
Conditional Tabled Eco-Grammar Systems

versus (E)T0L Systems1

Erzsebet CSUHAJ-VARJU
Computer and Automation Institute of the Hungarian Academy of Sciences

Kende u. 13 { 19, 1111 Budapest, Hungary

Gheorghe P�AUN
Institute of Mathematics of the Romanian Academy of Sciences

PO Box 1{764, 70700 Bucure�sti, Romania

Arto SALOMAA
Academy of Finland and University of Turku, Department of Mathematics

20500 Turku, Finland

Abstract.We investigate the generative capacity of the so-called condi-
tional tabled eco-grammar systems (CTEG). They are a variant of eco-
grammar systems, generative mechanisms recently introduced as mod-
els of the interplay between environment and agents in eco-systems. In
particular, we compare the power of CTEG systems with that of pro-
grammed and of random context T0L systems and with that of ET0L
systems. CTEG systems with one agent only (and without extended
symbols) are found to be surprisingly powerful (they can generate non-
ET0L languages). Representation theorems for ET0L and for recursively
enumerable languages in terms of CTEG languages are also presented.

C.R. CATEGORIES: F4.2 [Mathematical Logic and Formal Languages]: Gram-
mars and other Rewriting Systems: Grammar types, F4.3 [Mathematical Logic
and Formal Languages]: Formal Languages

KEY WORDS: Grammar systems, L systems, Arti�cial Life

1. Introduction

According to [8], one of the most important classes of models already de-
veloped in Theoretical Computer Science and useful for Arti�cial Life are the
L systems. The same author emphasizes the fact that of particular interest for
Arti�cial Life is the pattern of life, the structure of living organisms and sys-
tems, the cooperation between parts of such systems. As an attempt to model
such a cooperation at the level of an eco-system, starting with the basic rela-
tionship between environment and agents living/acting in/on that environment,

1 Research supported by the Academy of Finland, Project 11281

Journal of Universal Computer Science, vol. 1, no. 5 (1995), 252-268
submitted: 8/2/95, accepted: 11/5/95, appeared: 28/5/95, Springer Pub. Co.

252

the notion of eco-grammar system has been introduced in [3] (presented �rst in
[4]). Basically, it is a variant of grammar systems, integrating features both of
cooperating distributed grammar systems and of parallel cooperating grammar
systems { see [2] for details about grammar systems theory. In short, several
agents, described by 0L systems, and an environment, also described by a 0L
system, interact as follows: The evolution of agents (the rules used at a given
step) depends on the string describing the environment. The agents have also
associated some pure rewriting rules, by which they act, locally (one rule only is
used in every time unit), on the environment. The action depends on the state
of the agent in the current time unit. Schematically, one obtains the picture in
�gure 1.

P1 P2 : : : Pn
evolution
rules

parallel
rewriting

w1 w2
: : :

wn

description

R1 R2
: : : Rn

action
rules

sequential
rewriting

wE
description

PE evolution
rules

parallel
rewriting

-
'1 -

'2 -
'n

?? ?? ??

?

 1

?

 2

?

 n

? ? ?

6666 66

�
�
�
�
�
��3

���
���

���
���

���
���

�:

Q
Q
Q

Q
Q

QQk

��
��
��
��
��*

XXX
XXX

XXX
XXX

XXX
XXX

Xy

HH
HH

HH
HH

HHY

A

G

E

N

T

S

E
N
V
I
R
O
N
M
E
N
T

Fig. 1

At every moment, the system is described by a con�guration, an (n+1)-tuple
of strings, (wE ; w1; : : : ; wn), describing the environment and the agents. Start-
ing from an initial con�guration, sequences of con�gurations will be obtained,
describing the evolution of the system. Collecting only the strings wE , we can as-
sociate a language to such a system, the set of environment descriptions. In this
way, an eco-grammar system can be viewed as a generative mechanism. Results
about the power of such systems can be found in [3], [4], as well as in several

253

contributions to [11]. In one of these contributions to [11], we have considered a
variant of eco-grammar systems, both with practical and theoretical motivation,
[5].

On the one hand, the model in [3], [4] assumes that the environment evolves
independently of the agents. This does not cover such cases as those when the
agents are strongly polluting sources, volcanos, damaged nuclear power plants
and so on. Such powerful agents act no longer locally. On the other hand, the
model in [3], [4] contains the selection mappings which are only assumed to be
computable. It is just natural to consider simpli�ed versions, with particular
mappings specifying the active evolution rules in any given time unit.

Following these requests, in the model considered in [5] under the name of
conditional tabled eco-grammar systems (CTEG systems), we have removed the
local action of agents on the environment, but we have introduced a dependence
of the environment evolution on the states of agents. More precisely, this de-
pendence is given by condition strings { permitting and forbidding: a prescribed
string must be present, another one must be not, in order to can apply a given
subset of the set of 0L rules (hence a table). We have started the study of the
power of such systems in [5], without going into too many details. For instance,
we have proved that for certain cases (only permitting condition strings, which
must appear as scattered or as permuted scattered subwords of the current
strings) CTEG systems with n agents can be simulated by systems with one
agent only.

We shall continue here the study of CTEG systems, comparing them with
their natural counterparts in L systems theory: regulated T0L systems and ET0L
systems. We again �nd that systems with one agent only are surprisingly pow-
erful (non-ET0L languages can be generated, even with permitting contexts of
length one or with forbidding contexts of length two).

2. L systems prerequisites

As usual, we denote by V � the free monoid generated by an alphabet V ; �
is the empty string, jxj is the length of x 2 V �, jxja is the number of occur-
rences of the symbol a in the string x, 	V (x) = (jxja1 ; : : : ; jxjan) is the Parikh
vector associated to x 2 V �, for V = fa1; : : : ; ang. The families of �nite, reg-
ular, context-free, context-sensitive, and recursively enumerable languages are
denoted by FIN;REG;CF;CS; RE, respectively. Basic elements of formal lan-
guage theory which we use here can be found in [13].

A 0L system is a triple G = (V;w; P), where V is an alphabet, w 2 V �

and P is a �nite set of context-free rewriting rules over V such that for each
a 2 V there is a rule a ! x in P (we say that P is complete). For z1; z2 2 V �

we write z1 =) z2 (with respect to G; if necessary, we specify this by =)G)
if z1 = a1a2 : : :ar ; z2 = x1x2 : : :xr, for ai ! xi 2 P; 1 � i � r. The language
generated by G is L(G) = fz 2 V � j w =)� zg, where =)� is the re
exive and
transitive closure of =).

An E0L (extended 0L) system is a quadruple G = (V; T; w; P), where G0 =
(V;w; P) is a 0L system and T � V . The language generated by G is de�ned by
L(G) = L(G0) \ T �.

A T0L (tabled 0L) system is a construct G = (V;w; P1; : : : ; Pn); n � 1, where
each Gi = (V;w; Pi); 1 � i � n; is a 0L system. The generated language is

254

L(G) = fz 2 V � j w =)Gi1
w1 =)Gi2

: : : =)Gim
wm = z; m � 1; 1 � ij �

n; 1 � j � mg [fwg:
An ET0L (extended T0L) system is a construct G = (V; T; w; P1; : : : ; Pn); n �

1, where G0 = (V;w; P1; : : : ; Pn) is a T0L system and T � V . We de�ne L(G) =
L(G0) \ T �.

The families of languages generated by 0L, E0L, T0L and ET0L systems are
denoted by 0L;E0L; T0L;ET0L, respectively.

Pairs of the form (V; P) (0L systems without axiom) are called 0L schemes
and (n+ 1)-tuples (V; P1; : : : ; Pn) (T0L systems without axiom) are called T0L
schemes.

The following relations are known (see, for instance, [10], [12]):

1. 0L � T0L � ET0L; 0L � E0L � ET0L;
2. CF � E0L;
3. T0L is incomparable with each of the families FIN;REG;CF;E0L; 0L is

incomparable with FIN;REG;CF:

Following the model of regulated context-free grammars, regulated T0L sys-
tems were considered (we refer to [6] for details). Because the family of languages
generated by matrix T0L systems is (strictly) included in the family of languages
generated by programmed T0L systems, which, in turn, is incomparable with the
family of languages generated by random context T0L systems (Theorem 8.4 in
[6]), we present only these latter classes.

A programmed T0L system is a construct G = (V;w; (b1 : P1; E1); : : : ; (bn :
Pn; En)), where G

0 = (V;w; P1; : : : ; Pn) is a T0L system, b1; : : : ; bn are labels
associated to tables and Ei � Lab; 1 � i � n; for Lab = fb1; : : : ; bng. For
(bi; x); (bj; y) 2 Lab � V � we write (bi; x) =) (bj ; y) if x =) y using the table
Pi and bj 2 Ei (after using the table Pi, with the label bi, we use a table with
the label in the set Ei). The language generated by G is L(G) = fx 2 V � j
(bi0 ; w) =) (bi1 ; w1) =) : : : =) (bim ; wm) = (bim ; x); m � 0; bi0 2 Lab; bij 2
Eij�1 ; 1 � i � mg:

The family of such languages is denoted by (P)T0L. (The letter P is parenthe-
sized in order to avoid confusion with the family of propagating T0L languages.)

A random context T0L system is a construct G = (V;w; (Q1 : P1); : : : ; (Qn :
Pn)), where G0 = (V;w; P1; : : : ; Pn) is a T0L system and Qi � V; 1 � i � n. A
table Pi can be applied to a string x 2 V � only when jxja > 0 for all a 2 Qi.

The family of languages generated in this way is denoted by (RC)T0L.
Note that in neither case we have appearance checking features, that is forbid-

ding contexts in random context T0L systems and failure �elds in programmed
T0L systems.

When the above regulating mechanisms are added to ET0L systems we de-
note by E(P)T0L;E(RC)T0L the corresponding families.

Proofs of the following results can be found in [6] (Theorems 8.3, 8.4):

1. T0L � (P)T0L � ET0L; T0L � (RC)T0L;
2. ET0L = E(P)T0L � E(RC)T0L;
3. (P)T0L and (RC)T0L are incomparable and the same is true for ET0L and

(RC)T0L.

3. The new class of eco-grammar systems

255

First, a preliminary de�nition.

De�nition 1. A conditional T0L scheme with k-ary context conditions, k �
1, is a construct

G = (V; (c1; d1 : P1); : : : ; (cn; dn : Pn));

where V is an alphabet, P1; : : : ; Pn are (complete) tables of 0L rules over V , and
ci = (ci1; : : : ; cik); di = (di1; : : : ; dik); 1 � i � n, with cij; dij 2 V � for all i; j.

Informally speaking, ci is used as a permitting condition parameter and di
as a forbidding condition parameter, the table Pi being used only when certain
predicate is true for ci and certain predicate is not true for di. The predicates
we consider here will be of the following types:

De�nition 2. Given an alphabet V , we de�ne the following three predicates
over V � � V �:

Pb(x; y) = 1 iff y = y1xy2;

Ps(x; y) = 1 iff y = y1x1y2x2 : : : yrxryr+1;

x = x1x2 : : :xr; xi; yi 2 V
� for all i;

Pp(x; y) = 1 iff 	V (x) � 	V (y); componentwise:

Therefore, Pb(x; y) is true when x is a subword of y (a block of it), Ps(x; y) is
true when x is a scattered subword of y and Pp(x; y) is true when a permutation
of x is a scattered subword of y.

Using such predicates we can de�ne the derivation relation in a conditional
T0L scheme. This corresponds to random context T0L systems, but here the
context are given by words, not by symbols.

De�nition 3. A conditional tabled eco-grammar (CTEG, for short) system
of degree n; n � 1, is a construct

� = (E;A1; : : : ; An);

where

(i) E = (VE ; (c1; d1 : P1); : : : ; (cm; dm : Pm)) is a conditional T0L scheme with
n-ary context conditions, ci; di 2 V

�

1 � : : :� V
�

n ; 1 � i � m;
(ii) Ai = (Vi; (ei1; fi1 : Pi1); : : : ; (eiri ; firi : Piri)); 1 � i � n, is a conditional

T0L scheme with 1-ary context conditions, eij ; fij 2 V �E for all i; j.

The component E corresponds to the environment and Ai; 1 � i � n; corre-
spond to the agents.

Therefore, the evolution of the environment (the table to be used) depends
on the states of the n agents, whereas the evolution of each agent depends on
the state of the environment, in the sense speci�ed by the context condition
strings ci; di (in case of the environment) and eij; fij (in case of the agents) via
predicates as in De�nition 2. We shall specify this in a formal way below. One
can see that we have a system with the structure as represented in �gure 2.

256

PE

PnP2P1

?

?? ??

?

??

?

?

??

- - -
'1 '2 'n: : :

wnw2w1

�

wE

Fig. 2

De�nition 4. For a CTEG system as above, a con�guration is an (n + 1)-
tuple

� = (wE ; w1; : : : ; wn);

with wE 2 V �E ; wi 2 V �i ; 1 � i � n:

De�nition 5. For a CTEG system � as above, � 2 fb; s; pg, and two con-
�gurations � = (wE ; w1; : : : ; wn); �0 = (w0E ; w

0

1; : : : ; w
0

n), we write � =)� �0 if
and only if:

(1) There is a table (cj ; dj : Pj) in E such that P�(cji; wi) = 1; P�(dji; wi) = 0,
for all 1 � i � n, and wE =)Pj w

0

E.
(2) Every Ai; 1 � i � n, has a table (eij ; fij : Pij); 1 � j � ri, such that

P�(eij; wE) = 1; P�(fij ; wE) = 0; and wi =)Pij w
0

i.

As usual, we denote by =)�

� the re
exive and transitive closure of =)�,
� 2 fb; s; pg:

The environmental language associated to a system � working in the mode
�, when starting from a con�guration �0, is de�ned by

L�(�; �0) = fwE j �0 =)
�

� � = (wE ; w1; : : : ; wn)g:

We denote by CTEGn(i; j;�); n � 1; i; j � 0; � 2 fb; s; pg; the family of
languages L�(�; �0), where � is a system of degree at most n, with permitting
contexts of length at most i and with forbidding contexts of length at most j.
When the number of agents, the length of permitting or of forbidding contexts
is not bounded, then we replace the corresponding parameter with 1.

If in a CTEG system as above we ignore all permitting contexts (for instance,
we replace all of them by � { note that P�(�; y) = 1 for all y and �), then we

257

speak about forbidding CTEG systems. The corresponding family of languages is
denoted by CTEGn(0; j;�). Symmetrically, if we ignore the forbidding contexts
(for instance, we add a new symbol, c, to all alphabets and replace all forbid-
ding contexts by c, which never appears in the con�guration components), then
we speak about permitting CTEG systems. The associated family of languages
is denoted by CTEGn(i; 0;�). For brevity, we write ; instead of the ignored
permitting or forbidding contexts.

A possible generalization is to consider multiple contexts, several permitting
and forbidding string contexts. We shall not investigate such a variant here.

It is easy to see that all the introduced above variants of CTEG systems are
eco-grammar systems with regular selection of evolution rules, in the sense of
[3], [4]: we say that a mapping � : V � �! 2P , where V is an alphabet and P is a
set of rewriting rules, is regular when ��1(R) is a regular set for all R � P . Here
we deal with tables Pi, and �

�1(Pi) = fw 2 V � j P�(c; w) = 1; P�(d;w) = 0g for
(c; d : Pi) a table. Clearly, such languages ��1(Pi) are regular.

4. Relationships with regulated T0L systems

The following relations directly follow from de�nitions:

Lemma 1.

(i) CTEGn(i; j;�) � CTEGm(i0; j0;�); for all � 2 fb; s; pg, for n � m and
i � i0; j � j0.

(ii) CTEGn(i; j; b) = CTEGn(i; j; s) = CTEGn(i; j; p), for n � 1; i; j 2 f0; 1g.
(iii) CTEG1(0; 0;�) = CTEG1(0; 0;�) = T0L; � 2 fb; s; pg:

In view of point (ii) above, when i; j 2 f0; 1g the speci�cation of � is useless,
hence we shall write simply CTEGn(i; j) instead of CTEGn(i; j;�).

The following results are proved in [5].

Lemma 2. CTEGn(1; 0;�) = CTEG1(1; 0;�); n� 1, for � 2 fs; pg.

(Therefore, in the case of permitting contexts only, checked in the scattered
or in the permuted scattered way, the hierarchy induced by the number of agents
collapses to one family.)

Lemma 3. The languages fa2; a3g; fa2; b3g do not belong to CTEG1(1;1;�);
� 2 fb; s; pg.

Combining this with the relation (iii) in Lemma 1, we get the fact that each
CTEGn(i; j;�), for all possible values of i; j; �, is incomparable with each family
F such that FIN � F � CF (a similar assertion holds true for the family T0L).
However,

Lemma 4. For any �nite language L and any symbol a, the language fag[L
belongs to both families CTEG1(1; 0); CTEG1(0; 1).

In order to have an estimation of the size of familiesCTEGn(i; j;�) it is just
natural to compare them with (P)T0L and (RC)T0L.

Theorem 1. (RC)T0L � CTEG1(1; 0):

258

Proof.Consider a random context T0L system,G = (V;w; (Q1 : P1); : : : ; (Qn :
Pn)), with Qi = fai1; : : : ; aimi

g, where aij 2 V for all 1 � j � mi and
mi � 0; 1 � i � n.

We construct a CTEG system with M =
Pn

i=1mi agents,

� = (E;A1; : : : ; AM);

where
E = (V; (c1; ; : P1); : : : ; (cn; ; : Pn); (cn+1; ; : Pn+1);

with the context conditions ci = (ci1; : : : ; ciM); 1 � i � n, such that

cij = ;; for 1 � j �
i�1X

l=1

ml;

cij = aij; for

i�1X

l=1

ml + 1 � j �
iX

l=1

ml;

cij = ;; for
iX

l=1

ml + 1 � j �M:

(when mi = 0, hence Qi = ;, we have ci = (;; : : : ; ;)), and

Pn+1 = fa! a j a 2 V g;

cn+1 = (d; d; : : : ; d); d occurs M times;

whereas the agents At; 1 � t � M , are de�ned by

At = (faij; d; d
0g; (et1; ; : Pt1); (;; ; : Pt2); 1 � t �M;

Pt1 = fd! aij; aij ! d0; d0 ! d0g; et1 = aij;

Pt2 = faij ! d; d! d; d0 ! d0g;

where 1 � i � n; 1 � j � mi are such that

t =
i�1X

l=1

ml + j:

For �0 = (w; d; d; : : : ; d); where d appears M times, we have

L(G) = L(�; �0):

Indeed, in the presence of the symbol d in agents descriptions (this is the case
also when starting from �0), E can use only tables Pi with Qi = ; and Pn+1,
which changes nothing, whereas the agents use either the tables Pt2 (freely)
or Pt1, providing that the corresponding symbol aij is present in the string of
E. At the next step, E can use either a table Pi with Qi = ; or a table Pi
whose condition Qi, although non-empty, is ful�lled. This corresponds to the
correct application of the table Pi in the sense of the random context T0L
system G. At the same time, all agents will use the tables Pt2, returning their
strings to d, or the tables Pt1. If this table introduces the symbol d0, it will
never be removed, hence the associated table in E will never be applied from

259

that moment. If Pt1 introduces a symbol aij, this again corresponds to ful�lling
the condition imposed by the presence of aij in the string of E. The process
can be iterated. Clearly, every derivation in G can be simulated in this way
in � and, conversely, the evolutions of � correspond to correct derivations in
G generating the string describing the environment. Consequently, we have the
announced equality L(G) = L(�; �0), which proves the inclusion (RC)T0L �
CTEG1(1; 0):

This inclusion is proper. In [6], page 255, it is proved that the language

L = fa2; a4; b4g

is not in (RC)T0L. However, L 2 CTEG1(1; 0), because L = L(�; �0) for
� = (E;A1), with

E = (fa; bg; (c; ; : fa! a2; b! bg); (c0; ; : fa! b; b! bg));

A1 = (fc; c0g; (;; ; : fc! c0; c0 ! c0g));

and �0 = (a2; c). 2

Corollary. CTEG1(1; 0)�ET0L 6= ;:

Proof. The assertion follows from the relation (RC)T0L�ET0L 6= ; pointed
out in Section 2. 2

For the case of programmed T0L systems we obtain a still stronger result.

Theorem 2. (P)T0L � CTEG1(1; 0):

Proof. Take a programmed T0L system G = (V;w; (b1 : P1; E1); : : : ; (bn :
Pn; En)); with Lab = fb1; : : : ; bng, and construct the CTEG system � = (E;A1)
with

E = (V;(b0; ; : fa! a j a 2 V g); (b1; ; : P1); : : : ; (bn; ; : Pn));

A1 = (Lab [fb0; b
0

0g;(;; ; : fb0 ! bi; bi ! bi j 1 � i � ng [fb00 ! b00g);

(;; ; : fbi ! bj j bj 2 Ei [fb
0

0g; 1 � i � ng [

[fb0 ! b00; b
0

0 ! b00g)):

For �0 = (w; b0) we have L(G) = L(�; �0).
At the �rst step, we change nothing in E but we can change b0 either for

some bi; 1 � i � n (using the �rst table of A1), or for b00 (using the second
table). In the latter case the work of � is blocked. This will happen whenever
we introduce b00 and we have to introduce it when Ei = ;; this also corresponds
to a blocked derivation in G (no continuation is possible). In the presence of bi
as description of A1 we can apply the table Pi in E, which corresponds to a
derivation step in G: the next description of A1 will be either a label from Ei,
if Ei 6= ;, or the blocking symbol b00. In conclusion, L(G) = L(�; �0), that is
(P)T0L � CTEG1(1; 0).

In order to prove the strictness of this inclusion, let us consider the (RC)T0L
system

G = (fa; ; b; c; d; e; f; gg; c; (; : P1); (ffg; P2));

P1 = fc! eca; c! fdag;

P2 = fe! f; f ! g; a! abg

260

(the tables contains also all completion rules q ! q for q not appearing in the
left-hand member of a rule speci�ed above).

In [6], page 257, it is proved that the language generated by this system is
not in (P)T0L. According to the proof of Theorem 1, we can construct a CTEG
� equivalent with G and having only one agent (M in the proof mentioned will
be 1). Consequently, L(G) 2 CTEG1(1; 0), which completes the proof. 2

5. Relationships with ET0L languages

The family (P)T0L is strictly included in ET0L. The family CTEG1(1; 0)
not only contains strictly the family (P)T0L, but contains also non-ET0L lan-
guages (which implies again that (P)T0L � CTEG1(1; 0) is a proper inclusion
and gives a stronger form of the result in the corollary of Theorem 1).

Theorem 3. CTEG1(1; 0)� ET0L 6= ;:

Proof. Let us consider the system � = (E;A1) with

E = (fs; a; b; c; d; e; f; g; g0; g00g;

(a; ; : fs! bsg);

(a; ; : fs! bfg);

(b; ; : fb! c; f ! gg);

(c; ; : fc! ac; c! ad; e! ae; g! g0g);

(d; ; : fd! e; g0 ! g00g);

(e; ; : fg00! gg));

and

A1 = (fa; b; c; d; e; fg;

(s; ; : fa! ag);

(s; ; : fa! bg);

(f; ; : fb! cg);

(g; ; : fc! dg);

(d; ; : fd! eg);

(c; ; : fe! c; c! f; d! fg)):

(The completion rules q! q, for q not speci�ed above, are not given.)
Then

L(�; (s; a)) \ (a+e)+g00 = f(ame)ng00 j n � m � 1g;

which is not an ET0L language (use Theorem 2.1 in [12]).
Let us examine the work of �.
Starting from �0 = (s; a), using the �rst two tables of E and of A1, we

generate a con�guration (bnf; b); n � 1. Only one continuation is possible,
(bnf; b) =) (cng; c): Now we have to use the fourth table of E, but for A1

we can use two tables, the fourth and the sixth ones. Using this latter table we
replace c by f and no further step can be taken (no table in E can be used, but
the string of E contains the symbol g0, hence it is not in (a+e)+g00). Thus we are
led to a con�guration of the form ((ah)ng0; d), where h 2 fc; dg. Only one table

261

of E is applicable (asked for by d in the string of A1). The sixth table of A1

blocks again the system by introducing the symbol f . The only other possibility
to continue is by using the table (d; ; : fd! eg) of A1, providing the string of E
contains at least one occurrence of d. We obtain ((ah0)ng00; e), with h0 2 fc; eg.
The only possible continuation is by using the last tables of E and of A1, but
this second table requires the presence of at least one c in the string of E. If the
continuation is not possible, then we already have a string in (a+e)+g00. If we
can continue, then we get ((ah0)ng; c), and such a con�guration, with g present
in the string of E and c present in the string of A1 was already discussed above.
Thus, in the presence of the couple (g; c) we can iterate the process, at most a
number of times equal to the number of occurrences of c in the initial con�g-
uration, that is at most m times. (At every step, at least one c is replaced by
d, then by e, and only in the presence of c in the string of E we can continue
the work of A1). In conclusion, the string generated in the �rst component of
con�gurations, when it is of the form (a+e)+g00, will be of the form (ame)ng00,
with m � n, which completes the proof. 2

For the case of CTEG with only forbidding conditions we can obtain a weaker
result: conditions of length two are necessary. This, of course, makes relevant the
mode of checking the conditions.

Theorem 4. CTEG1(0; 2;�)� ET0L 6= ;; � 2 fs; pg.

Proof. Consider the CTEG system � = (E;A1), with

E = (fs; a; b; c; d; e; fg;

(;; b : fs! bsg);

(;; b : fs! bfg);

(;; b : fb! cg);

(;; d : fc! ac; c! ad; e! aeg);

(;; ; : fd! eg));

A1 = (fa; b; c; dg;

(;; f : fa! ag);

(;; s : fa! bcg);

(;; dd : fc! dg);

(;; dd : fd! cg)):

(Each table also contains all completion rules q! q, for symbols q not speci�ed
above.)

Then, for � 2 fs; pg, we have

L�(�; (s; a)) \ (a+e)+f = f(ame)nf j m � n � 1g;

which is not an ET0L language (see [12], Exercise 2.3, page 260, referring to [7]).
As the familyET0L is closed under intersection with regular sets, it follows that
L�(�; (s; a)) =2 ET0L.

Let us examine the work of �, starting from � = (s; a). Because of s, A1

can only use the �rst table; E can use several times its �rst table, hence we get
(bns; a). Eventually, E will use the second table. Assume hence that we have

262

obtained (bnf; a), for some n � 1. Now A1 must use the second table, whereas
the only applicable table of E is also the second one. We obtain (bnf; a) =)�

(cnf; bc). From now on, b remains present in the description of the agent, hence
the only applicable tables of E are the last two; d is not present, hence we have to
perform a step (cnf; bc) =)� ((ag)nf; bd), where g 2 fc; dg: Because d is present
in the description of the agent, the fourth table of E is not applicable. The last
table of E replaces each occurrence of d (if any) by e and leaves all other symbols
unchanged. FromA1 we can use one of the last two tables, but only when at most
one occurrence of d is present in (ag)nf . If we use (;; dd : fc! dg), then nothing
is changed, hence either we use (;; ; : fd! eg) and (;; dd : fd! cg); or we use
(;; ; : fd! eg) and (;; dd : fc! dg) for a number of times (only at the �rst use
changing the con�guration) and eventually we use the �rst mentioned pairs of
tables. Consequently, we eventually get a con�guration of the form ((ah)nf; bc),
with h 2 fc; eg, and at most one h is equal to e. The process can continue,
at every step the number of a occurrences near each symbol h as above being
increased by one and the number of e symbols being increased by at most one.
Consequently, when all symbols c are replaced (by d and then) by e, we get a
string of the form (ame)nf with m � n. 2

Taking into account that FIN � ET0L and FIN � CTEG1(1;1;�) 6=
;; � 2 fb; s; pg (Lemma 3), from the previous two theorems we obtain:

Corollary. ET0L is incomparable with all families CTEG�(i; j;�); n � 1,
with

1) i � 1; j � 0; � 2 fb; s; pg;
2) i � 0; j � 2; � 2 fs; pg:

The question whether CTEG1(0; 2; b)� ET0L is nonempty or not remains
open. The next theorem shows that the answer is negative for systems with
forbidding contexts of length one, hence Theorem 4 cannot be improved from
this point of view.

Theorem 5. CTEG1(0; 1) � ET0L.

Proof. In view of Lemma 3, we have to prove only the inclusion, the strictness
is obvious.

Let � = (E;A1; : : : ; An) be a CTEG system with

E = (VE ; (;; c1 : P1); : : : ; (;; cm : Pm));

Ai = (Vi; (;; ei1 : Pi1); : : : ; (;; eiri : Piri)); 1 � i � n;

with cj = (cj1; : : : ; cjn); cji 2 Vi; 1 � i � n; 1 � j � m, and eij 2 VE ; 1 � i � n;
1 � j � ri.

Without loss of generality, we may assume that the alphabets Vi are pairwise
disjoint and disjoint from VE (we can easily achieve that by a systematic change
of symbols, in tables and conditions).

We construct an ET0L system G as follows.
For every sequence j1; j2; : : : ; jn; j of integers such that 1 � ji � ri; 1 �

i � n, and 1 � j � m, we consider the symbol [j1; : : : ; jn; j] and the set
fe1j1; e2j2 ; : : : ; enjng. Denote by a1; : : : ; ak the distinct symbols of this set (some
symbols eiji might be identical, hence k � n), and construct the tables

P(j1;:::;jn;j) = fa1 ! #; : : : ; ak ! #g [

263

[fcj1 ! #; : : : ; cjn ! #g [

[fX ! [j1; : : : ; jn; j]g [

[f[j01; : : : ; j
0

n; j
0]! # j for all [j01; : : : ; j

0

n; j
0]g;

P 0(j1;:::;jn;j) = P1j1 [P2j2 [: : :[Pnjn [Pj [

[f[j1; : : : ; jn; j]! Xg [

[f[j01; : : : ; j
0

n; j
0]! # j (j01; : : : ; j

0

n; j
0) 6= (j1; : : : ; jn; j)g [

[fX ! #g:

(These tables contain also all completion rules q! q, for q not speci�ed above.)
Denote by P the set of all these tables. Then

G = (V; T; wEw1 : : :wnX;P);

where

T = VE [
n[

i=1

Vi [fXg;

V = T [f#g [f[j1; : : : ; jn; j] j 1 � ji � ri; 1 � i � n; 1 � j � mg;

and (wE ; w1; : : : ; wn) = �0 is a starting con�guration for �. >From the previous
construction, it is easy to see that a derivation in G which does not introduce
the trap-symbol X consists of alternate use of tables P(j1;:::;jn;j) and P

0

(j1;:::;jn;j)
,

which corresponds to simulating the sequences of tables P1j1; P2j2; : : : ; Pnjn; Pj,
hence to a step in the evolution of � (P(j1;:::;jn;j) checks the non-appearance
of the forbidding context both in the agents and in the environment, whereas
P 0(j1;:::;jn;j) e�ectively simulates the sequence of tables in �). Consequently,

L(G) = fw0Ew
0

1 : : :w
0

nX j �0 =)
�

� (w0E ; w
0

1; : : : ; w
0

n)g:

Because ET0L is a full AFL (hence it is closed under erasing morphisms), it
follows that L�(�; �0) = fw0E j w

0

Ew
0

1 : : :w
0

nX 2 L(G)g 2 ET0L. 2

Corollary. CTEGn(0; 1;�) � CTEGn(0; 2;�); n � 1; � 2 fs; pg:

6. Representations in terms of CTEG languages

Based on languages such as those in Lemma 3, in [5] it is proved that the fam-
ilies CTEG1(1;1;�); � 2 fb; s; pg, are not closed under union, concatenation,
�-free morphisms, inverse morphisms, and intersection with regular sets. Using
operations with languages, we can obtain surprising representations of ET0L
languages and even of recursively enumerable languages starting from CTEG
languages.

Theorem 6. For every ET0L language L, there are a language L0 2 CTEG1(1; 0)
(or in CTEG1(0; 1)), a T0L language L00 and a regular language R such that
L = L0 � L00 = L0 \R.

Proof. We know [10], [11] that each ET0L language is the coding (the image
through a length-preserving morphism) of a T0L language. Take L 2 ET0L;L0 2
T0L with L � V �

1 ; L
0 � V �

2 , and h : V �2 �! V �

1 such that L = h(L0). Consider

264

a T0L system G = (V2; w; P1; : : : ; Pn) generating the language L0. We construct
the CTEG system � = (E;A1) with

E = (V1 [V
0

2 ; (c; ; : P
0

1); : : : ; (c; ; : P
0

n); (c
0; ; : Pn+1));

for
Pn+1 = fa0 ! h(a) j a 2 V2g [fa! a j a 2 V1g;

where V 02 = fa0 j a 2 V2g and P 0i ; 1 � i � n; are obtained by replacing in rules
of Pi each a 2 V2 by its primed version a0. (It is assumed that V 02 \ V1 = ;.)
Moreover,

A1 = (fc; c0g; (;; ; : fc! c; c! c0; c0 ! c0g)):

For �0 = (w; c) we obtain L = L(�; �0) � L(G) = L(�; �0) \ V �1 . This can
be easily seen: in the presence of c, E simply simulates the T0L system G, with
all symbols primed. Then, in the presence of c0, E simulates the morphism h.
Removing the strings of primed symbols, we obtain the set L.

The same language L(�; �0) is simulated by the following CTEG �0 =
(E0; A1), with

E0 = (V1 [V
0

2 ; (;; c
0 : P 01); : : : ; (;; c

0 : P 0n); (;; c : Pn+1));

where the tables are de�ned as above. Now the role of c and c0 are interchanged,
they are used in the forbidding way for controlling the work of E0. 2

Of course, because T0L � CTEG1(0; 0), we can also represent ET0L lan-
guages as morphic images of CTEG languages. Similar representations can be
obtained also for recursively enumerable languages.

To this aim, we use the following results from [1], [9].
A context-free grammarwith global forbidding context conditions is a quadru-

ple G = (N; T; S; P;Q), where G0 = (N; T; S; P) is a context-free grammar and
Q � (N [T)+. A derivation step x =) y is de�ned only when x contains
no element of Q as a substring, with the exception of the case S = x, when
no condition is checked. If Q = ;, then no checking is made, we have a usual
context-free derivation. In [1] it is proved that each context-sensitive language
can be generated by a �-free grammar with global forbidding context conditions
of length at most two. When �-rules are used one obtains a characterization of
recursively enumerable languages. A strenghtening of this result has been proved
in [9]: for each context-sensitive language L there is a context-free �-free gram-
mar G with global forbidding context conditions such that G generates L both
in the sequential and in the parallel manner. Using this result we can prove

Theorem 7. For every recursively enumerable language L there is a propa-
gating CTEG1(1; 2; b) system � and a morphism h such that L = h(Lb(�; �0)),
for some �0.

Proof. Let L 2 RE;L � V �1 , and consider a morphism h0 such that L =
h0(L00) for some L00 2 CS. Take a (�-free) context-free grammar G with global
forbidding context conditions, G = (N; T; S; P;Q); Q = fw1; : : : ; wng, satisfy-
ing the conditions in [9], L(G) = L00, G working in the parallel or in the se-
quential manner. We construct a CTEG system � = (E;A1) such that L00 =
h(Lb(�; �0)); for a certain con�guration �0.

265

Let V = N [T; V0 = V , and Vi = fA(i) j A 2 V g; 1 � i � n. Assume
N = fB1; : : : ; Brg, and let us consider H = P [fA ! A j A 2 V g: (Clearly,
the E0L system (N; T; S;H) generates the same language as the context-free
grammar (N; T; S; P).) Let c0; c1; : : : ; cn; cn+1 and d0; d1; : : : ; dr be new symbols.

The construction is based on the following idea: First, by changing its state
(symbols ci; 1 � i � n), the agent checks whether the context conditions are
satis�ed or not. Meantime, the environment only rewrites its state to the corre-
sponding superscript variant (a string consisting of symbols A(i)). If the context
conditions are observed, then the environment applies some productions and ei-
ther a new check of context conditions follows, or the agent checks whether the
obtained string corresponds to a superscript version of a word over T , and after
that the environment rewrites the string to a word over T . If some conditions
are not satis�ed, then the process is blocked.

The component E will have the following tables:

H0 = (c0; ; : fS ! �(1) j S ! � 2 Pg);

Hi = (ci; ; : fA
(i) ! A(i+1) j A 2 V g); 1 � i � n;

Hn+1 = (cn+1; ; : fA
(n+1) ! �(1) j A! � 2 Pg [fA(n+1) ! A(1) j A 2 V g);

H0

j = (dj; ; : fA
(1) ! A(1) j A 2 V g); 1 � j � r � 1;

H0

r = (dr; ; : fA
(1) ! A j A 2 V g);

where �(i) is obtained by replacing in � each symbol A 2 V with A(i). Moreover,
A1 has the following tables:

P0 = (;; ; : fc0 ! c1g);

Pj = (;; w(j)
j : fcj ! cj+1g); 1 � j � n;

Pn+1 = (;; ; : fcn+1 ! d0; cn+1 ! c1g);

P 0k = (;; B
(1)
k : fdk�1 ! dkg); 1 � k � r:

In all cases, completion rules q! q are assumed, for all q not speci�ed above.
Then for each derivation

S =) w1 =) w2 =) : : : =) wt = w 2 T �

in G there is a derivation

(S; c0) =)
�

b (w
(1)
1 ; c1) =)

�

b (w
(1)
2 ; c1) =)

�

b : : : =)
�

b (w
(1)
t ; d0) =)

�

b (wt; dr);

in �. Moreover, only derivations in � associated in this way to derivations in G
produce strings over T .

Let us now de�ne the morphism h00 by h00(a) = a; a 2 T , and h00(b) = �
for any other symbol appearing in the alphabet of E. The equality L(G) =
h00(Lb(�; �0)) follows. Composing with the morphism h0, we get a representation
of L as a morphic image of Lb(�; �0). Note that because G is �-free, � was
propagating. 2

The above representation is nontrivial, in view of the fact that CTEG1(1;1;�)
does not include the familyCS (even when using erasing rules: see again Lemma
3).

266

7. Final remarks

We want to stress here only two ideas: First, the richness of eco-grammar
systems both from the point of view of formal language theory issues and from
the point of view of applications. Contributions to [11] might be illustrative in
this respect. Second, the surprisingly large power of CTEG with only one agent.
Such systems can be depicted as in �gure 3.

PE

P1-

-

??

??

w1

wE

Fig. 3

There is no apparent di�erence here between the agent and the environ-
ment, as in the general case. Systems of this type, consisting of two coupled
rewriting devices, each one checking a context condition (in the random context,
semi-conditional or conditional sense, in the terminology of [6]) on the string
currently generated by the partner device, deserve a deeper investigation (both
for Chomsky grammars and L systems). We hope to return to this topic in a
forthcoming paper.

References

1. E. Csuhaj-Varju, Grammars with local and global context conditions, Intern.
J. Computer Math., 47 (1992), 17 { 27.

2. E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. P�aun, Grammar Systems:
A Grammatical Approach on Distribution and Cooperation, Gordon and
Breach, London, 1994.

3. E. Csuhaj-Varju, J. Kelemen, A. Kelemenova, Gh. P�aun, Eco-grammar sys-
tems: A language theoretic model for AL (Arti�cial Life), manuscript, 1993.

4. E. Csuhaj-Varju, J. Kelemen, A. Kelemenova, Gh. P�aun, Eco-grammar sys-
tems. A preview, in vol. Cybernetics and Systems '94 (R. Trappl, ed.), World
Sci. Publ., Singapore, 1994, 941 { 949.

5. E. Csuhaj-Varju, Gh. P�aun, A. Salomaa, Conditional tabled eco-grammar
systems, in vol. Arti�cial Life. Grammatical Models (Gh. P�aun, ed.), Proc.
of the Workshop on Grammatical Models in Arti�cial Life, Mangalia, 1994,
The Black Sea Univ. Press, Bucharest, 1995.

267

6. J. Dassow, Gh. P�aun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

7. A. Ehrenfeucht, G. Rozenberg, On proving that certain languages are not
ET0L, Acta Informatica, 6 (1976), 407 { 415.

8. C. G. Langton, Arti�cial Life, in vol. Arti�cial Life, II (C. G. Langton,
C. Taylor, J. D. Farmer, S. Rasmussen, eds.), Proc. of the Workshop on
Arti�cial Life, Santa Fe, 1990, Santa Fe Institute Studies in the Science of
Complexity, Proc. vol. X, Addison-Wesley, 1990, 1 { 47.

9. Al. Meduna, A formalization of sequential, parallel and continuous rewriting,
Intern. J. Computer Math., 47 (1993), 153 { 161.

10. M. Nielsen, G. Rozenberg, A. Salomaa, S. Skyum, Nonterminals, homomor-
phisms and codings in di�erent variations of 0L systems, Acta Informatica,
part I: 4 (1974), 87 { 106, part II: 3 (1974), 357 { 364.

11. Gh. P�aun (ed.), Arti�cial Life. Grammatical Models, Proc. of the Workshop
on Grammatical Models in Arti�cial Life, Mangalia, 1994, The Black Sea
Univ. Press, Bucharest, 1995.

12. G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Acad-
emic Press, New York, 1980.

13. A. Salomaa, Formal Languages, Academic Press, New York, 1973.

268

