
ESTIMATION OF ROUND-OFF ERRORS ON

SEVERAL COMPUTERS ARCHITECTURES

Jalil Asserrhine
E-mail:asserrhine@masi.ibp.fr

Jean-Marie Chesneaux
E-mail:chesneaux@masi.ibp.fr

Jean-Luc Lamotte
E-mail:lamotte@masi.ibp.fr

Laboratoire MASI-IBP, URA-818 du CNRS
Universit�e Pierre et Marie Curie

4 place Jussieu, 75252 Paris Cedex 05 FRANCE

Abstract: Numerical validation of computed results in scienti�c computation is al-
ways an essential problem as well on sequential architecture as on parallel architecture.
The probabilistic approach is the only one that allows to estimate the round-o� error
propagation of the oating point arithmetic on computers. We begin by recalling the
basics of the CESTAC method (Contrôle et Estimation STochastique des Arrondis de
Calculs). Then, the use of the CADNA software (Control of Accuracy and Debugging
For Numerical Applications) is presented for numerical validation on sequential archi-
tecture. On parallel architecture, we present two solutions for the control of round-o�
errors. The �rst one is the combination of CADNA and the PVM library. This solution
allows to control round-o� errors of parallel codes with the same architecture. It does
not need more processors than the classical parallel code. The second solution is rep-
resented by the RAPP prototype. In this approach, the CESTAC method is directly
parallelized. It works both on sequential and parallel programs. The essential di�erence
is that this solution requires more processors than the classical codes. These di�erent
approaches are tested on sequential and parallel programs of multiplication of matrices.

1 Introduction

On computers, using the oating point arithmetic, each elementary operation
creates a round-o� error because of the limited coding of real numbers. Conse-
quently, every computed result is a�ected by the round-o� error propagation.
Then, to validate numerical results on computers we must estimate the number
of exact signi�cant digits of every result. Exact signi�cant digits mean the dig-
its in common between the computed result and the mathematical result. The
probabilistic approach is the only one which allows to estimate the round-o�
error of the oating point arithmetic.

On a sequential architecture, the numerical validation of computation can be
done by using the CADNA software which is based on the CESTAC method.
But, more and more computations are now performed on parallel architectures.
A tool for the numerical validation for such kind of computations has become
essential.

Journal of Universal Computer Science, vol. 1, no. 7 (1995), 454-468
submitted: 15/12/94, accepted: 26/6/95, appeared: 28/7/95Springer Pub. Co.

454

After recalling the basics of the CESTAC method and explaining the use of
the CADNA software for sequential architectures, we present in this note two
prototypes for the control of round-o� error on parallel architectures.

The �rst one combines CADNA and the message passing library PVM. In this
approach each processor validates its own results using CADNA. The passing of
results between processors is performed by adding a speci�c extension to PVM
because of the new stochastic types used by CADNA.

The second one is a direct parallelization of the CESTACmethod - the RAPP
prototype - available both on sequential and parallel architectures.

2 The CESTAC method

In the probabilistic approach, the round-o� errors are modeled by independent
identically distributed (iid) random variables [Hamming 70][Hull and Swenson
66]. Therefore, a computed result R is also modeled by a random variable. The
number of signi�cant digits of R is estimated from notions like the mean value
and the standard deviation of R.

Based on the probabilistic approach, the CESTAC method has been devel-
oped by J. Vignes and M. La Porte [Vignes 90][Vignes 93][Vignes and La Porte
74] to estimate the round-o� error propagation of the oating point arithmetic.
At each step of the computation, the chosen rounding of any intermediate result
is the upper or the lower rounding with the probability 0:5 . Practically this is
realized by perturbing the lowest bit of the mantissa after each elementary op-
eration. This technique is called the random arithmetic. Then the code is run N
times with this new arithmetic. By this way, N di�erent results Ri are obtained.

The computed result is taken as the average of the Ri's :

R =
1

N
:

NX
i=1

Ri:

The number of exact signi�cant digits of R is given by the formula :

C
R

= Log10

 p
N:
��R��

s:t�

!
;

with s2 = 1

N�1
:
PN

i=1

�
Ri � R

�2
and t� the level of con�dence of the t

distribution for a probability (1� �).
It has been shown [Chesneaux 90] that a computed result obtained with the

random arithmetic may be modeled by

Z = r +
nX
i=1

ui(d):2
�pzi ;

where r is the mathematical result, n is the number of elementary operations,
the ui(d)'s are coe�cients depending only on the data and the algorithm, p is
the length of the mantissa (the hidden bit included) and the zi's are iid centered
random variables.

455

From the probabilistic point of view, the CESTAC method consists in ap-
plying Student's test on a sample of R (which is the Ri's). Then, an estimation
of the mean value of R (in the model, it is the mathematical result) is obtained
from a con�dence interval.

The theoretical study has proved the validity of the CESTAC method on the
model [Chesneaux 90]. Then the practical e�ciency of the CESTAC method is
based on the physical reality of the hypotheses and the approximations which
have been assumed during the theoretical study.

Theses hypotheses are :
i) the signs and the exponents of the intermediate results are independent of the
random arithmetic,
ii) the model of round-o� errors by iid random variables is correct,
iii) the approximation of the R's distribution by the �rst order terms in 2�p

modeled by Z is correct,
iv) the approximation by the �rst four terms in the Edgeworth's development of
the Z's distribution during the study of Student's test is correct,
v) the ui(d)'s coe�cients are regular, which means that none of them is of a
greater order than the sum of the others.

In practice, the hypotheses i), ii), iv), v) are of little importance [Chesneaux
95].

The hypotheses iii) is the only one which may really make the CESTAC
method fail. If it is not veri�ed, the mathematical expectation of the terms of
order greater than 2�2p is not zero. Then, there could be a bias which is not of a
smaller order than the standard deviation of Z. The mean value of R is not yet
well modeled by the mathematical expectation of Z which is the mathematical
result.

In fact, as the CESTAC method gives an estimation of the mean value of R,
it is absolutely necessary that it is closed to the mathematical result according
to the standard deviation of R, i.e., that the approximation at the �rst order is
valid. If it is not true, there could be an overestimation of the accuracy of the
computed result R.

Only multiplications between two non signi�cant results (called stochastic
zeroes) and divisions by non signi�cant results may create preponderant terms of
order higher than 2�2p [Chesneaux 95]. Then, such operations must be detected
at run-time and the user must be advised. It may also be shown that, for the
CESTAC method to work e�cently, a control of the accuracy of the operands
during tests like IF (A > B) THEN must be performed. The answer of the test
must take the number of exact signi�cant digits of each operand into account
[Chesneaux 95].

All of this may be done very easily by using the synchronous implementation
of the CESTAC method which allows to estimate the accuracy of any interme-
diate result at any time. It consists in performing in a complete parallel manner
the N runs of a code using the random arithmetic [Vignes 90][Vignes 93]. This
implementation allows to have a sample of N values for any variables at each
step of the run and so to estimate the accuracy of any result. Then, it is possible
to point out the denominators which are non signi�cant, the unstable multi-
plications and other numerical unstabilities. It leads to a self-validation of the
CESTAC method.

All the e�ciency of the CADNA software is based on this self-validation.

456

3 The CADNA software for sequential architectures

CADNA [Chesneaux 92][Vignes 93] means Control of Accuracy and Debugging
for Numerical Applications. The �rst goal of this software is the estimation
of the round-o� error in a scienti�c code using the oating point arithmetic.
CADNA uses the synchronous implementation of the CESTAC method. It also
implements and uses the de�nitions of the order and equality relations of the
stochastic arithmetic [Chesneaux 95]. This enables to control the branching, that
is, CADNA points out all the tests for which the computed and the real answer
have opposite signs. This is the second goal of the software.

The third goal is the numerical debugging. With CADNA, users may detect
numerical unstabilities that appear at run-time. We must emphazise that this
kind of debugging does not deal with the logical validation of a code but with
the ability of the computers to give correct results when the code is performed
using the oating point arithmetic.

CADNA also includes all the control tests pointed out by the theoretical
study to have an e�cient use the CESTAC method. CADNA is copyrighted and
marketed, it is the property of the Pierre and Marie Curie University.

CADNA works on codes written in FORTRAN 77 but requires a FORTRAN
90 compiler to generate executable codes. In practice, CADNA is a library which
is used during the link. It implements three new numerical types - the stochastic
types - and all the arithmetic operators for these new types. The control of
round-o� error propagation is only performed on variables of a stochastic type.

These types are :
- type (SINGLE ST) : stochatic single precision;
- type (DOUBLE ST) : stochastic double precision;
- type (COMPLEX ST) : stochastic complex single precision.

Declarations of stochastic variables are of the same kind as for the classical
numerical types. For instance,

TYPE (DOUBLE ST) X, Y, Z
The estimation of the number of signi�cant digits is available at any time

on any stochastic variable. All the arithmetic operators and order relations have
been overloaded for the stochastic types. Intrinsic mathematical functions of the
FORTRAN 77 only exist by their generic name. In that way, it is very easy to
use CADNA on old FORTRAN 77 codes almost without any modi�cation.

In an arithmetic expression, stochastic types, oating types and integer types
may be mixed. The classical rules of prevalence are applied with the prevalence
of the stochastic types on the others.

In the writing procedures, only the signi�cant digits are printed for the vari-
ables of stochastic types. In this way, it is very easy to see the accuracy of the
results.

For the numerical debugging, CADNA detects at any time numerical un-
stabilities that appear at run-time and let a trace in a special �le. With the
symbolic debugger, the user may point out the operation which is responsible
for the unstability.

The implementation of CADNA on sequential architecture consists in imbed-
ding the computations in RI N . This simple solution perfectly simulates the syn-
chronous implementation of the CESTAC method. Each operation is performed
N times. In that way and at any time, there exists a sample of N values for any

457

stochastic variable for the control of accuracy, the branching and the numerical
debugging. The use of CADNA multiplies the run time by a factor 3 or 5.

4 Interfacing of CADNA with PVM

Nowadays, parallel computers are more and more used for scienti�c softwares
usually written in FORTRAN. It seems essential to develop a validation tool for
numerical softwares on this kind of machine. As the existing parallel machines are
very di�erent in structure and programming techniques, we have intentionnally
limited our tool to the parallel machine using the IEEE arithmetic for the oating
point number and being programmed in MIMD (Multiple Instruction Multiple
Data) mode. Then a program may be considered as a set of sequential processes
allocated on the di�erent processors of the computer and interacting together
by message passing.

To create the numerical validation tool, we have proceeded in the following
way : each sequential process uses the sequential CADNA library to locally val-
idate its computations and exchanges by message passing variables of standard
type or of stochastic type (to estimate the round-o� error).

For the communications between the processors, the message passing library
PVM (Parallel Virtual Machine) was chosen for several reasons. First, the con-
cept of Virtual Machine is available on a large number of parallel computers and
allows to create easily a parallel virtual machine from a network of sequential
and heterogeneous machines. Secondly PVM has been welcome by the scienti�c
community working on parallel computation. Finally it is a freeware software of
easy access.

This section is made up of four paragraphs. First, we recall the principle of
the foundation of PVM. Then, the di�erent problems encountered to use FOR-
TRAN 90, CADNA and PVM in a same program and the proposed solution
are described. Starting with an example of a parallel program (multiplication
of two matrices), we explain the modi�cations we have to perform on a FOR-
TRAN source �le to use CADNA library. Finally, the performance obtained on
a Connection Machine 5 are presented and commented.

4.1 Presentation de PVM

P.V.M. (Parallel Virtual Machine) [Geist and al. 93] has been developed by the
Heterogeneous Network Project which embodies research from the Oak Ridge
National Laboratory and the universities of Tennessee and of Emory. The aim
of this project was to do parallel computations on networks of heterogeneous
machines which have di�erent architectures and di�erent representations for
oating point numbers.

To interconnect machines, which may be of sequential, parallel or vectorial
type, PVM is able to use di�erent types of networks (Ethernet, FDDI, Token
Ring, ...). Despite the global view of the computer and of the network, PVM
allows the di�erent processes to take the best advantage of the performance of
the target machines.

To develop an application, the programmer may use of the C language, the
FORTRAN 77 language and a message passing library of high level (synchronous
and asynchronous sending and receiving, synchronisation of processes, broadcast

458

of message passing, and concentration and di�usion of values (reduce)). For each
message, the user's interface imposes to describe the data type that may be
converted in another format for the target machine. This functionalities allow
to exchange data between computers with very di�erent architectures.

To create his own virtual machine, the user lists into a �le, which is read in
the initial phasis of PVM, the accessible machines on the network. Three modes
of allocation are available to place the processes on the processors :

1. the transparent mode : each task is automatically located at the most ap-
propriate site.

2. the architecture-dependent mode : the user may indicate the speci�c archi-
tecture on which particular tasks must be executed.

3. the machine-speci�c mode : a particular machine may be speci�ed

4.2 Extension of PVM

The extensions brought to on PVM have their origin in the use of FORTRAN
90 and the creation of new types in CADNA. We begin by making a demon-
stration model of feasibility modifying only the main functions of PVM. The
�rst di�culty we have found is due to the interface between FORTRAN 90 and
PVM. For example, the subroutines PVMFPACK(type, data,) and PVM-
FUNPACK(type, data,) respectively allow to gather the data before sending
them or to recover them after receiving them. They use 5 parameters including
a pointer on the data and a constant that indicates their type. This technique
works very well in FORTRAN 77 and in C because there is no type veri�cation
for the parameter of the subroutine and the functions. When these subroutines
are used in a same program written in FORTRAN 90 to send or to recover data
of di�erent types, the compiler generates errors because it detects variables of
di�erent types for the second parameter. So it is necessary to overload PVMF-
PACK and PVMFUNPACK which leads to write as many subroutines (hidden
type in the user's interface) as there are potential types. The problem is the
same for the subroutine PVMFSEND (creation and sending of a message with
one instruction) and PVMFRECV (receipt and recovering of data with one in-
struction). The subroutine PVMFREDUCE (concentration and di�usion) has
not still been adapted for the new type of CADNA because it needs a develop-
ment too important in the scope of a demonstration model of feasibility.

The second di�culty consists in integrating the new stochastic types SIN-
GLE ST , DOUBLE ST, COMPLEX ST, de�ned by CADNA in order to pre-
serve the PVM principle of typed data. We must add the stochastic types to the
intrisic types (BYTES, INTEGER2, INTEGER4, REAL4, REAL8, COMPLEX)
prede�ned and used by PVMFPACK and PVMFUNPACK.

4.3 Di�erence of programmming

To explain in detail how the validation software for parallel computations works,
we present an example of matrix multiplication intentionally simple and not op-
timized not to complicate the problem. The program realizes the multiplication
on a computer using 4 processors in the following way : a process namedmaster
reads 2 matrices a and b. The matrix b is divided into four equal parts. The

459

master processor sends to the four slave processors the matrix a and one quar-
ter of the elements of b. Each one executes the multiplication between the matrix
a and its part of b and sends back its result to the process master that builds
the matrix solution. The program is written in FORTRAN.

Figure (1) presents in the left column the most interesting part of the source
program of the process slave without using CADNA and in the right column
the same source with the necessary modi�cations to use CADNA in bold-face.
The printing subroutine of the matrix is not detailed. It is necessary to know
that CADNA proposes a function str(var) that takes a stochastic variable in
parameter and, associated with a print or a write instruction, only displays the
exact signi�cant digits. If the value is no signi�cant, @0 is displayed.

One may note that it is not necessary to do a lot of modi�cations on the
original program to validate the numerical computation.

4.4 Results

To measure the performance of our model, two sequential versions and two par-
allel versions (each one with and without CADNA) have been written and run.
The run times have been measured on a Connection Machine 5 (CM5) manufac-
tured by the society Thinking Machine Corporation on full squared matrices of
size 100x100, 200x200, 300x300 and are reported on table (1). For the measure
of the run time only 4 processors (or nodes) have been used on a partition of
32. The vector unit associated to each node have been inhibited because it is
impossible to change his working mode and therefore to modify their arithmetic.
In the sequential versions, the run times represent only the run time of the ma-
trix product subroutine. In the parallel versions, the run times are measured on
the master processor. It includes the sending of the matrix a and b to the slave
processors, the run time of the slave processors, the receipt of the partial matrix
and the rebuilding of solution matrix.

Matrix Sequential time Sequential time Parallel time parallel time
without CADNA with CADNA without CADNA with CADNA

100x100 4.46 16.10 2.26 6.50
200x200 38.20 134.00 14.63 45.23
300x300 153.20 483.00 51.00 147.00

Table 1: Computing time obtained on CM5 using one node for the sequential version
and four nodes for the parallel versions.

To estimate the overhead generated by using CADNA, the sequential and
parallel times obtained with CADNA are divided by the times obtained in the
same conditions but without CADNA (see table (2)). CADNA induces a cost in
time near a factor 3 which represents the price of the validation of the numerical
results.

To conclude the study of the results, the e�ciency of the parallelization is
calculated. It is de�ned by the following ratio :

460

! mtid : address of the master process !mtid : address of the master process
integer mtid integer mtid
double precicion a(100,100) type (double st) a(100,100)
double precision b(100,25) type (double st) b(100,25)

! inititialisation of the CADNA librairy
call cadna init(0)

! receipt of a and b ! receipt of a and b
call pvmfrecv (mtid,msgtype,info) call pvmfrecv (mtid,msgtype,info)
call pvmfunpack(REAL8,a,10000,1,info) call pvmfunpack(DOUBLEST,a,10000,1,info)
call pvmfunpack(REAL8,b,2500,1,info) call pvmfunpack(DOUBLEST,b,2500,1,info)

call pvmfunpack(REAL8,b,2500,1,info) call pvmfunpack(DOUBLEST,b,2500,1,info)

! r = a * b ! r = a * b
call ProdMat(a,100,100,b,100,25,r,rlig,rcol) call ProdMat(a,100,100,b,100,25,r,rlig,rcol)

! sending to the master of the result r ! sending to the master of the result r
call pvm�nitsend(PVMDEFAULT, info) call pvm�nitsend(PVMDEFAULT, info)
call pvmfpack(REAL8,r,rlig*rcol,1,info) call pvmfpack(DOUBLEST,r,rlig*rcol,1,info)
call pvmfsend(mtid,msgtype) call pvmfsend(mtid,msgtype)
end end

Subroutine ProdMat(A,alig,acol,B, Subroutine ProdMat(A,alig,acol,B,
blig,bcol,MatP,rlig,rcol) blig,bcol,MatP,rlig,rcol)

implicit none implicit none
integer i,j,k,alig,acol,blig, integer i,j,k,alig,acol,blig,

bcol,rlig,rcol bcol,rlig,rcol
double precision A(alig,acol), type (double st) A(alig,acol),

B(blig,bcol),MatP(alig,bcol) B(blig,bcol),MatP(alig,bcol)
rlig = alig rlig = alig
rcol = bcol rcol = bcol
do i=1,alig do i=1,alig

do j=1,bcol do j=1,bcol
MatP(i,j)=0.D0 MatP(i,j)=0.D0

do k=1,acol do k=1,acol
MatP(i,j)=MatP(i,j)+A(i,k)*B(k,j) MatP(i,j)=MatP(i,j)+A(i,k)*B(k,j)

end do end do
end do end do

end do end do
return return
end end

Figure 1: Source of the slave program. Left column : standard version using PVM, right
column : version using PVM and CADNA.

461

Matrix Ratio of times with and without CADNA
for the sequential program for the parallel program

100x100 3.61 2.87
200x200 3.50 3.09
300x300 3.15 2.88

Table 2: Overhead due to the use of CADNA

eff =
TpsSeq

NbProc:TpsPara

with :

eff : e�ciency of the parallelism,
NbProc : number of processors,
TpsPara: run time of the parallel program,
TpsSeq : run time of the sequential program.

Matrice e�ciency without CADNA e�ciency with CADNA
100x100 49.33 61.92
200x200 65.18 74.06
300x300 75.10 82.14

Table 3: e�ciency of the parallel program

The e�ciency of 100 % is obtained only in the case where all the processors
are independent and do not exchange any data. Table (3) presents the obtained
result on the matrix multiplication. Two behaviours must be noticed.

First, the e�ciency is less for the small size matrix. When the message is
short, the time of initialization of a communication between two processes be-
comes more predominant. It would be better to send large size messages.

Secondly, with an equivalent matrix size, the e�ciency is superior when
CADNA is used. This increase is simple to explain : the ratio computation

exchange
is

more important.

5 Parallelization of the CESTAC method

The previous system (CADNA + PVM) validates the result of a parallel program
without modifying the architecture used. Here we present a prototype of direct
parallelization of the CESTAC method which brings about an increase of the
processors number.

462

5.1 Extraction of the parallelism of CESTAC

Let us consider an algebraic procedure PA composed of a �nite sequence of
arithmetical operations. Practically, the CESTAC method consists in executing
N (N = 2 ou 3) copies of the program of the procedure PA with the random
arithmetic in order to be able to estimate the accuracy of all intermediate or �nal
computed results. The N copies constitute N independent tasks of computation.
At the time of their execution, it is necessary to know the accuracy of the inter-
mediate computed result in order to carry out certain operations (conditional
splitting, division). Then, the tasks communicate their results to a control task
that returns the mean of the N representative values with the number of exact
signi�cant digits.

The implementation of the CESTAC method on a sequential machine mul-
tiplies the run time of a program by a factor depending in the average on the
number of image programs. These programs being independent, their implemen-
tation on a parallel machine should allow to decrease the run time. Figure (2)
presents the scheduling of the tasks in the CESTAC method. A prototype of
feasibility named RAPP (Random Arithmetic Parallel Prototype) has been de-
veloped on a distributed and recon�gurable machine based on transputers with
the OCCAM2 language of INMOS [OCCAM 88].

1 2 3

 T1 T2 T3

monitor

copy 1 of the

 program

copy 2 of the

 program program

copy 3 of the

Estimation
of the

accuracy

Sequential

Parallel

Figure 2: Elementary module of computation for the random arithmetic

5.2 Presentation of RAPP

In the scope of RAPP, we have chosen to use three tasks of computation Ti (i =
1; 2; 3) (image program of PA). The Ti are allocated to the processors 1,2 and 3

463

(see �gure (2)) and are run in parallel. The task of accuracy estimation is allo-
cated to a monitor processor which is also used for the communication between
the host processor and the rest of the network.

The divisions and the conditionnal splitting synchronize automatically the
tasks Ti at the moment of the accuracy estimation. When a division occurs, the
values of the denominator are sent to the monitor processor and the trace of a
possible unstability is generated into a �le and may be consulted after the end of
the computation. In the same way, for a conditionnal splitting, a precision control
is carried out before the comparison of two variables. The precision estimation
is possible for all the other results, but it is not automatically done to preserve
the performance of the prototype.

5.3 Communication between the nodes of the RAPP network

The language OCCAM2 gives the possibility to de�ne new protocols of commu-
nication between nodes of a network in order to adapt the communication to the
type of exchanged data.

The RAPP prototype uses 3 communication protocols to gain in performance
and to preserve for the programmer the standard Input/Output, the system call
that work according to the standard protocol SP.

The �rst prototype allows the communications of the tasks Ti(i = 1; 2; 3)
towards the task of precision estimation and limits the communication to a
table of real numbers coded on 64 bits. The number of elements of this table is
variable.

The second protocol allows the task of precision estimation to send back to
the task Ti the response to the precision request. A table of real numbers coded
on 64 bits and a table of integer numbers form the response. The two tables are
of variable size.

Finally, the protocol of standard communication SP is used by the tasks 1,2
and 3 so that every communication (input/output, system call, ...) with the
host processor should still be possible for the programmer. It is then necessary
to introduce two new processors mux1 and mux2 (see �gure (3)) which are only
used for the multiplexing of the communication channel. In the case of a parallel
program, the addition of these processors concern only the processor directly
linked to the host processors.

On �gure (3) the processors P1, P2, P3 andmonitor realize the computation
of RAPP. The processors mux1, mux2 and aux are used to solve the problem
due to the little number of communication channels of the transputer.

5.4 Application to a sequential program

Let us consider a computer program P giving a single result r and that is exe-
cuted with the computer's classical arithmetic. For the program to be run with
RAPP, it is su�cient :

{ to perturb every arithmetic operation and every assignment. (for example
to replace x := y + z by x := p(y + z), p being a perturbation function of
the tool box of RAPP);

{ to use a speci�c output that takes into account the signi�cant digits of the
result r;

464

aux

mux1

mux2

P1

P2

P3

moni-

host

tor

Figure 3: RAPP network for a sequential program

{ to add at the beginning of the program P the statement of declaration of
the communication channel with the task of precision estimation.

The RAPP user elaborates only a single program but in the reality three
identical programs are executed on the RAPP nodes.

By analogy with the synchronous programmation on sequential architectures
of the CESTAC method (imbedding in RI N), the RAPP prototype de�nes a struc-
ture. The elements of this structure are distribued on di�erent processors.

To test the performance of RAPP on a sequential program, we considered the
example of two square matrices multiplication presented in the previous section.
Table (4) shows the results obtained on a machine based on transputer T800.

RAPP use 3 processors for the execution of the image programs and a pro-
cessor for the precision estimation. So it should be normal to obtain a time ratio
with and without near of 1. Therefore according to table (4), this ratio is con-
tained between 4.5 and 5. This increase is principally due to the perturbation of
the elementary operation in the image program. Table (5) shows the cost of the
perturbation in relation to the arithmetic function.

465

Matrix Sequential time Sequential time time ratio
without RAPP (in sec.) with RAPP (in sec) with and without RAPP

40x40 3.81 19.00 5.09
80x80 30.21 142.00 4.70
100x100 58.81 270.46 4.60
160x160 240.14 1074.75 4.48
200x200 468.37 2091.00 4.46

Table 4: Run time obtained on transputers T800.

operation Cost of the operation Cost of the operation time
arithmetic without perturbation (�sec) with perturbation (�sec) ratio
addition 20.30 111.15 5.47

substraction 21.30 105.96 4.97
multiplication 30.59 120.07 3.92

division 35.23 124.7 3.53

Table 5: Perturbation cost in relation to the arithmetic operations

Let us recall that this work deals with a study of feasability. With an opti-
mized perturbation (as in CADNA), we may hope that the time ratio whould
be in the order of 1.5.

5.5 Application to a parallel program

Let us consider a computer program P composed of k sequential tasks Ti running
in parallel on k processors Proci. The application of RAPP to the program P
consists in replacing each k processors by a subnetwork of �gure (2). Thus, each
task Ti is replaced with three images plus a task of precision estimation. The
interconnection of all the tasks is done in the following way : In the program
P, if a task Ti communicates with a task Tj then, in the program working with
RAPP, the image tasks Ti;1, Ti;2,Ti;3 communicate respectively with the tasks
Tj;1, Tj;2,Tj;3 (see �gure (4)).

Here again, we shall use the previous example of matrix multiplication with
the same structure of parallel program (see table (6)).

The increase of time that RAPP generates in the case of a parallel program is
less important than in the case of a sequential program because RAPP increases
only the time corresponding to the computation and not the time corresponding
to the communication of the classical parallel program (i.e. without RAPP).

466

Matrix Parallel time Parallel time Parallel time ratio
without RAPP (in s.) with RAPP(in s.) without RAPP and with RAPP

40x40 1.43 5.50 3.85
80x80 11.07 37.98 3.43
100x100 21.45 71.77 3.35
160x160 86.89 278.46 3.20
200x200 169.08 540.62 3.20

Table 6: Run time obtained on transputers T800.

T13

T12

T11

T21 T22 T23

T31

T02 T03T01

MT0

MT1 MT3

MT2

T33

T32

aux

host

Figure 4: Application of RAPP to the parallel program P . MTi(i = 1::4) : processors
monitor

467

6 Conclusion

This work has shown that it is now possible to study the round-o� errors propa-
gation on results provided by sequential or parallel codes written in FORTRAN
77. It is easily done using the CADNA software on sequential architectures and
on parallel architectures if the message passing library PVM is used. It was very
important to show the feasibility of estimating the accuracy on parallel architec-
tures which play an important role in the scienti�c computers today. We have
seen that the solution CADNA + PVM is very simple and does not modify
the number of processors required for running the initial parallel program. But
the run time is multiplied in the same way than with the use of CADNA on
sequential architecture.

The CESTAC method seems to be well-suited to a direct parallelization. The
problem was to �nd out if the cost of message passing between processors (an
absolute necessity) was not too important compared to the running time. The
study of the RAPP prototype has shown that it is very satisfactory. Such an
approach has a strong future, but there is not a useful FORTRAN tool yet.

We did not mention the numerical validation on vectorial architectures which
are very often combined with the parallel architectures. The solution with CADNA
or RAPP cut o� the vectorisation and the problem is still open.

Aknowledgements : This work has been supported by the teamArithm�e-
tique et pr�ecision of the pool PRC-PRS of the CNRS and by the Centre National
de Calcul Parall�ele en Sciences de la Terre. (CNCPST)

References

[Chesneaux 90] J.-M. Chesneaux, J.-M. : \Study of the computing accuracy by using
probabilistic approach"; Contribution to Computer Arithmetic and Self-Validating
Numerical Methods, ed. C. Ulrich, (J.C. Baltzer) (1990), 19-30.

[Chesneaux 92] Chesneaux, J.-M. : \Descriptif d'utilisation du logiciel CADNA F";
MASI Report, no 92-32 (1992).

[Chesneaux 95] Chesneaux, J.-M. : \L'arithm�etique stochastique et le logiciel
CADNA"; Habilitation �a diriger des recherches, to appear.

[Hamming 70] R.W. Hamming, R. W. : \On the distribution of numbers"; The Bell
System Technical Journal (1970), 1609-1625.

[Hull and Swenson 66] Hull, T.E., Swenson, J. R. : \Test of probabilistic models for
propagation of round-o� errors"; Communication of A.C.M., vol.9, no 2 (1966),
108-113.

[Vignes 90] Vignes, J. : \Estimation de la pr�ecision des r�esultats de logiciels nu m�e ri
ques"; La Vie des Sciences, Comptes Rendus, s�erie g�en�erale, 7 (1990), 93-145.

[Vignes 93] Vignes, J. : \A stochastic arithmetic for reliable scienti�c computation";
Math. Comp. Simul., 35 (1993), 233-261.

[Vignes and La Porte 74] Vignes, J., La Porte, M. : \Error analysis in computing";
Information Processing 74, North-Holland (1974).

[Geist and al. 93] Geist, G. A. and al. : \PVM 3 User's Guide and Reference Manual";
ORNL (Oak Ridge National Laboratory), TM-12187 May (1993)

[OCCAM 88] \OCCAM 2 Reference Manual"; Prentice Hall, International Series in
Computer Sciences (1988).

468

