
Developing Distributed Collaborative Applications with
HTML5 under the Coupled Objects Paradigm

Nelson Baloian
(Department of Computer Science, University of Chile, Santiago de Chile, Chile

nbaloian@dcc.uchile.cl)

Diego Aguirre
(Department of Computer Science, University of Chile, Santiago de Chile, Chile

diaguirr@dcc.uchile.cl)

Gustavo Zurita
(Department of Management Control and Information Systems, Faculty of Economics and

Business, University of Chile, Santiago de Chile, Chile
gzurita@fen.uchile.cl)

Abstract: One of the main tasks in developing distributed collaborative systems is to support
synchronization processes. The Coupled Objects paradigm has emerged as a way to easily
support these processes by dynamically coupling arbitrary user interface objects between
heterogeneous applications. In this article we present an architecture for developing distributed
collaborative applications using HTML5 and show its usage through the design and
implementation of a series of collaborative systems in different scenarios. The experience of
developing and using this architecture has shown that it is easy to use, robust and has good
performance.

Keywords: Coupled objects paradigm; synchronization; HTML5; mobile collaboration;
distributed collaborative systems
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1

1 Introduction

Collaborative systems are conceived to assist groups in communicating, in
collaborating, and in coordinating their activities, either in the same physical place or
distributed over many locations [Ellis, Gibbs, & Rein, 1991]. In order to support
collaboration in a distributed scenario, software engineers develop distributed
systems, which consist of several autonomous entities with their own local memory
[Andrews, 1999], communicating with each other by message passing [Ghosh, 2006].
For enabling communication and data management in distributed applications,
developers typically use middleware by encapsulating the code, implementing the low
level TCP/IP communication layer between applications running on different hosts.

Since the early days of the distributed application development, the need for a
middleware that could simplify the programming of distributed applications was
evident since a good portion of the code necessary to implement the communication
between applications could be encapsulated, thus allowing the developer to
concentrate on the application’s logic. One of the first of such frameworks was Sun

Journal of Universal Computer Science, vol. 20, no. 13 (2014), 1712-1737
submitted: 20/1/14, accepted: 6/9/14, appeared: 28/11/14 © J.UCS

Microsystem’s RPC [Sirinvasan, 1995] schema developed for simplifying the
development of the Networked file system (NFS) for the Solaris architecture. Another
of the early runners was the CORBA [Vogel & Duddy, 1995] architecture, which was
developed with the aim of serving as a communication platform among applications
developed for different architectures in different programming languages. However,
the architecture was not well specified and various vendors implemented different
versions of this architecture, which were incompatible. Among them, CORBA did not
fulfill the expectations.

The aim of these systems is to make distributed applications programming not too
different from the programming of stand-alone applications, by encapsulating the
communication protocol and offering the programmer a nice interface for executing
code on another computer.

Many other platforms and architectures have been developed thereafter [Urnes &
Nejabi, 1994] for suiting a certain class of applications with common requirements.
They differ on the distribution schemes of the shared data, communication
mechanisms, and application architecture they support [Lukosch, 2002]. Rendezvous
[Hill, et al., 1994] and Suite are groupware platforms, which use a central distribution
scheme for the data of collaborative applications. GroupKit [Roseman & Greenberg,
1996], DECAF [Strom et al., 1998] and MASC [Aldunate et al., 2006] use a
replicated distribution scheme. Guerrero and Fuller [Guerrero & Fuller, 2001]
propose a pattern system to support the design of collaborative applications. Patterson
[Patterson, 1995], Dewan [Dewan, 1995] and Roth [Roth & Unger, 2000] propose
various taxonomies for groupware platforms, especially with respect to the shared
data distribution schema they support. They can be grouped in the following four
classes:

 Centralized: A single server maintains the data for all applications. Every
application has to contact this server to retrieve the state of the shared work
and/or make changes. This may cause bottlenecks if the server is loaded with
too much synchronizing work.

 Replicated: Every participant has a copy of all the shared data and the
application is exactly replicated at every site. The application has a better
performance since it has to access local data only. However, the need to keep
these data coherent and synchronized at every site may lead to very complex
algorithms, especially when dealing with problems such as latecomers
[Lukosch, 2003].

 Asymmetric: There is no pre-defined central server, but one of the
participants takes that role.

 Semi-replicated: there are multiple servers in this schema. Compared to the
Centralized schema, this may lead to a shorter response time and is more
robust, since the crash of one of the servers does not imply the crash of the
system. It has some of the problems of data coherence found in the replicated
schema.

Thanks to the rapid development of mobile technologies, wireless networks and the

sinking costs of these technologies, today, collaborative systems tend to use mobile
devices for enabling and enhancing communication among the members of a

1713Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

particular group. These new hardware capabilities can support ubiquitous group-work
in ways that were not conceived before or were impossible to develop with desktop-
based technology. However, mobile devices such as laptops, tablet PCs and
smartphones usually run over different operating systems, which poses two main
issues: (1) in terms of software development, it provides very few possibilities of
integration; and (2) in terms of usage, they implement different human-computer
interaction patterns and use different data formats (Feisst, dos Santos, Mitic, and
Christ 2005). In order to overcome these problems, we claim the best strategy to
follow is to implement platform-independent applications. As of today, the most
promising approach seems to be HTML5, which is expected to become a major
revision and future standard in the development of Web applications [Hickson, 2011].

In this article, we propose an architecture for developing distributed collaborative
applications using HTML5 and we show its usage through the design and
implementation of a series of collaborative systems in different scenarios. As a
foundation basis, we extend the Coupled Objects paradigm, initially developed for
desktop-based applications under the name of MatchMaker [Zhao & Hoppe, 1994].
The authors' experience designing and developing collaborative applications [Hoppe
et al., 2000], [Sapateiro, et al., 2011], [Zurita, Baloian & Baytelman, 2006] with
previous versions of this architecture [Baloian, Pino, & Jansen 2007], [Tewissen et
al., 2000] show that the coupled objects approach is easy to implement and allows the
development of powerful collaborative applications in an easy way

2 Related Work

The first Web applications were limited to consuming content generated by others in
desktop-based services. Today, this trend has evolved to user-generated content and
application platforms that are either desktop-based or mobile. The implementation of
such Web applications has also evolved from plug-in technologies (such as Adobe
Flash) to standard HTML5 development, new browser features, and faster JavaScript
engines, among others. The extensive usage of JavaScript in today's Web applications
induces the need for frameworks supporting faster development, better reusability and
maintainability. As Model-View-Controller (MVC) is a well-known design pattern
for server-side application development, it becomes even more important on the client
side, leading to several prevalent JavaScript MVC frameworks. Therefore, JavaScript
application frameworks will tend to lead the development of future Web-based
business applications, including collaborative ones [Grüneberger, 2012].

Grüneberger presents a series of collaboration extension for JavaScript
frameworks, as well as a prototypical implementation of these extensions in SAPUI5
(a UI development toolkit for HTML5 development) and KnockoutJS (a JavaScript
library that allows developers to create user interfaces with a clean underlying data
model).

BackBone is a JavaScript library that eases and helps structure the process of
developing HTML5-based Web applications. As other popular frameworks, it is
based on the model-view-controller (MVC) application design pattern, and as a
JavaScript library, it implements a RESTful JSON interface [Osmani, 2013].

This library is used for developing single-page Web applications, and for keeping
synchronized various parts of Web applications, such as multiple clients and the

1714 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

server. Data is represented as models, which can be created, validated, destroyed, and
saved to the server. Whenever an action in the user interface causes an attribute of a
model to change, the model triggers a change event; all the views that display the
model’s state can be notified of the change so that they are able to respond
accordingly, re-rendering themselves with new information [Osmani, 2013].

3 The coupled object Paradigm

When developing distributed collaborative applications, software engineers generally
deal with requirements linked to supporting synchronization either in communication,
feedback or other kinds of processes. Therefore, there is a need for middleware
capable of offering an easy way to develop these features rather than counting on a
plain TCP/IP protocol implementation.

3.1 Synchronization Requirements in Distributed Applications

According to Tewissen et al., the typical synchronization requirements to take into
account when designing and developing distributed applications for implementing
collaborative learning activities in the classroom are [Tewissen et al., 2000]:

 Dynamic synchronization: it should be possible to start and stop the
synchronization process at any point in the application's lifetime. Before and
after the coupling phase, applications should continue to exist independently.
This is in order to allow a swift switching from collaborative learning
activities to individual learning and back.

 Partial synchronization: it should be possible to individually synchronize
each component of an application's interface with a component of another
application's interface, thus allowing the synchronization of applications with
completely different interfaces. In fact, in many situations the application
used by the teacher will have different functionalities from the application
used by the students. In other words, this feature supports the implementation
of various roles in a distributed environment.

 Replicated architecture: it should be possible to synchronize multiple and
potentially different applications already existing in a distributed
environment. This is in order to transform many already existing single user
applications in collaborative applications. This also eases the implementation
of collaborative applications by allowing the developer to concentrate on its
functionalities instead of the synchronization.

Although these synchronization requirements were stated for a collaborative
learning scenario, it is easy to see they are common to many applications. Therefore,
it is good idea to develop a generic solution consisting of an architecture allowing
programmers to simply develop distributed applications based on the Coupled Objects
paradigm.

3.2 The Coupled Objects Paradigm

The Coupled Objects paradigm states that distributed applications can be
synchronized by dynamically coupling and decoupling a set of objects of various

1715Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

applications running in different hosts. When two objects are coupled, the events
generated at one of these objects are automatically propagated to the rest of the
coupled objects. This approach differs from more classical ones like sharing a remote
single object or having a replication of one object in each application.
This paradigm supports synchronization by combining two architectures for
collaborative systems: (1) a centralized server, and (2) a replicated architecture. By
combining them, we get the advantages of both solutions and we remove the
disadvantages. A centralized server allows for a simple and effective implementation
of synchronization; a problem with a centralized server is that it is impossible for
clients to continue working if it is no longer reachable. By using a replicated
architecture, it is possible for an application to keep working in a standalone manner
even if the server is unreachable.

3.3 Previous Implementations

In this section of the article, we briefly present the different previous implementations
of the Coupled Objects paradigm:

The first version of this middleware was developed in 1993 at the GMD-IPSI
institute in Darmstadt, Germany, within the research activities of the COSOFT
(Computer Support for Face-to-face Teaching) research group. They intended to
develop teaching/learning models and systems for supporting teaching/learning
activities in an electronic classroom. In this version, coupling and communication
facilities were added to an existing library established to ease the development of
applications involving graphical user interfaces, including functions to couple and
decouple new widgets. Communication between applications was based on a client-
server model. Applications that were going to be synchronized needed to register first
with the server with a distinctive name. Coupling and decoupling of objects was pair-
wise with objects living in different applications. The naming of objects was
hierarchical, where a suffix ‘one’ corresponds to the first component in the hierarchy.
Coupling was also hierarchical, which means that by coupling a parent object
(container), all contained objects were also coupled. The library also provided a RPC
facility: a callback function of a widget of any registered application could be invoked
from another registered application [Zhao & Hoppe, 1994].

The second version, developed at the COLLIDE (Collaborative, Intelligent
Distributed Environments) research group in Duisburg, Germany, was implemented
in C/C++ over the Windows operative system and was the first one to be called
MatchMaker. Still centered on the topic of coupled user interface objects, this new
version was successfully used as one basis for software implementations in a
computer-integrated classroom scenario [Hoppe et al., 2000].

The Java MatchMaker (JMM) implementation is a complete reimplementation that
uses Java specific features such as: RMI, Reflection, Dynamic Class Loading, and
common object oriented design principles. The enhancements with respect to the
previous version were mainly oriented towards integrating and taking up new
standards in the field of distributed computing, thus resulting in being more
compatible and more standardized [Tewissen et al., 2000].

A third implementation was developed in 2007 [Baloian, Pino & Jansen, 2007] to
overcome the problem that arose when more local area networks (LAN) did not allow
applications to contact other ones outside the LAN using another protocol than HTTP

1716 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

for security reasons. Moreover, they also restricted applications running inside the
LAN to open server sockets on ports other than those assigned to the HTTP protocol,
which is port 80. This made the previous implementation very difficult to be used
since it RMI uses other ports. The solution was to re-implement MatchMaker using
SOAP over HyperText Transfer Protocol (HTTP) as the transportation layer for
communicating clients with the server, and implementing the MatchMaker server as a
Web Service. HTTP is normally open to firewalls and it is easily accessible from
clients behind proxies or NATs. To accomplish this task, we used Apache Axis as the
platform for Web Services and consumer clients in Java. Axis is an Open Source
SOAP engine written in Java. At the sever side, Apache Axis works as a servlet, so it
needs to be deployed inside a Web Servlet Container such as Jakarta Tomcat,
WebLogic or the Web Application Server of J2EE. Apache Axis provides classes
allowing clients to connect to a server, communicate with a remote application using
the SOAP protocol and invoke Web Service methods with little effort from the
developer. This new version of Match- Maker, known as SOAP MatchMaker, works
the same way as the current RMI MatchMaker version. It only differs in some
aspects, being the communication protocol used to exchange messages between
clients and server the most notorious one.

In the RMI MatchMaker version, clients act as servers listening for events from the
central server. In this new approach, the clients cannot act as servers anymore; they
are forced to act in passive mode. This means clients need to contact the server to find
out if new events affected the coupled objects. The basic mechanism consists of every
client having an event queue at the server side. Clients are constantly requesting the
server for new events, and every time a new event is available, it is sent to the client.
If no new events are available, the client keeps waiting until a new event is available,
but the connection with the server is kept alive.

4 Implementing the Coupled Objects Paradigm with HTML5

Over the last decade we have seen an explosion in the development of new
collaborative systems using mobile devices that incorporate and utilize their
communication capabilities to support collaborative work in ways that were not
conceived before or were impossible to implement with desktop computers.
Applications allowing users to collaborate in real time over wireless connected mobile
devices have attracted the attention of many authors. The following are examples on
how mobile technology helps improve collaborative work:

 Rescue efforts can be more easily coordinated in emergency situations and
disaster areas [Monares et al., 2011]

 People attending a meeting can share ideas and data by means of their mobile
devices [Zurita, Baloian & Baytelman, 2006].

 A team of construction workers or garden designers on a site without a
network infrastructure can share blueprints and schematics [Sapateiro et al.,
2011].

1717Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

 Educational activities involving students and teachers can be performed in
collaborative room environments [Pinkwart et al., 2003].

An important problem with developing collaborative applications for mobile
devices is their heterogeneity. They vary from usual laptops, mobile phones, tablet
PCs, advanced MP3 players, using different operating systems, thus providing very
few possibilities for integration. As [Feisst et al., 2005] already described, these
various devices implement different human-computer interaction mechanisms and use
different data formats. Additionally, a major challenge in this scenario is providing
applications that run on a number of different operating systems for mobile devices.
As an answer to this challenge, we argue that the best strategy would be to implement
platform independent applications. Currently, the most promising approach seems to
build applications based on HTML5 with JavaScript.
Until now, the standard way to develop a Web-based application was by
implementing multiple views, each one presenting a different functionality to the user.
Each interaction with the application would, in most cases, generate a request to the
server who would respond with a new page containing the changes resulting from
running a piece of code. By using JavaScript and the advanced features of HTML5
like WebDatabase, WebSockets, Canvas, LocalStorage, and LocalFileSystem, it is
now possible to develop more complex applications running inside the browser that
are eventually capable of implementing rich interaction with the user in a single view
and requiring less interaction with the server.

5 Implementing the Coupled Objects Paradigm With HTML5

Given the current trends on the development of mobile applications, it becomes
necessary to count on an implementation of MatchMaker, which supports the
synchronization of applications running on mobile devices with different operating
systems. It also requires supporting the synchronization of applications running on
mobile devices with applications running on desktop-based and tablet computers, or
even any computer device. Given these requirements we opted for developing a new
version for coupling applications developed in HTML5, thus being able to support the
conversion of single-user application to multi-user applications for devices running an
HTML5 compatible browser, without having to rewrite a particular implementation of
the middleware.

The HTML5-based MatchMaker implementation shares an important feature with
the previous one using Web Services: the client-server communication is
implemented using the HTTP protocol. This means the client is responsible for taking
the initiative for any communication that is needed. In fact, the implementation
strongly relays on the JavaScript function setInterval(func, time), which
schedules a call to a function called func every time milliseconds. Although
JavaScript does not have a suitable object model that can be used in this scenario,
there is a library called JSON (JavaScript Object Notation) defining a very useful one.

1718 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

5.1 Object Coupling with HTML5

When developing the foundations of the architecture, the following requirements need
to be accomplished:

 Coupling DOM Nodes: when a browser processes an HTML page, a node in
the Document Object Model (DOM) represents each component. These nodes
can be accessed and modified through JavaScript, thus having total control
over the page structure. Therefore, coupling the DOM nodes should be
considered when coupling HTML-based application interfaces.

 Event-based Synchronization: since all the previous implementations of
MatchMaker use event-based synchronization, we would like to keep this
approach in the new version.

 Sessions: in order to keep track of connections, the architecture should
propose a session management mechanism where users could connect to
them.

 WebSockets: one of the limitations in the SOAP implementation of object
coupling is that it turns out necessary to emulate how messages are received
from the server through periodical queries. However, HTML5 defines the
WebSockets structure, which are bidirectional communication channels
allowing the server to send messages to clients without the need to ask for
them.

 Protocol Switching: switching the main communication protocol from RMI to
SOAP in the last implementation of MatchMaker required a considerable
effort. Therefore, a new implementation should allow communication
protocol switching with the least effort possible.

However, when envisioning an implementation based on the previous list of
requirements, two issues arise:

 Creating new objects to couple: if we only couple objects through their states,
it would eventually turn out difficult to manage the creation of new coupled
objects. This happens because the creation of a new object should be
implemented as a state change in an object that is already coupled in order to
propagate this message to the other clients. That way, we need to use at least
an object that has a reference to all the others, and manage as well the
creation or deletion of objects as a change on their states.

 WebSockets is not fully integrated into all the Web browsers: even though the
use of WebSockets will turn out as the best solution to implement the
communication protocol, it is not well supported by the majority of Web
browsers today.

Therefore, for this HTML5 implementation of MatchMaker, we will lengthen the
original list of requirements in order to consider the following features needed to
correctly support object coupling:

1719Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

 Selective Coupling: developers should be able to choose between coupling
DOM Nodes or JavaScript objects. When using DOM Nodes, the developer
should use event callbacks to couple the nodes. When using JavaScript
objects, the developer should use methods to send the coupling messages.

 Mixed Synchronization: the architecture should support both event and state-
driven synchronization. That way, there would be no further problems when
creating new objects, since this can be modeled as an event rather than a state
change.

 Multiple Protocols: since HTML5 will eventually become a Web standard,
the use of WebSockets should be seen as a strong recommendation. Therefore,
communication should be implemented through WebSockets and a backup
protocol, in case the Web browser does not properly support the former.

5.2 Communication Management

In order to develop applications using the proposed architecture and couple already-
implemented applications, it is important to keep a broad separation between the
business logic of the intended application and the synchronization mechanisms
offered by the architecture. In order to achieve this, we need to use two handlers: the
first one deals with JavaScript objects modifying their methods, thus integrating the
communication process; the second one enables the communication process as an
event-manager (such as the onClick event triggered by an HTML button).
Therefore, in order to trigger the synchronization between coupled objects, the
intended application should follow these simple steps:

• Initializing communication with server;

• Joining a session; and

• Coupling the desired objects.

In order to manage communication processes, we used a client-server architecture. In
this architecture, the server publishes two interfaces to be used by the client: one for
managing sessions, and another for synchronizing objects.

5.3 Server-Side Implementation

With the implementation of the server application we aim to cover three particular
issues in the design of this architecture: (1) to provide a structural basis to develop
distributed collaborative systems in an easy way by integrating different
communication protocols; (2) to provide support for event-based synchronization; and
(3) to provide new alternatives to particular cases of synchronization, where both the
client and the server can be accommodated, thus being easily able to transform mono-
user applications into multi-user ones.

The proposed architecture manages the different messages ensuring they are
validated, persisted and propagated to their correct clients. In order to avoid leaving
clients waiting for an answer, this mechanism is implemented in an asynchronous
way. Therefore, when processing a message, it is queued and waiting to be sent. It is

1720 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

persisted afterwards. The server also monitors concurrency, being in charge of
receiving the different calls and deciding when to propagate them.

When the server receives a message, before queuing it, the server can validate the
message through a state manager, which can eventually have other validators that will
be in charge of deciding if the message is effectively valid or not. If the message is
not valid, it is discarded and this answer is propagated through the client who initially
sent the message.

If two different clients who aim to modify the same element simultaneously send
two messages to the server, an inconsistency issue could arise. What one client sees is
actually different from what another client is seeing. In order to solve this issue, the
server evaluates if there is any risk of causing conflict with messages that are not
actually being sent. If there is conflict, the server notifies the client, the message is not
discarded and it is finally queued as an echoed message. An echoed message is also
sent to the client. Therefore, if it is an event, it will be executed only if it is received
as an echo, thus respecting the execution order. If it is a change, it cannot be
discarded, but this is not an issue since the original state change will not modify the
process. Figure 1 shows the server architecture.

The following list summarizes the steps to implement the server application:

 Define one or more communication protocols, and the entry points and
adapters: when defining a protocol, it is also necessary to consider adapters
and entry points linked to it, which will be in charge of receiving and
interpreting the client messages in order to be processed by the server. An
adapter is the component that the server uses to receive and send messages
from/to clients. The interface provided by an adapter is published through the
clients by an entry point. An entry point is a communication interface, in a
particular protocol, which publishes the required functions to be used by a
client in order to use a particular interface (in this case, the adapter). A client
recognizes different entry points according to their URLs. That way, two
entry points for two different protocols can coexist in a same server, thus
being accessed through different URLs.

 Define persistence and validation strategies: since we expect the server to
support state and event-based coupling, we need to manage the persistence of
a single state for each object in the server. Therefore, the architecture
provides a state manager specific for each case. This manager can process
each received message and use it for updating the state of pertinent objects,
thus generating the necessary messages for updating the state of a particular
object when any adapter couples it.

 Define a session management strategy, its protocol and entry point: in order
to group different clients, we extend the session functionality, introduced by
the RMI and SOAP implementations of MatchMaker. Therefore, a client can
either create a new session, or join an existing one. Therefore, the messages
will only be propagated through clients that belong to a same session.

1721Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

Figure 1: Server-side architecture

The coupled object server is in charge of managing the message flow among
clients. By clients we mean the applications that should be coupled using this
paradigm. In order to provide a solution for a wide range of scenarios we followed an
extensible approach in order to support the usage of various different client-server
communication protocols. For this, the server is composed of two components: a core
component called coupledObjectServer, that implements common functionalities for
all scenarios, and another that should be extended or modified if the developer wants
to change or include a new protocol for client-server communication. The
implementation presented in this work uses mainly the http protocol to support the use
of HTML5 at the clients’ computers.

The main element of this component is the CouplingManager class, which is in
charge of receiving and propagating the messages. The interaction with this class is
implemented through the Adapter interface. The creation of new CouplingManager
instances and the access to them is implemented through the SessionManager
interface.

The class implementing the Adapter interface receives the messages from the
clients and will pass them to the corresponding CouplingManager and vice versa. The
HTML5 implementation of this class uses JSON messages from the client. Therefore
the class implementing this adapter is called JSONMessageAdapter and their
functionalities are published (made accessible to http clients) by a J2EE servlet. This
adapter has the particular characteristic that instead of sending information directly to
the client, it stores the messages in a buffer waiting for the client’s request, thus
adjusting the process to the request/response model of HTTP. Figure 2 shows the
UML sequence diagram for messages since they are originated at the coupled object
until they reach the coupling manager.

The class implementing the SessionManager interface offers functionalities for
creating new clients, new sessions (each one with an own CouplingManager) and for
data management. The HTML5 implementation of this class is called
GenericSessionManager because it implements these functions in a generic way. The
functionalities for joining and leaving a session are published by a J2EE servlet.

1722 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

Creation of clients and sessions is automatically managed. Figure 3 shows the UML
sequence diagram of the creation and joining of a session procedure.

Figure 2: Sequence diagram of the message flow since they originate at the client,
triggered by a change in a coupled object, until it reaches the coupling manager at

the server

Figure 3: Sequence diagram of the session life-cycle. Its creation is requested from
the client until the client joins it.

Complete Join Session Flow

{clientId,sessionId}

HTTP Request to /join

Success
join(client,session)

session

new CouplinManager

contructor

createSession

client

createClient

Client Servlet GenericSessionManager CouplingManager

{clientId,sessionId}

HTTP Request to /join

Success
join(client,session)

session

new CouplinManager

contructor

createSession

client

createClient

1723Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

5.4 Client-Side Implementation

As we see, an application developed with the coupled object paradigm uses a standard,
centralized message propagation strategy, which consists in each client generating
messages that are sent to the central server, which delivers it to the final destination.
However, the coupled objects paradigm and particularly its HTML5 implementation
offers a mechanism which allows a developer to define what, how and when a message
should be sent to other applications. This is done by transforming normal objects into
coupled objects during the application’s runtime.

In the coupled objects paradigm messages are sent and/or received and processed by
coupled objects. These objects are normal application objects that are modified to give
them additional functionalities for sending and receiving messages. In previous
implementations, objects had to be defined as such in the program itself in order to
allow them to be coupled during runtime. In the HTML5 implementation it is possible
to transform any common object during runtime. This transformation is done inside the
ClientAdapter class, which receives an instance of an object and then modifies its inner
code, without altering its interface, in order to grant it the coupling feature. At the same
time it builds a Handler inside the object, which will be in charge of implementing the
communication between the object and the server. Figure 4 shows this process.

Figure 4: Schema for converting a normal object into a coupled one.

This strategy allows a very easy conversion of applications which have been
developed for a single-user scenario into a multi-user one without modifying its code,
thus allowing it to swiftly and flawlessly switch from one scenario to the other. This
implementation is also very easy to use from the point of view of the application
developer, but nevertheless it is also very versatile because it allows a developer to
choose which cases and types of messages will be generated in order to implement the
coupling feature. Firstly, the developer can choose if the coupling messages will
transmit a message describing the event the object received or the state the object has.

State messages contain a complete representation of the object characterized by its
instance variables. An object receiving a message like this will modify all its instance
values by those of the message corresponding to the instance variables of the sender
object. To use these types of messages it is necessary to define two functions: getState
and setState, which can be defined by the code of the object itself (like in the previous
implementations of coupled objects) or it can be defined and introduced to the
object’s code at the moment when the object is coupled during runtime. This is the
coupling type which is recommended if the size of the object is “reasonable small”.

1724 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

By the size of an object we mean the size of its internal representation corresponding
to the instance variables, therefore the size of an object will be the number of bytes
necessary to store all the variables. It is difficult to give a concrete number for
“reasonably small” since it depends on several aspects of the application itself and the
environment in which it is running. Of course, using fast computers and a fast
network connecting them allows handling bigger objects, but it also depends on how
frequently the application needs to send and/or receive messages from the others.
State messages should be chosen in order to avoid some coordination problems
because it has fewer problems at the moment of handling latecomers, since
applications joining the collaborative session later will receive the current state of the
object. In the case of a collaborative text editor if the latecomer receives the whole
state it will receive the last version of the complete text instead of the following
changes only.

Event messages represent an event that occurred on an object that modified its
instance variables. Different from the state messages, these only include information
about the event, which will usually be fewer than the whole state of the object. In
most cases, an object will generate more messages if these are event messages instead
of state messages, so its usage is recommended for objects, that given their size and
nature, the definition of state might be not clear. This is especially true in objects that
have a variable number of sub-objects inside like lists.

The main component in the client-side application is the Client Adapter. This
object uses the same interface of the server adapters, and there is only one per client.
It relies on: (1) AJAX calls to coupling or decoupling actions, defined at the URL
context; and (2) the EventSource API provided by the HTML5 specification, that
serves to emulate events that are sent by the server through periodic AJAX calls.
Figure 5 shows the client architecture.

Figure 5: Client-side architecture

It is possible that the server validates a message sent by a client. However, if the
server decides that the message is not valid, it will notify the client. Therefore, in
order to follow the server validation, the client sends the message, and then it locally
executes the event only if the server allows it. This is not possible with state messages
since any event needs to be executed before generating a new state: here, neither the
client nor the server supports the validation of state messages.

The second stage at implementing the client application is allowing message
generation and managing received messages in order to complete the event and state
change propagation. In order to achieve this, we used handlers coupled either to a
JavaScript object or a DOM element. Handlers are used to: (1) couple to the object
they are managing for sending the event or state change messages; and (2) register in

1725Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

the client adapter and execute the required actions when their object receives a
message. A same object can have one or more different handlers for more precise
control over how the coupling is performed. In this architecture we support two kinds
of handlers:

 Object Handlers: designed to couple JavaScript objects by accessing their
methods. When it is linked to an object, it can intervene over its functions to
send the corresponding message by creating and assigning functions at
runtime through JavaScript.

 Bind Handlers: designed to manage coupling with callback or binding
functions when a particular event is triggered. By using JQuery, a JavaScript
library, we can perform this kind of binding either with DOM nodes or with
JQuery objects that can define their own events. As opposed to object
handlers, a bind handler can only execute callback functions linked to a
particular event, and cannot reproduce the event itself.

In order to simplify the use of the client API, we provide a JQuery plugin called

coupler. This plugin offers a unified interface for coupling objects, encapsulating
the creation and registration of handlers. To summarize, Figure 6 shows the global
architecture of the communication process.

Figure 6: The Global architecture

6 Using the Proposed Architecture

In this section, we show how to design and develop distributed collaborative
applications using a particular implementation of the HTML5-based MatchMaker
architecture. First we explain how the various components of the architecture were

1726 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

implemented to have a simple way to couple objects existing on a browser running an
HTML5 page with JavaScript.

The components of the architecture were implemented in the following way:

 Protocol: since the majority of current browsers do not fully support the

WebSockets structure as a communication channel, we implemented a HTTP-
based protocol based on POST and GET queries to send and fetch
information to/from the server.

 Adapter: we implemented an adapter that will receive the messages in JSON
and will internally transform them into messages that are understandable by
the objects.

 Entry point: we used a Servlet mapping to three different URIs: coupling,
for sending and asking for messages to the server; couple, to couple an
object; and decouple, for decoupling an object. We managed errors with
HTTP status messages using the HTML5 current specification.

 Persistence: each object is automatically persisted, instead of using a method
for achieving this.

 Sessions and clients: sessions are shared between many clients, instead of
being attached to only one. That way, each time an HTTP session is created,
we link a user to it and we manage its lifecycle with the object coupling.

 Entry point: since a user can only connect to a client in a new session, or over
an existing session, the management of creation and assignation of these is
blind for users. In order to achieve this, we implemented a Servlet that used a
particular URI: if it gets a GET query, it checks the identifier of the particular
model to be accessed. We then register the user, obtained through the HTTP
session and respond to the client with the HTML code that implements the
client for the application, where we include the relevant user data.

With this implementation, object coupling is achieved in the following way:

 Initializing communication with server:

var adapter=new ClientAdapter(ServerURL);
The ServerURL parameter is a string with the URL where the coupling
server is located (for example, http://saduewa.dcc.uchile.cl/HTML5Server).

 Join a session:

adapter.joinSession(ssid);
The parameter ssid is a string with a name for a session. All objects
registered in the same session will be coupled among them.

 Couple the desired object:

For JavaScript (JSON) objects we use:
adapter.coupleJSONObject(object, type);

1727Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

The parameter object is a reference to the object to be coupled. The type
parameter specifies it the coupling is by event or by state.
In the case of DOM Objects with callbacks (like pushdown buttons) we use:
adapter.coupleDOMObject(object, type);
Its parameters are the same as for the previous function.

 Decoupling objects:

adapter.decouple(object);

Next we present different examples of how the Coupled Objects paradigm and the
HTML5-based implementation of MatchMaker can be used for developing
collaborative applications.

6.1 Converting a complex single-user application in multi-user: Mobiz

Business Process Modeling (BPM) allows organizations to support the abstraction of
business processes from technology infrastructures. It initially focused on the
automation of business process, the coordination of tasks and the management of data
and other resources, such as human-driven processes in which human interaction
takes place in series or parallel with the use of technology [Sheth et al., 1996]. Authors
have identified the lack of flexibility as one recurrent problem for process elicitation. In
order to support an agile process elicitation procedure we developed a mobile
collaborative application named Mobiz. [Baloian et al., 2013] This application will
help leverage business process models on the way using mobile devices, thus
allowing the construction and edition of process models in a collaborative way. Figure
7 shows the main user interface of Mobiz.

Figure 7: Mobiz user interface

1728 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

The look and feel of the desktop interface was partially based on the one proposed
by the BIZAGI process developer [http://www.bizagi.com/], mainly because it is a
well-known product in the business processing environment. Thus, process engineers
will rapidly learn to use the new tool. Furthermore, the interaction principle for
creating new elements of the model starting from a contextual popup menu of existing
elements works very well in both the desktop and the mobile environments. One of the
most interesting features of MOBIZ partially inherited from BIZAGI is the use of a context
menu when interacting with an artifact on the workspace. We added some additional features
in order to take further advantage of this interaction element. This contextual menu does not
display actions to perform but a list of possible types of artifacts that may follow the current
one on the process being constructed. This application follows the MVC (Model-
Controller-View) architecture: it has a model object containing all the BPMN graph
elements, which are created by the user using a controller object. A view object is in
charge of displaying these elements in a canvas.

In order to turn this application into a collaborative one using the implemented
architecture, we just had to couple the model object of the application. In this way, all
changes made to the graph by one user of one application will be distributed to all
applications that joined the session. The view module of each application is in charge
of displaying all changes occurring on the model. Figure 8 shows the class diagram of
the most important parts of the Mobiz application.

Figure 8: The class diagram for the Mobiz application

The BPMNDiagram class manages the creation (and destruction) of each element
shown in the figure and maintains the relation with each created instance. Also, each
instance of a class has an associated DOM node. This node receives the events
generated when a change in the object has to be performed when a coupled object
changed. In particular, an “<element>Created” event will be triggered and passed to a
node which represents the BPMN diagram on the interface each time a new element
of the diagram is created, where <element> is the type of element which has been
created. Also, when an element is modified a “change” event is triggered and passed
to the node representing it.

1..1

0..*

1..1
0..*

1..1

0..*

1..1

0..*

BPMNDiagram

- element : Node

+
+
+
+

createEvent ()
createGateway ()
createRealtionship ()
createTask ()

: void
: void
: void
: void

BPMNEvent

- element : Node

+
+

getState ()
setState ()

: Object
: void

BPMNTask

- element : Node

+
+

getState ()
setState ()

: Object
: void

BPMNGateway

- element : Node

+
+

getState ()
setState ()

: Object
: void

BPMNRelationship

- element : Node

+
+

getState ()
setState ()

: Object
: void

1729Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

The single-user HTML5 Mobiz application is a considerably complex application
with more than 1,500 program lines. However, despite its complexity it was very easy
to convert it to a multi-user application using the coupled object implementation
described in this work by just adding the following piece of code:

//Initialize adapter
var adapter=new ClientAdapter(serverUrl);
//Join session
adapter.joinSession(sessionName);
//Couple BPMNDiagramInstance
adapter.coupleObject('diagram',bpmnDiagram.element,{messageType:'EVENT'});
//Listen to element creation events
jQuery(bpmnDiagram.element).bind(

'taskCreated relationshipCreated eventCreated gatewayCreated',
 function(event,object){

//All created elements of the diagram are //coupled at
creation time
adapter.coupleBinding(object.id,object.element,{

 messageType:'STATE',
 bindings:['change']
 });
});

6.2 Using multiple protocols and asymmetric coupling (Microblogging)

Students of a business degree program have to attend a course in which they are asked to
identify situations in real contexts, for which the introduction of solutions based on
Information Technology might be an opportunity to improve the life or solve a problem for
citizens that frequently live, work, or travel in or around that area. They have to
geographically identify spots with troubles and/or opportunities and collaboratively propose,
discuss and select the most appropriate solutions.

Figure 9 shows the main view of the proposed prototype as seen on a screen of a
Smartphone and a desktop computer. This application supports students performing
following activities:

(1) Information gathering and brainstorming the ideas in a divergent mode. Students
can geo-reference concrete physical locations where the proposed idea is going to be put into
reality. This will include a title, a textual description and maybe pictures in order to better
contextualize the proposal which has been already made public. In the Smartphone view of
Figure 4 the proposal of the idea is being created.

(2) Find alternatives, information processing and comments of alternatives using
divergence and convergence modes. In the upper part of the desktop interface view shown
in Figure 9 we can see the searching tool which searches for ideas by author’s name,
associated comments words or date of creation. The result of the search will be shown as a
list under the search tool and the corresponding location of all proposals matching the search
criteria will be shown on the map.

(3) Make choices in a convergent mode. Each comment to a proposed idea has an
associated ranking mechanism allowing students to assign points in favor or against the
proposal. This mechanism can be seen in the desktop view of the interface in Figure 9, where
the last comment shown at the bottom right gives two points in favor of this idea.

1730 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

Figure 9: Two screenshots of the application: the small one taken from a Smartphone,
and the big one from a desktop computer screen.

An interesting characteristic of this application is that it takes data from and
exports data to very well known social networks like Tweeter and Facebook, since it
involves users posting comments and others responding to the posts. In this way,
users can interact with this application while they are connected to their preferred
social network and post new comments or read those from others. On the client side,
this application has the same structure as the one previously described, thus the way
of coupling and decoupling objects is the same. However, for this application we used
the extensibility feature of the server that was used to create an independent
application (in Java) with the only purpose of posting and receiving information to
and from the social networks.

In order to implement this, a second communication protocol called Hessian was
developed which basically emulates a remote procedure call protocol (Like Java’s
RMI) but over the HTTP protocol. Figure 10 shows the structure of the classes
implementing the CoupledObjectWebServer. The blue boxes show the classes
provided by the generic server. The orange classes show those that were added in
order to implement the interface with the social networks. We can see that since
Hessian implements a HTTP protocol, it can only be initiated (executed) by a client’s
request. This means that the JSONMessageAdapter, which was used for the generic
solution, can also be used in combination with this protocol, and that is the reason

1731Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

why there was no need to implement a special new SessionManager. Figure 11 shows
the architecture of the whole application.

Figure 10: The figure shows the original structure of the CoupledObjectWebServer
class and the additions to implement the new protocol.

Figure 11: The figure shows the achitecture of the whole application including the
interface to Twitter and Facebook

CouplingController

GenericSessionManagerSessionControler

JSONMessageAdapter

<<CORE>>

CoupledObjectServer

Adapter

SessionManager

HessianCouplingService

HessianSessionService

HTTP+JSON REQUEST

HTTP+JSON REQUEST

HTTP+Hessian Request HTTP+Hessian Request

<<HTML5 Instance>>

CoupledObjectWebServer

CouplingController

SessionsController

HessianCouplingService HessianSessionService

HTML5 Client

Java Hessian Client

1732 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

6.3 CollabCode: A Collaborative Learning Scenario

This application allows a teacher to monitor student work online while the students
are engaged in developing a piece of JavaScript code. It also allows him/her to leave
feedback in the students’ log in a web application which they can use to write a piece
of code in JavaScript, run it, and see its output on the same page (see Figure 12). The
student writes JavaScript code in the text area on the right side of the figure. By
pressing the button labeled “Run code”, the code is executed and the output is shown
in the text area on the right side of the figure. By pressing the button labeled “Get
code”, the student gets the modifications made by the teacher.

Figure 12: CollabCode students interface

On the other hand, the teacher’s interface shows a set of buttons, one for every student
that has logged in and labeled with the student’s ID. The teacher can display or hide
code that is being developed by the student by pressing the respective button. The
teacher can also write/correct the code with the student by pressing the “Save” button
(see Figure 13). On the left side of the teacher’s interface there are buttons for
displaying/hiding the code for each student. At the right side it shows the students’
code labeled with their respective ID.

Figure 13: CollabCode teacher’s interface

1733Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

In order to develop the students’ application with MatchMaker, it is necessary
first to provide a login page where each participating student provides his ID. This ID
will be later used to identify each student’s application. Then, an HTML5 page is
loaded which renders the interface shown in Figure 12. This page has a JavaScript
piece of code that declares a variable named after the student’s ID. It then adds a
String attribute to be synchronized with the student’s text area where the code is being
written. This variable will be registered with the server as a coupled object. Each time
the “Run code” button is pressed the current code is submitted to the server. By
pressing the “Get code” button the code currently stored will be retrieved and
displayed. This can be used to “download” the code with modifications added by the
teacher.

In order to make these two applications collaborative, each time a new student
starts an application the teacher’s application gets a message in order to create the
necessary objects to show the new student’s workspace. Then the student’s and the
teacher’s applications join a new session in order to couple their respective buttons
and text areas.

6.4 Collaborative Sketching Scenario

There are many mobile computing scenarios where collaborative sketching might
help accomplish the common goal (see [Zurita, Baloian & Baytelman, 2006] for
example). With this application, users can utilize the touch sensitive screen of their
mobile devices to collaboratively draw sketches with a stylus or the finger. Such an
application may generate a lot of traffic from the clients to the server and back.
Therefore, this application was also developed to test the robustness of the HTML5-
based MatchMaker under such conditions.

The application consists of a single webpage that is downloaded by all
participants. The JavaScript code captures all mousedown, mousemove and mouseup
events, registering their coordinates and drawing lines among these points in order to
render the sketch. To make this application collaborative, a JSON object containing
an array is created where all points corresponding to a single stroke are recorded. This
object is coupled with the server. Every time a sketch is completed (mouseup event)
the object state is updated at the server. At the same time, and every 200ms, the
application retrieves the new version of the object and draws the new stroke on the
Canvas element, adding this one to all previously drawn.

Since the key of the JSON array object is the same for all application instances,
each user will retrieve the new stroke, no matter from whom it originated. In order to
distinguish the user who generated the stroke, the JSON object also contains the user
ID. In this way, the color of the stroke will be chosen according to this information.
For collaborative applications where the interaction between users in synchronous and
a lot of traffic is generated, the response time is critical for their usability.

To analyze the delay for updating the sketch status we conducted an experiment
measuring the round trip time between client and server for 120 JSON objects
containing strokes of various sizes, sending a stroke every 2 milliseconds. The size in
kb of the JSON objects representing the strokes varied from 1.0 to 1.5. The average
response time was 55 milliseconds with a standard deviation of 30 milliseconds,
which can be considered good for human users.

1734 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

7 Conclusions and Future Work

This article reports on an architecture to support the design and development of
distributed collaborative applications using HTML5. The motivation for this
development was the need for a suitable middleware that could simplify the
development of this kind of application in mobile scenarios. Nowadays, available
mobile technologies are vast and heterogeneous, requiring that such a middleware be
as portable as possible. The strategy was to implement the Coupled Objects approach,
which has shown to be simple, flexible and powerful, but this time using HTML5,
which allows the implementation to be highly portable. This particular feature of
HTML5 allowed us to develop a multi-platform mobile application based on the
proposed architecture.

We claim that HTML5 is a promising technology for developing compatible
collaborative applications for mobile scenarios. However, it has not been fully
adopted by all browsers yet. Google Chrome, Opera and Firefox are among those that
include most of the features. Even with these browsers there are some important
features still not implemented, like the WebSockets. This is the reason why they were
not used in this implementation of MatchMaker. WebSockets allow a bidirectional
communication between server and client (browser) thus liberating the client for
periodically polling the server in order to retrieve the latest state of coupled objects.

References

[Aldunate et al., 2006] Aldunate, R., Ochoa, S., Peña-Mora, F., Nussbaum, M.: "Robust mobile
ad hoc space for collaboration to support disaster relief efforts involving critical physical
infrastructure." Journal of Computing in Civil Engineering, 20, pp.13-27, 2006

[Andrews, 1999] Andrews, G.: Foundations of parallel and distributed programming:
Addison-Wesley Longman Publishing Co., Inc. 1999.

[Baloian, Pino, & Jansen 2007] Baloian, N., Pino, J. A., Jansen, M.: "Implementing the coupled
objects paradigm for synchronizing distributed applications through firewalls." in Computer
Supported Cooperative Work in Design III, Springer, pp. 599-608, 2007.

[Baloian et al., 2013] Baloian, N., Pino, J. A., Reveco, C., Zurita, G.: "Mobile Collaboration for
Business Process Elicitation from an Agile Development Methodology Viewpoint", in
Proceedings of the ICEBE 2013, pp. 306-311, 2013.

[Dewan, 1995] Dewan, P. "Multiuser architectures." Pp. 247-270 in Proceedings of the IFIP
TC2/WG2. 7 Working Conference on Engineering for Human-Computer Interaction: Chapman
& Hall, Ltd., 1995.

[Dewan & Choudhary, 1992] Dewan, P. & Choudhary, R.: "A high-level and flexible
framework for implementing multiuser user interfaces." ACM Transactions on Information
Systems (TOIS), 10, pp. 345-380, 1992.

[Ellis, Gibbs, & Rein, 1991] Ellis, C., Gibbs, S., Rein, G.: "Groupware: some issues and
experiences." Communications of the ACM, 34, pp. 39-58, 1991.

[Feisst et al., 2005] Feisst, M., Rodrigues dos Santos, D., Mitic,J., Christ, A.:"Adaptive
Heterogeneous Learning System." Proc. of the 4th World Conference on Mobile Learning
mLearn), Cape Town, South Africa, 2005, retrieved from

1735Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

http://www.mlearn.org/mlearn2005/CD/papers/Feist.pdf, January 2015.

[Ghosh, 2006] Ghosh, S.: "Distributed systems: an algorithmic approach." Chapman &
Hall/CRC computer and information science series.

[Grüneberger, 2012] Grüneberger, F. J.: “Real-time Collaboration Support for JavaScript
Frameworks,” Minor Thesis, Technical University of Dreden, Faculty of Computer Science,
Germany, 2012.

[Guerrero & Fuller, 2001] Guerrero, L., Fuller, D.: "A pattern system for the development of
collaborative applications." Information and Software Technology, 43, pp. 457-467, 2001.

[Hickson, 2011] Hickson, I "HTML5-A vocabulary and associated APIs for HTML and
XHTML, W3C Working Draft 25 May 2011." World Wide Web Consortium.
http://www.w3.org/TR/html5/ (last visited 1 January 2014).

[Hill, et al., 1994] Hill, R., Brinck, T., Rohall, S., Patterson, J., Wilner, W.: "The Rendezvous
architecture and language for constructing multiuser applications." ACM Transactions on
Computer-Human Interaction (TOCHI), 1, pp. 81-125, 1994.

[Hoppe et al., 2000] Hoppe, H. U., Lingnau, A:, Machado, I., Paiva, A., Prada, R., Tewissen,
F.: "Supporting collaborative activities in computer integrated classrooms-the NIMIS
approach." in Groupware, 2000. CRIWG 2000. Proceedings. Sixth International Workshop on:
IEEE, pp. 94-101, 2000.

[Lukosch, 2002] Lukosch, S.:. "Adaptive and transparent data distribution support for
synchronous groupware." in Groupware: Design, Implementation, and Use: Springer, pp. 255-
274, 2002.

[Lukosch, 2003] Lukosch, 2003. "Transparent latecomer support for synchronous groupware."
in Groupware: Design, Implementation, and Use, Springer, pp. 26-41, 2003.

[Monares et al., 2011] Monares, A., Ochoa, S., Pino, J. A., Herskovic, V:, Rodriguez-Covili, J.,
Neyem, A.: "Mobile computing in urban emergency situations: Improving the support to
firefighters in the field." Expert systems with applications, 38, 1255-1267, 2011.

[Osmani, 2013] Osmani, A.: Developing Backbone. js Applications, O'Reilly, 2013.

[Patterson, 1995] Patterson, J."A taxonomy of architectures for synchronous groupware
applications." ACM SIGOIS Bulletin, 15, pp. 27-29, 1995.

[Pinkwart et al., 2003] Pinkwart, N., Hoppe, H. U., Milrad, M., Perez, J.: "Educational
scenarios for cooperative use of Personal Digital Assistants." Journal of Computer Assisted
Learning, 19, pp.383-391, 2003.

[Roseman & Greenberg, 1996] Roseman, M., Greenberg, S.: "Building real-time groupware
with GroupKit, a groupware toolkit." ACM Transactions on Computer-Human Interaction
(TOCHI), 3, 66-106, 1996.

[Roth & Unger, 2000] Roth, J., Unger, K.: "An extensible classification model for distribution
architectures of synchronous groupware."in Designing Cooperative Systems: the Use of
Theories and Models, Proceedings of the 5th International Conference on the Design of
Cooperative Systems (COOP’00), pp. 113-127, 2000.

[Sapateiro, et al., 2011] Sapateiro, C., Baloian, N., Antunes, P., Zurita, G.: "Developing a
Mobile Collaborative Tool for Business Continuity Management.", Journal of Universal
Computer Systems (J. UCS), 17, pp. 164-182, 2011.

[Sheth et al., 1996] Sheth, A., Georgakopoulos, D., Joosten, S., Rusinkiewicz, M., Scacchi, W.,

1736 Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

Wileden, J., Wolf, A.: "Report from the NSF workshop on workflow and process automation in
information systems." ACM SiGMOD Record, 25, pp. 55-67, 1996.

[Sirinvasan, 1995] Srinivasan, R.: RPC: Remote Procedure Call Protocol Specification Version
2. Internet RFC 1831, 1995.

[Strom et al., 1998] Strom, R., Banavar G., Miller, K., Prakash, A., Ward, M.: "Concurrency
control and view notification algorithms for collaborative replicated objects." Computers, IEEE
Transactions on, 47, pp. 458-471, 1998.

[Tewissen et al., 2000] Tewissen, F., Baloian, N., Hoppe, H. U., Reimberg, E.:“MatchMaker:
synchronising objects in replicated software-architectures." in Groupware, 2000. CRIWG 2000.
Proceedings. Sixth International Workshop on: IEEE, pp. 60-67, 2000.

[Urnes & Nejabi, 1994] Urnes, T. & Nejabi, R.: "Tools for implementing groupware: Survey
and evaluation." Technical report CS-94-03, Department of Computer Science, York
University, Toronto, Canada, 1994.

[Vogel & Duddy, 1995] Vogel, A. & Duddy, K.: Java Programming with CORBA. 2nd. ed.
Wiley & Sons, 1998.

[Zhao & Hoppe, 1994] Zhao, J., Hoppe, H. U.: "Supporting flexible communication in
heterogeneous multi-user environments." in Distributed Computing Systems, 1994.,
Proceedings of the 14th International Conference on: IEEE, pp. 442-449, 1994.

[Zurita, Baloian & Baytelman, 2006] Zurita, G., Baloian, N., Baytelman, F.: "A face-to-face
system for supporting mobile collaborative design using sketches and pen-based gestures." in
Computer Supported Cooperative Work in Design, 2006. CSCWD'06. 10th International
Conference on: IEEE, pp. 1-6, 2006.

1737Baloian N., Aguirre D., Zurita G.: Developing Distributed ...

