has a period of 50

μs, which has been fixed according to the requirement from the drive hardware.

The LvlTwoScheduler is responsible for scheduling the tasks in the lower-priority

group, which includes RtMsgTask, NrtMsgTask, and HealthMonTask. The priority of

LvlTwoScheduler should be lower than MotorActTask but higher than any of tasks in

the lower-priority group. So, its period is set to be the greatest common divisor of the

task periods in the scheduling group. The RtMsgTask implements the protocol stack for

EtherCAT and CANopen. This task extracts the control commands from the real-time

EtherCAT message and stores them into a memory area shared with MotorActTask. The

RtMsgTask also reports motor status such as current position, speed, and torque infor-

mation to the motion controller. The HealthMonTask monitors the status of the motor

drive, such as voltage and current. The NrtMsgTask handles non-real-time EtherCAT

messages, which may contain system information gathered by HealthMonTask.

2.2 Timed Automata

Timed automata is an extended finite-state machine with real-valued

clocks [Alur and Dill 1994]. A timed automaton is a tuple (L, l0,C, A, T, I) where

L is a finite set of locations, l0 is the initial location, C is the set of clocks, A is a set of

actions, T is a set of transitions, and I assigns invariants to locations. A transition is a

tuple (l1, a, b, c, l2), where l1 is a source location, a is a synchronization action, b is a

boolean expression over clocks, c is a set of reset clocks, and l2 is a target location. In

timed automata, a system S is modeled as a composition of processes P1, P2, ..., Pn

1908 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

(a) Lamp (b) User

Figure 4: Timed automata of a simple lamp [UPPAAL].

that are defined as timed automata, expressed by S = P1||P2||...||Pn. The processes run

in parallel, and can be synchronized through channels. For a channel ch, a process that

performs an output action ch! is synchronized with another process that performs an

input action ch?.

Figure 4 shows a timed automata model for a simple lamp in [UPPAAL]. The pro-

cess Lamp has three locations: off, low, bright. It is initially at location off, and can move

to location low by executing press?. With the transition, clock y is reset to zero. At lo-

cation low, the clock y starts to increase. If it executes press? before 5 time units (y<5),

it moves to location bright. Otherwise, it returns to the initial location. The process User

can execute press! at any time. The entire system is defined as SYSTEM = Lamp || User.

The two processes must be synchronized with channel press.

Timed automata in UPPAAL are extended with additional features: constants,

bounded integer variables, stopwatches, urgent channels, committed locations, arrays,

user functions, and so on. UPPAAL provides a model-checker to verify a timed au-

tomata model with respect to a given requirement which is specified in a simplified

version of TCTL (Timed Computation Tree Logic). Using TCTL, we can specify var-

ious properties such as reachability, safety, and liveness. In TCTL, A�p means that p

is always true for all traces, and E�p means that p is eventually true for some trace.

UPPAAL also provides a simulator that is used for the user to run the system manually.

Moreover, we can go through a counter-example trace given by the model-checker to

see how certain states are reachable.

2.3 Related Works

Formal verification based on timed automata has been used in various time-critical and

safety-critical application domains, such as nuclear engineering, satellite systems, med-

ical systems, and industrial automation. Lahtinen et al. [Lahtinen et al. 2012] demon-

strated the efficiency of model checking in the system-level analysis for real-world in-

dustrial systems such as stepwise shutdown system and uninterruptible power supply

(UPS) control software. Pajic et al. [Pajic et al. 2012] used a model-driven approach

that combines Simulink and UPPAAL to analyze the safety of the closed-loop medi-

cal system, a PCA infusion pump. Mokadem et al. [Mokadem et al. 2010] used timed

1909Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

automata and UPPAAL to specify and verify the functional correctness and timing re-

quirements of a commercial automation system implemented in multi-tasked PLC pro-

gram. Ruel et al. [Ruel et al. 2009] presented an iterative model checking approach to

find the bounds of response time in a networked automation system.

With the explosive growth of software complexity in industrial systems, the

timed automata model and formal verification of multitasking applications run-

ning under real-time OS has also received substantial attention. Waszniowski et

al. [Waszniowski and Hanzálek 2008] presented timed automata models of multiple ap-

plication tasks, OSEK compliant OS kernel, and an ISR. With the automated gear-

box control system, they analyzed the worst-case response time (WCRT) of the tasks

through model checking. They first defined the timing property of a task using TCTL

formula in UPPAAL. And, they explored the WCRT of tasks by setting the initial val-

ues of the WCRT to those estimated by the designer and iteratively decreasing the value

until the TCTL formula is not satisfied. Mikucionis et al. [Mikučionis et al. 2010] pro-

posed a modeling framework using UPPAAL to perform the schedulability analysis of

a multi-tasked satellite system including block factor and CPU utilization. They showed

that the model-based approach provides a safe but less pessimistic result compared with

classical scheduling theory based approach.

The end-to-end delay in networked motion control systems is one of the important

performance metrics, and thus some previous studies have addressed it. Early works

formulated the end-to-end delay of the EtherCAT network and presented the achiev-

able Minimum Cycle Time (MCT) according to the varying slave numbers and packet

size [Prytz 2008, Jasperneite et al. 2007]. Seno et al. [Seno and Zunino 2008] also an-

alyzed the MCT of EtherCAT-based control system by extensive simulation. However,

these studies did not consider the device-level delay factors, only dealing with the

network transmission delay. Recent studies have started to address the impact of the

motion controller or the internal operation of motor drives on the end-to-end delay.

Cereia et al. [Cereia et al. 2011] evaluated the performance of the Linux-based con-

troller in terms of the cycle accuracy of periodic control task by measurement. Kim et

al. [Kim et al. 2012] presented a combination of the minimized periods based on the

various sets of the required deadline miss probabilities of the tasks and analyzed the

end-to-end delay on the EtherCAT drives.

3 Modeling of Motion Control System

In this section, we present a timed automata model for the motion control system de-

scribed in Section 2.1. As shown in Figure 2, the entire system is defined as SYSTEM

which is composed of a motion controller MotionController, one or more motor drives

MotorDrivei and links Linki.

SYSTEM = MotionController || MotorDrive1 || · · · || MotorDriven || Link1 || · · · || Linkn

1910 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 5: Components and channels of a motor drive.

The motion controller consists of process ControlTask which periodically generates

control commands, and processes TxPort and RxPort which act as the EtherCAT com-

munication ports.

MotionController = ControlTask || TxPort || RxPort

The control task ControlTask receives state information from the motor drives, cal-

culates the next control command, and sends the command via the EtherCAT ports for

each control task’s cycle. Process TxPort transmits commands from ControlTask to the

EtherCAT link. On the other hand, process RxPort receives messages from the Ether-

CAT link and forwards them to ControlTask.

Depending on the full-duplex mechanisms, an EtherCAT Link is modeled as a for-

ward link ForwardLink and a backward link BackwardLink as follows.

Linki = ForwardLinki || BackwardLinki

The processes ForwardLink and BackwardLink just transfer incoming messages to their

adjacent motor drives.

Figure 5 shows the components and synchronization channels in the motor drive

process. The process MotorDrive is defined as follows.

MotorDrivei = TimerIntrGeneratori || TimerISRi || MotorActTaski

|| LvlTwoScheduleri || RtMsgTaski || NrtMsgTaski || HealthMonTaski

|| ForwardPorti || BackwardPorti

1911Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 6: Components of the task execution times [Kim et al. 2012].

Process TimerIntrGenerator periodically generates a timer interrupt. Two processes

TimerISR and LvlTwoScheduler play roles as schedulers, and the next four processes Mo-

torActTask, RtMsgTask, NrtMsgTask, and HealthMonTask perform their own works. Pro-

cess ForwardPort transfers messages from the motion controller or its previous drive

to the next drive, and process BackwardPort transfers the returning messages. There

are three kinds of synchronization channels. First, channel TimerIntr indicates the timer

interrupt that preempts the currently running task. Second, channel SemPost[pid] repre-

sents the semaphore post operation, and the task with pid changes its status to Ready

if a synchronization occurs through the channel. The first level scheduler TimerISR in-

serts MotorActTask and LvlTwoScheduler in the higher-priority group to the ready queue

through events SemPost[PidMotorActTask]! and SemPost[PidLvlTwoScheduler]!, respec-

tively. Similarly the second level scheduler LvlTwoScheduler enqueues RtMsgTask, NrtMs-

gTask, and HealthMonTask in the lower-priority group through the corresponding events.

Third, channel Run[PidHighestTask] represents the wake-up call from the currently run-

ning task to the highest priority task in the ready queue. PidHighestTask indicates the

pid of the task with the highest priority in the ready queue. Whenever a task is finished,

it wakes up the next task through event Run[pidHighestTask]!.

Figure 6 illustrates how the task execution times are accounted for. Each task re-

quires time for one context switch. Thus, one context switch in (CSI) and one context

switch out (CSO) are added to the pure execution time of each task. Moreover, the

task scheduling overhead (TS), which occurs when the task transfers the control to a

lower priority task designated, is added to the pure execution time of each task. And

if the task plays the role of the scheduler, the semaphore operation overhead (SP),

which occurs when the scheduler task wants to release a task in the lower-priority

group designated by the decentralized scheduling framework, is also added. Note that

TimerISR does not have context switch overhead because it does not need to main-

tain its context. In the figure, the pure execution times of tasks are represented by

MA (MotorActTask), LS (LvlTwoScheduler), RM (RtMsgTask), NM (NrtMsgTask),

1912 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 7: Timed automata model of TimerISR.

and HM (HealthMonTask).

Now, we define the components in timed automata. In this paper, we omit less

important information (e.g., clock and variable assignments) on figures of timed au-

tomata because the figures are too complex to understand if all the details are included.

First of all, TimerIntrGenerator periodically generates a timer interrupt in order to wake

TimerISR. The process includes two locations Idle and Interrupted. At location Idle, it

waits for its period (e.g., 50 μs), and then moves to location Interrupted. With this tran-

sition, it sends the synchronization event TimerIntr! to halt the currently running task. At

location Interrupted, it immediately comes back to the Idle location for its next period.

The TimerISR process for an interrupt service routine plays the role of the first level

scheduler in the motor drive. Listing 1 shows the pseudo code for TimerISR. It wakes

up MotorActTask and LvlTwoScheduler properly using semaphore functions. The corre-

sponding timed automata model is given in Figure 7. The TimerISR process initially

stays at location Idle, and moves to location TimerISRRun if it receives an event through

channel Run[PidTimerISR]. The period of TimerISR is the same as the period of Timer-

IntrGenerator (i.e., the TimerIntr period) because the currently running task interrupted

by TimerIntr immediately releases Run[PidTimerISR]!. At the TimerISRRun location, the

process performs the semaphore post operations for MotorActTask and LvlTwoScheduler.

It always executes SemPost[PidMotorActTask]! because the periods of MotorActTask and

TimerISR are the same. In contrast, the execution of SemPost[PidLvlTwoScheduler]! de-

pends on the result of function CheckWakeTime() at transition a© in Figure 7. The func-

tion checks whether a period of LvlTwoScheduler is over or not. Depending on the result,

it moves to location TaskScheduling through transition sequence a© b© c© or the other tran-

sition sequence a© d©. Finally, it comes back to the Idle location by transition e©. With

the transition, it selects a task in the ready queue by using function GetHighestTask(),

and wakes up the task through the Run channel. In fact, MotorActTask is always chosen

1913Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Listing 1: Pseudo code for TimerISR and MotorActTask.

1 semaphore MotorActSem;
2 semaphore LvlTwoSem;
3

4 isr TimerISR()
5 {
6 sem_post(MotorActSem);
7 if it is time to wake LvlTwoScheduler
8 sem_post(LvlTwoSem);
9 end if

10

11 Determine the highest priority task τ in the ready queue;
12 Switch to task τ;
13 }
14

15 task MotorActTask()
16 {
17 while (TRUE)
18 sem_pend(MotorActSem);
19 Perform motor actuation and sensing;
20 end while
21 }
22

23 os primitive sem_post(semaphore Sem)
24 {
25 if wait queue for Sem is empty
26 Increment the counter for Sem;
27 return;
28 end if
29

30 Make ready the highest priority task τ in the wait queue of Sem;
31 }
32

33 os primitive sem_pend(semaphore Sem)
34 {
35 if counter for Sem is greater than zero
36 Decrement the counter;
37 return;
38 end if
39

40 Add the calling task to the wait queue of Sem;
41 Determine the highest priority task τ in the ready queue;
42 Store the context of the calling task;
43 Load the context of task τ;
44 }

because it is the highest priority task except for TimerISR.

The process MotorActTask, shown in Figure 8, is initially located at Waiting. If it re-

ceives an event from its scheduler TimerISR through channel SemPost[PidMotorActTask],

it moves to Ready location. When this transition happens, it is inserted to the ready

queue by function InsertReadyQueue(). At the Ready location, it waits for an event com-

ing from channel Run[PidMotorActTask] and enters its actual execution phase. The phase

consists of ContextSwitchIn, Running, TaskScheduling, and ContextSwitchOut. Through

the phase, it stays at each location for the given time and moves to its next location,

1914 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 8: Timed automata model of MotorActTask.

as described in transitions c©, d©, e©, f©. With the transitions e© and f©, it selects the next

task via GetHighestTask() function and releases Run[nexttask] event, dequeues the task

from the ready queue, and then comes back to the Waiting location.

The timed automata model of the LvlTwoScheduler process that plays the role of the

second level scheduler is an extension of the model of MotorActTask with semaphore

post operations for lower priority tasks and interrupt handling operations for the timer

interrupt. For LvlTwoScheduler, the location Running in Figure 8 is extended to four lo-

cations LvlTwoRunning, RtMsgSemOp, NrtMsgSemOp and HealthMonSemOp, as shown

in Figure 9. At the transition from ContextSwitchIn to LvlTwoRunning, the process checks

whether periods of three lower priority tasks expire via the CheckWakeTime() function.

According to the result, LvlTwoScheduler optionally moves step by step to RtMsgSe-

mOp, NrtMsgSemOp, or HealthMonSemOp like transitions a©. That is, LvlTwoScheduler

may release synchronization events SemPost[PidRtMsgTask], SemPost[PidNrtMsgTask],

and SemPost[PidHealthMonTask] depending on the expiration of their periods. Since

LvlTwoScheduler is interruptible, it moves to location ContextSwitchOut with TimerIntr

synchronization as soon as a timer interrupt occurs, which is described by transitions

b©. After the transitions, LvlTwoScheduler makes TimerISR run through Run[PidTimerISR]

channel and move to location Ready. When the process is restarted, it needs to be ex-

ecuted for its remaining time, and thus we add a stopwatch r timer which is increased

only in the LvlTwoRunning location.

Since the behaviors of RtMsgTask, NrtMsgTask, and HealthMonTask are similar, they

can be defined as the timed automata model given in Figure 10. The automaton is an

extension of MotorActTask with interrupt handling operations for the timer interrupt.

1915Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

F
ig

u
re

9
:

T
im

ed
au

to
m

at
a

m
o

d
el

o
f

L
v

lT
w

o
S

ch
ed

u
le

r.

1916 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 10: Timed automata model of RtMstTask, NrtMsgTask, and HealthMonTask.

In SYSTEM, ForwardPort and BackwardPort are in charge of transmitting and receiv-

ing EtherCAT messages for the motor drive, and are synchronized with ForwardLink and

BackwardLink, respectively.

4 Analysis of Timing Requirements for Motor Drive Software

In this paper, we verify the timing requirements of motor drive software such as

deadlock-freeness, schedulability, end-to-end delay requirements, and actuation de-

viation requirements using the UPPAAL model checker. We define a boolean func-

tion modelcheck(pTimerIS R, pLvlTwoS cheduler, TCT L f ormula) to be true if and only if the

model checker outputs “Property is satisfied” for the formula with the given periods.

Here, we define pA as the period of task A. We note that the periods of TimerIntrGen-

erator, TimerISR and MotorActTask are the same, and the period of LvlTwoScheduler is

multiple of that of TimerISR and is same as the period of RtMsgTask.

The constants SP TIME, CSI TIME, CSO TIME, MIN EXEC, MAX EXEC, and

TASK SCHEDULING TIME in the timed-automata model represent the execution times

for the corresponding locations. In this paper, the values come from experimental re-

sults in Kim et al [Kim et al. 2012], as shown in Table 1. We note that the values de-

pend on the types of tasks and the size of PDO. For example, in the case of 24-byte

PDO set, MIN EXEC and MAX EXEC of RtMsgTask in Figure 10 are 14.60 and 14.67 μs,

respectively.

1917Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Table 1: The values of constants [Kim et al. 2012].

Constants Values (Unit : μs)

CSI TIME 0.87

commons CSO TIME 0.87

TASK SCHEDULING TIME 0.73

TimerISR, LvlTwoScheduler SP TIME 3.60

MotorActTask MIN EXEC 18.00

MAX EXEC 35.26

LvlTwoScheduler MIN EXEC 4.77

MAX EXEC 4.77

RtMsgTask MIN EXEC 14.60

(24-byte PDO set) MAX EXEC 14.67

RtMsgTask MIN EXEC 45.63

(100-byte PDO set) MAX EXEC 45.70

NrtMsgTask MIN EXEC 9.47

MAX EXEC 9.63

HealthMonTask MIN EXEC 8.50

MAX EXEC 8.50

4.1 Verification of Deadlock Freeness

For safety, we must ensure the deadlock freeness in systems. We can verify the absence

of deadlock by UPPAAL model checker with the following TCTL formula.

fsa f e = A�(¬ deadlock) (1)

First of all, we set the period of the timer interrupt service routine TimerISR to 50 μs

and the period of the second level scheduler LvlTwoScheduler to 300 μs, as given in

[Kim et al. 2012]. Recall that the TimerISR period is fixed due to the requirement of the

drive hardware used in our study. Then, the model checker shows the output “Property

is satisfied”, that is, modelcheck(50, 300, fsa f e) is true.

Next, we determine the minimum period of LvlTwoScheduler for a deadlock-free

system using the following algorithm, where pTimerIS R is the period of TimerISR.

Listing 2: Minimum period of LvlTwoScheduler.

1 satisfied = false;
2 for (k = 1; not satisfied; k++)
3 p = pTimerISR * k;
4 satisfied = modelcheck(pTimerISR, p, fsafe);
5 minLvlTwoScheduler = p;

When pTimerIS R is 50 μs, the minimum period of LvlTwoScheduler is 150 μs. The system

remains free of deadlock for the rest periods greater than the found value. It is guaran-

teed because we have the constraint that task periods should be multiple of pTimerIS R.

The synthesis of task periods in general cases is a complicated problem, which is be-

yond the scope of the paper [Davare et al. 2007]. The result informs developers that

1918 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

LvlTwoScheduler should be assigned its period to larger than or equal to 150 μs. In

other words, the period of LvlTwoScheduler should be at least three times the period

of TimerISR for the development of deadlock-free systems.

The shorter period of timer interrupt makes it possible to develop the more precise

system. Therefore, we present how to obtain the theoretical minimum period of Timer-

IntrGenerator for deadlock-free systems. We repeatedly reduce the period by 0.01 μs

starting from 50 μs and perform model checking until deadlock occurs as follows.

Listing 3: Theoretical minimum period of TimerIntrGenerator.

1 satisfied = true;
2 for (p = 50; satisfied; p = p - 0.01)
3 satisfied = modelcheck(p, p*3, fsafe);
4 minTimerIntrGenerator = p + 0.01;

The theoretical minimum of TimerIntrGenerator’s period is 46.53 μs. This means that

the system is deadlock-free if the period is larger than or equal to 46.53 μs. For an

unsafe case, we examine the trace that the model checker produces as a counter exam-

ple, and find the case that TimerIntrGenerator releases TimerIntr before the execution of

MotorActTask is completed.

4.2 Schedulability Analysis

In real-time systems with periodic tasks, it is important to check whether the periodic

tasks are schedulable, i.e., whether the tasks are completed in their deadline. For the mo-

tion control system, we must guarantee that RtMsgTask does not miss the deadline since

it deals with hard real-time messages. Thus, we present how to analyze schedulability

of the hard real-time task RtMsgTask.

We add a boolean variable rt miss to the scheduler LvlTwoScheduler in Figure 9. The

rt miss variable is used to indicate whether or not RtMsgTask misses its deadline. The

transition from ContextSwitchIn to LvlTwoRunning includes a new function CheckDead-

line() in addition to CheckWakeTime(). Via CheckWakeTime(), the scheduler determines

whether to start a new period at this time for each task. If the previous work of the task

is not yet completed, it is still placed in the ready queue. In other words, if a newly

scheduled task exists in the ready queue, we can decide that this task does not meet its

deadline. Therefore, function CheckDeadline() assigns the corresponding boolean vari-

able to true if the task is in the queue. We can analyze the system’s schedulability using

the following TCTL formulas.

fschedulable = A�(¬ LvlTwoScheduler.rt miss) (2)

The following algorithm outputs the minimum value of RtMsgTask’s period. As

mentioned, the period of RtMsgTask is same as the period of LvlTwoScheduler to min-

imize the RtMsgTask’s response time. Also, as the result of Listing 2, the period of

LvlTwoScheduler should be at least three times of that of TimerISR, and thus we start

from k=3.

1919Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Listing 4: Minimum period of RtMsgTask.

1 satisfied = false;
2 for (k = 3; not satisfied; k++)
3 p = pTimerISR * k;
4 satisfied = modelcheck(pTimerISR, p, fschedulable);
5 minRtMsgTask = p;

For the 24-byte PDO set, the result shows that RtMsgTask is always schedulable if

the period of RtMsgTask is greater than or equal to 300 μs. And, for the 100-byte PDO

set, RtMsgTask satisfies its deadline if the period is not less than 550 μs. The feasible

periods for 100-byte PDO are larger than the period for 24-byte PDO because of the

difference of the execution times. Using this approach, we can decide the periods of

real-time tasks at the design stage.

4.3 Motion Precision and Accuracy Analysis

One of the fundamental timing requirements of networked motion systems is the re-

quirement on the end-to-end actuation delay. It is a metric of motion precision because

the shorter end-to-end delay makes higher precision of single axis control. Another es-

sential timing requirement is on the actuation deviation that is an indicator of accuracy.

The smaller actuation deviation increases the accuracy of multi-axis motion. In this

section, we apply the UPPAAL model-checker to prove the timing requirements on the

end-to-end delay and actuation deviation as well as to find the minimum and maximum

of them.

First of all, we derive a drive-local delay before analyzing the timing requirements.

The drive-local delay is defined as the time taken from message reception to motor

actuation in a motor drive. For the drive-local delay, we provide an additional timed au-

tomata TimeMeasureTask in Figure 11. Initially, TimeMeasureTask waits for a message

from the motion controller, and transits from Idle to MsgReceived as soon as the message

arrives at ForwardPort. With the transition, a clock timer is reset to zero. The TimeMea-

sureTask process moves to the next location whenever the following events occurs: start

of RtMsgTask, completion of RtMsgTask, start of MotorActTask, and completion of the

MotorActTask process. Finally, TimeMeasureTask arrives at location Actuation. Since the

location is a committed location, the process immediately moves to Idle. Therefore, the

value of timer at the Actuation location is the drive-local delay. We note that the drive-

local delay depends on the periods of RtMsgTask and MotorActTask.

If the timing requirement for the drive-local delay is given by [MIN, MAX], we can

express the requirement as the following TCTL formula.

fdelay = A�(TimeMeasureTask.Actuation) →

(TimeMeasureTask.timer ≥ MIN) ∧ (TimeMeasureTask.timer ≤ MAX)
(3)

We can check whether this formula is satisfied for MotorDrive using the UPPAAL

model checker. However, designers may not know the timing requirement on bounds of

1920 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Figure 11: Timed automata model of TimeMeasureTask.

the drive-local delay. Thus we propose a method of deriving the minimum and maxi-

mum values of the drive-local delay.

Let us consider the following TCTL formula fmax(t).

fmax(t) = E�(TimeMeasureTask.Actuation) ∧ (TimeMeasureTask.timer ≥ t) (4)

The formula fmax(t) is satisfied if and only if there exists a trace which reaches the

state such that TimeMeasureTask is at Actuation and the value of timer is larger than or

equal to t. Thus, if this formula is false, the value of timer is always smaller than t at

Actuation. On the contrary, if this formula is true, timer can have a value larger than or

equal to t. For some k, if fmax(k + 1) is false and fmax(k) is true, we conclude that k

is the maximum. To find the maximum, we start with a drive-local delay’s upper bound

u which is specified by system requirements. We repeatedly model-check the formula

by decreasing k by 0.1 until fmax(k) becomes true.

Listing 5: Maximum value of drive local delay.

1 select an upper bound u which is specified by system requirements;
2 satisfied = false;
3 for (k = u; not satisfied; k=k-0.1)
4 satisfied = modelcheck(pTimerISR, pLvlTwoScheduler, fmax(k − 1));
5 MAX = k;

We use similar approach to find the minimum of the drive-local delay.

fmin(t) = E�(TimeMeasureTask.Actuation) ∧ (TimeMeasureTask.timer ≤ t) (5)

For some k, if fmin(k − 1) is false and fmin(k) is true, k is the minimum. To find the

minimum, we start with a value 0. We repeatedly model-check the formula by increas-

ing k by 0.1 until fmin(k) becomes true.

Listing 6: Minimum value of drive local delay.

1 satisfied = false;
2 for (k = 0; not satisfied; k=k+0.1)
3 satisfied = modelcheck(pTimerISR, pLvlTwoScheduler, fmin(k + 1));
4 MIN = k;

1921Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

The drive-local delay depends on the periods of MotorActTask (or TimerISR) and

RtMsgTask (or LvlTwoScheduler). In this experiment, we set the period of TimerISR to

50 μs. Table 2 shows the maximum and minimum of the drive-local delay. The result

gives the same minimum delay for the same PDO set. By analyzing traces, two tasks

RtMsgTask and MotorActTask are not interrupted, and thus, the delay is the sum of min-

imum execution times of the tasks. In the case of the 24-byte PDO set, the drive-local

delays are [37.8, 605.6] for period 300 μs and [37.8, 590.4] for period 350 μs.

End-to-end delay. The end-to-end delay is defined as the time from the dispatch of

a command at the controller to the corresponding actuation. Therefore, this delay is

the sum of the communication delay over links and the drive-local delay. Performance

analysis for EtherCAT shows that the delay between adjacent devices is much less than

1 μs, and the end-to-end delay is proportional to the number of devices [Prytz 2008].

Suppose that the delay between adjacent drives is a constant c. For a command, the

actuation occurs at time in [Min+c, Max+c] at the first drive, and at time in [Min+nc,

Max+nc] for the last drive, where n is the number of drives. Then the end-to-end delay is

given by [Min+c, Max+nc]. For example, the end-to-end delay is [77.8+16, 1105.6+16]

with 100-byte PDO set and RtMsgTask’s period of 550 μs for c=0.5 μs, n=32.

So far, the end-to-end delay is obtained from a motor drive, not from the entire sys-

tem. From now on, we present how to verify the delay requirement from the system

including the motion controller. Due to state explosion, we abstract SYSTEM as Mo-

tionController || Links || MotorDrive, where we model Links so that it takes [c, nc] for the

delivery. We also add a transition from Idle to CommandIssued and a transition from

CommandIssued to MsgReceived instead of the transition from Idle to MsgReceived, and

reset the clock timer to zero on the first transition in TimeMeasureTask in Figure 11.

Finally, we can model-check whether SYSTEM satisfies the TCTL formula (5). As an

experiment, we assign the period of ControlTask in MotionController as 2 ms and the pe-

riod of RtMsgTask as 550 μs. Let c=0.5 μs, n=32. Then, we can prove the validity of

the property for [93.8, 1121.6]. Moreover, more precise bound [123.2, 1044.8] is ac-

quired by repeated experiments.

Actuation deviation. The actuation deviation is defined as the time difference be-

tween the earliest and latest actuation at different drives in response to the commands

belonging to the same controller cycle. Thus the worst-case deviation is the difference

from the maximum of the last drive’s actuation to the minimum of the first drive’s, that

is Max-Min+(n-1)*c. Table 2 displays results on the actuation deviation for c=0.5 μs,

n=32.

5 Conclusion

In this paper, we have presented a formal design approach for motion control systems.

We describe a timed automata model for an Ethernet-based motion system, which is

1922 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

Table 2: Analysis of drive-local delay and actuation deviation.

PDO set Task period (μs) Drive-Local Delay (μs) Actuation

RtMsgTask Min Max Deviation (μs)

300 37.8 605.6 583.3

24-byte PDO 350 37.8 590.4 568.1

400 37.8 640.4 618.1

550 77.8 1105.6 1043.3

100-byte PDO 600 77.8 1090.4 1028.1

650 77.8 1140.4 1078.1

composed of a motion controller, motor drives, and communication links. For the pre-

cision and accuracy analysis of the drive software design, in particular, we model the

motor drive in enough detail to accurately capture the task scheduling mechanism of a

real drive implementation. With the developed model, we verify the timing require-

ments such as deadlock-freeness and real-time schedulability. And, using UPPAAL

model checker, we evaluate the precision and accuracy of the motion system through

verification of the requirements on the end-to-end actuation delay at each drive and

actuation deviation between different drives, respectively.

The verification results show that our model-based approach enables efficient design

space exploration for motion system design. Through experiments, we have shown that,

for varying number of drives and size of messages, we can successfully determine the

system safety and derive the combination of minimum task periods that leads to the

best precision and accuracy. We also see that interrupt period in the motor drive can be

feasibly reduced to 46.53 μs.

In our future research, we will extend the motion controller model by consider-

ing the host operating system and motion controller software, and study the modeling

and verification of application-level motion specifications. We also plan to extend our

model to conduct a stochastic analysis of the minimum possible control cycle time and

the responsiveness of soft real-time tasks in the motor drive software using UPPAAL

statistical model checking (SMC).

Acknowledgements

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-

2013R1A1A2004984) for Taehyoun Kim. Also, this work was supported by the 2013

sabbatical year research grant of the University of Seoul for Inhye Kang.

References

[Alur and Dill 1994] Alur, R., and Dill, D. L.: “A theory of timed automata,”; Theoretical com-
puter science, 126, 2 (1994), 183-235.

1923Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

[Benzi et al. 2005] Benzi, F., Buja, G. S., and Felser, M.: “Communication architectures for elec-
trical drives,”; IEEE Trans. Industrial Informatics, 1, 1 (2005), 47-53.

[Bon and Dutilleul 2013] Bon, P., and Dutilleul, S. C.: “From a Solution Model to a B Model
for Verification of Safety Properties,”; Journal of Universal Computer Science, 19, 1 (2013),
2-24.

[CANopen] CANopen, CAL-based Communication Profile for Industrial Systems. [Online].
Available : www.canopen.org

[Cereia et al. 2011] Cereia, M., Cibrario-Bertolotti, I., and Scanzio, S.: “Performance of a real-
time EtherCAT master under Linux,”; IEEE Trans. Industrial Informatics, 7, 4 (2011), 679-
687.

[Choi 2013] Choi, Y.: “Model checking an OSEK/VDX-based operating system for automobile
safety analysis,”; IEICE Trans. Information and Systems, E96-D, 3 (2013), 735-738.

[Davare et al. 2007] Davare, A., Zhu, Q., and Marco, D. N.: “Period optimization for hard real-
time distributed automotive systems,”; Proc. Conf. on Design Automation (DAC), (2007),
278-283.

[Jansen and Buttner 2004] Jansen, D. and Buttner, H.: “Real-time Ethernet: the EtherCAT solu-
tion,”; Computing and Control Engineering, 15, 1 (2004), 16-21.

[Jasperneite et al. 2007] Jasperneite, J., Schumacher, M., and Weber, K.: “Limits of increasing
the performance of industrial Ethernet protocols,”; Proc. 12th IEEE Int. Conf. on Emerging
Technol. Factory Autom., (2007), 17-24.

[Kim et al. 2012] Kim, K., Sung, M., and Jin, H.-W.: “Design and implementation of a delay-
guaranteed motor drive for precision motion control,”; IEEE Trans. Industrial Informatics, 8,
2 (2012), 351-365.

[Lahtinen et al. 2012] Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., and Hel-
janko, K.: “Model checking of safety-critical software in the nuclear engineering domain,”;
Reliability Engineering & System Safety, 105, (2012), 104-113.

[Mikučionis et al. 2010] Mikučionis, M., Larsen, K. G., Ramussen, J. I., Nielsen, B., Skou,
A., Palm, S. U., Pedersen, J. S., and Hougaard, P.: “Schedulability analysis using Uppaal:
Herschel-Planck case study,”; Leveraging Application of Formal Methods, Verification, and
Validation Lecture Notes in Computer Science, 6416, (2010), 175-190.

[Min et al. 2013] Min, H.-S., Chung, S.-M., and Choi, J.-Y.: “Deriving System Behavior from
UML State Machine Diagram : Applied to Missile Project,”; Journal of Universal Computer
Science, 19, 1 (2013), 53-77.

[Mokadem et al. 2010] Mokadem, H. B., Berard, B., Gourcuff, V., Smet, O. De, and Roussel,
J.-M.: “Verification of a timed multitask system with UPPAAL,”; IEEE Trans. Automation
Science and Engineering, 7, 4 (2010), 921-932.

[Pajic et al. 2012] Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., and Lee, I.:
“Model-driven safety analysis of closed-loop medical systems,”; to appear in IEEE Trans.
Industrial Informatics.

[Prytz 2008] Prytz, G.: “A performance analysis of EtherCAT and PROFINET IRT,”; Proc. 13th
IEEE Int. Conf. on Emerging Technol. Factory Autom., (2008), 408-415.

[Robert et al. 2012] J. Robert, J.-P. Georges, E. Rondeau, and T. Divoux: “Minimum Cycle
Time Analysis of Ethernet-Based Real-Time Protocols,”; International Journal of Computer,
Communications & Control, 7, 4 (2012), pp. 743–757.

[Ruel et al. 2009] Ruel, S., Smet, O. de, and Faure, J.-M.: “Finding the bounds of response time
of networked automation systems by iterative proofs,”; Proc. IFAC Symp. on Information
Control Problems in Manufacturing, (2009), 1365-1370.

[Seno and Zunino 2008] Seno, L., and Zunino, C.: “A simulation approach to a real-time Ether-
net protocol: EtherCAT,”; Proc. 13th IEEE Int. Conf. on Emerging Technol. Factory Autom.,
(2008), 440-443.

[Sung et al. 2013] M. Sung, I. Kim, and T. Kim: “Toward a Holistic Delay Analysis of Ether-
CAT Synchronized Control Processes,”; International Journal of Computer, Communications
& Control, 8, 4 (2013), pp. 608–621.

[UPPAAL] UPPAAL. [Online]. Available : http://uppaal.org

1924 Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

[Vitturi et al. 2011] Vitturi, S., Peretti, L., Seno, L., Zigliotto, M., and Zunino, C.: “Real-time
Ethernet networks for motion control,”; Computer Standards & Interfaces, 33, 5 (2011), 465-
476.

[Waszniowski and Hanzálek 2008] Waszniowski, L., and Hanzálek, Z.: “Formal verification of
multitasking applications based on timed automata model,”; Real-Time Systems, 38, 1
(2008), 39-65.

[Woodcock et al. 2009] Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J.: “Formal
methods: Practice and experience,”; ACM Computing Surveys, 41, 4 (2009), 19:1-19:36.

[Yu et al. 2009] Yu, D., Hu, Y., Yu, X. W., Huang, Y., and Du, S.: “An open CNC system based
on component technology,”; IEEE Trans. Automation Science and Engineering, 6, 2 (2009),
302-310.

1925Kim Y., Kim I., Kang I., Kim T., Sung M.: Formal Modeling ...

