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Abstract: The connections among the various nonlinearity criteria is currently an
important topic in the area of designing and analyzing cryptographic functions. In
this paper we show a quantitative relationship between propagation characteristics
and nonlinearity, two critical indicators of the cryptographic strength of a Boolean
function. We also present a tight lower bound on the nonlinearity of a cryptographic
function that has propagation characteristics.

Key Words: Cryptography, Boolean functions, Encryption functions, Nonlinearity,
Propagation Characteristics, SAC, S-boxes.

Category: E.3

1 Introduction

Data Encryption Standard or DES is a cryptographic algorithm most widely
used by industrial, �nancial and commercial sectors all over the world [NBS77].
DES is also the root of many other data encryption algorithms proposed in
the past decade, including LOKI [BKPS93], FEAL [Miy91] and IDEA [LM91,
LaSM91, Lai92]. A core component of these encryption algorithms are the so-
called S-boxes or substitution boxes, each essentially a tuple of nonlinear Boolean
functions. In most cases, these boxes are the only nonlinear component in an
underlying encryption algorithm. The same can be said with one-way hashing
algorithms which are commonly employed in the process of signing and authen-
ticating electronic messages [ZPS93, Riv92, NIST93]. These all indicate the vital
importance of the design and analysis of nonlinear cryptographic Boolean func-
tions.

Encryption and authentication require cryptographic (Boolean) functions
with a number of critical properties that distinguish them from linear (or a�ne)
functions. Among these properties are high nonlinearity, high degree of propaga-
tion, few linear structures, high algebraic degree etc. These properties are often
called nonlinearity criteria. An important topic is to investigate relationships
among the various nonlinearity criteria. Progress in this direction has been made
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in [SZZ94d], where connections have been revealed among the strict avalanche
characteristic, di�erential characteristics, linear structures and nonlinearity, of
quadratic functions.

In this paper we carry on the investigation initiated in [SZZ94d] and bring
together nonlinearity and propagation characteristic of a function (quadratic or
non-quadratic). These two cryptographic criteria are seemly quite separate, in
the sense that the former indicates the minimum distance between a Boolean
function and all the a�ne functions whereas the latter forecasts the avalanche
behavior of the function when some input bits to the function are complemented.

In particular we show that if f , a function on Vn, satis�es the propagation
criterion with respect to all but a subset < of Vn, then the nonlinearity of f
satis�es Nf � 2n�1 � 2n�

1
2
��1, where � is the maximum dimension a linear

sub-space contained in f0g [ (Vn �<) can achieve.
We also show that 2n�2 is the tight lower bound on the nonlinearity of f if f

satis�es the propagation criterion with respect to at least one vector in Vn. As
an immediate consequence, the nonlinearity of a function that ful�lls the SAC
or strict avalanche criterion is at least 2n�2.

Two techniques are employed in the proofs of our main results. The �rst
technique is in regard to the structure of <, the set of vectors where the function
f does not satisfy the propagation criterion. By considering a linear sub-space
with the maximum dimension contained in f0g [ (Vn � <), together with its
complementary sub-space, we will be able to identify how the vectors in < are
distributed. The second technique is based on a novel idea of re�ning Parseval's
equation, a well-known relationship in the theory of orthogonal transforms. A
combination of these two techniques together with some careful analyses proves
to be a powerful tool in examining the relationship among nonlinearity criteria.

The organization of the rest of the paper is as follows: Section 2 introduces ba-
sic notations and conventions, while Section 3 presents background information
on the Walsh-Hadamard transform. The distribution of vectors where the prop-
agation criterion is not satis�ed is discussed in Section 4. This result is employed
in Section 5 where a quantitative relationship between nonlinearity and propaga-
tion characteristics is derived. This relationship is further developed in Section 6
to identify a tight lower bound on nonlinearity of functions with propagation
characteristics. The paper is closed by some concluding remarks in Section 7.

2 Basic De�nitions

We consider Boolean functions from Vn to GF (2) (or simply functions on Vn),
Vn is the vector space of n tuples of elements from GF (2). The truth table of
a function f on Vn is a (0; 1)-sequence de�ned by (f(�0), f(�1), : : :, f(�2n�1)),
and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f(�0), (�1)f(�1),
: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 =
(1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix of order 2n de�ned by M =
((�1)f(�i��j)). f is said to be balanced if its truth table contains an equal number
of ones and zeros.

An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) =
a1x1 � � � � � anxn � c, where aj; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is
called a linear function if c = 0.
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De�nition1. The Hamming weight of a (0; 1)-sequence s, denoted by W (s),
is the number of ones in the sequence. Given two functions f and g on Vn,
the Hamming distance d(f; g) between them is de�ned as the Hamming weight
of the truth table of f(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of
f , denoted by Nf , is the minimal Hamming distance between f and all a�ne
functions on Vn, i.e., Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are
all the a�ne functions on Vn.

Note that the maximum nonlinearity of functions on Vn coincides with the
covering radius of the �rst order binary Reed-Muller code RM (1; n) of length 2n,

which is bounded from above by 2n�1 � 2
1
2
n�1 (see for instance [CKHFMS85]).

Hence Nf � 2n�1� 2
1
2
n�1 for any function on Vn. Next we introduce the de�n-

ition of propagation criterion.

De�nition2. Let f be a function on Vn. We say that f satis�es

1. the propagation criterion with respect to � if f(x) � f(x � �) is a balanced
function, where x = (x1; : : : ; xn) and � is a vector in Vn.

2. the propagation criterion of degree k if it satis�es the propagation criterion
with respect to all � 2 Vn with 1 � W (�) � k.

f(x)�f(x��) is also called the directional derivative of f in the direction �.
The above de�nition for propagation criterion is from [PLL+91]. Further work
on the topic can be found in [PGV91]. Note that the strict avalanche criterion
(SAC) introduced by Webster and Tavares [Web85, WT86] is equivalent to the
propagation criterion of degree 1 and that the perfect nonlinearity studied by
Meier and Sta�elbach [MS90] is equivalent to the propagation criterion of degree
n where n is the number of the coordinates of the function.

While the propagation characteristic measures the avalanche e�ect of a func-
tion, the linear structure is a concept that in a sense complements the former,
namely, it indicates the straightness of a function.

De�nition3. Let f be a function on Vn. A vector � 2 Vn is called a linear
structure of f if f(x) � f(x � �) is a constant.

By de�nition, the zero vector in Vn is a linear structure of all functions
on Vn. It is not hard to see that the linear structures of a function f form a
linear sub-space of Vn. The dimension of the sub-space is called the linearity
dimension of f . We note that it was Evertse who �rst introduced the notion of
linear structure (in a sense broader than ours) and studied its implication on
the security of encryption algorithms [Eve88].

A (1;�1)-matrixH of order m is called a Hadamard matrix if HHt = mIm,
where Ht is the transpose of H and Im is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by the
following recursive relation

H0 = 1; Hn =

�
Hn�1 Hn�1

Hn�1 �Hn�1

�
; n = 1; 2; : : : : (1)

Let `i, 0 � i � 2n�1, be the i row of Hn. By Lemma 2 of [SZZ94a], `i is the
sequence of a linear function 'i(x) de�ned by the scalar product 'i(x) = h�i; xi,
where �i is the ith vector in Vn according to the ascending order.

138



De�nition4. Let f be a function on Vn. The Walsh-Hadamard transform of f
is de�ned as

f̂(�) = 2�
n
2

X
x2Vn

(�1)f(x)�h�;xi

where � = (a1; : : : ; an) 2 Vn, x = (x1; : : : ; xn), h�; xi is the scalar product of �
and x, namely, h�; xi =

Ln

i=1 aixi, and f(x)�h�; xi is regarded as a real-valued
function.

The Walsh-Hadamard transform, also called the discrete Fourier transform,
has numerous applications in areas ranging from physical science to communi-
cations engineering. It appears in several slightly di�erent forms [Rot76, MS77,
Dil72]. The above de�nition follows the line in [Rot76]. It can be equivalently
written as

(f̂ (�0); f̂ (�1); : : : ; f̂(�2n�1)) = 2�
n
2 �Hn

where �i is the ith vector in Vn according to the ascending order, � is the
sequence of f and Hn is the Sylvester-Hadamard matrix of order 2n.

De�nition5. A function f on Vn is called a bent function if its Walsh-Hadamard
transform satis�es

f̂ (�) = �1

for all � 2 Vn.

Bent functions can be characterized in various ways [AT90, Dil72, SZZ94a,
YH89]. In particular the following four statements are equivalent:

(i) f is bent.

(ii) h�; `i = �2
1
2
n for any a�ne sequence ` of length 2n, where � is the sequence

of f .
(iii) f satis�es the propagation criterion with respect to all non-zero vectors in

Vn.
(iv) M , the matrix of f , is a Hadamard matrix.

Bent functions on Vn exist only when n is even [Rot76]. Another important
property of bent functions is that they achieve the highest possible nonlinearity
2n�1 � 2

1
2
n�1.

3 More on Walsh-Hadamard transform and Nonlinearity

As the Walsh-Hadamard transform plays a key role in the proofs of main results
to be described in the following sections, this section provides some background
knowledge on the transform. More information regarding the transform can be
found in [MS77, Dil72]. In addition, Beauchamp's book [Bea84] is a good source
of information on other related orthogonal transforms with their applications.

Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-
wise product is de�ned by a � b = (a1b1; : : : ; ambm). Let f be a function on Vn.
For a vector � 2 Vn, denote by �(�) the sequence of f(x � �). Thus �(0) is the
sequence of f itself and �(0) � �(�) is the sequence of f(x) � f(x � �).
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Set
�(�) = h�(0); �(�)i;

the scalar product of �(0) and �(�). �(�) is also called the auto-correlation of
f with a shift �. Obviously, �(�) = 0 if and only if f(x)� f(x��) is balanced,
i.e., f satis�es the propagation criterion with respect to �. On the other hand, if
j�(�)j = 2n, then f(x)�f(x��) is a constant and hence � is a linear structure
of f .

Let M = ((�1)f(�i��j)) be the matrix of f and � be the sequence of f . Due
to a very pretty result by R. L. McFarland (cf. Theorem 3.3 of [Dil72]), M can
be decomposed into

M = 2�nHn diag(h�; `0i; � � � ; h�; `2n�1i)Hn (2)

where `i is the ith row of Hn, a Sylvester-Hadamard matrix of order 2n.
Clearly

MMT = 2�nHn diag(h�; `0i
2; � � � ; h�; `2n�1i

2)Hn: (3)

On the other hand, we always have

MMT = (�(�i � �j));

where i; j = 0; 1; : : : ; 2n � 1.
Comparing the two sides of (3), we have

(�(�0);�(�1); : : : ;�(�2n�1)) = 2�n(h�; `0i
2; : : : ; h�; `2n�1i

2)Hn:

Equivalently we write

(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i
2; : : : ; h�; `2n�1i

2): (4)

In engineering, (4) is better known as (a special form of) the Wiener-Khintchine
Theorem [Bea84]. A closely related result is Parseval's equation (Corollary 3,
p. 416 of [MS77])

2n�1X
j=0

h�; `ji
2 = 22n

which also holds for any function f on Vn.
Let S be a set of vectors in Vn. The rank of S is the maximum number of

linearly independent vectors in S. Note that when S forms a linear sub-space of
Vn, its rank coincides with its dimension.

The distance between two functions f1 and f2 on Vn can be expressed as
d(f1; f2) = 2n�1 � 1

2 h�1; �2i, where �1 and �2 are the sequences of f1 and f2
respectively. (For a proof see for instance Lemma 6 of [SZZ94a].) Immediately
we have:

Lemma6. The nonlinearity of a function f on Vn can be calculated by

Nf = 2n�1 �
1

2
maxfjh�; `iij; 0 � i � 2n � 1g

where � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, the
sequences of the linear functions on Vn.
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The next lemma regarding splitting the power of 2 can be found in [SZZ94d]

Lemma7. Let n � 2 be a positive integer and p2+q2 = 2n where both p � 0 and
q � 0 are integers. Then p = 2

1
2
n and q = 0 when n is even, and p = q = 2

1
2
(n�1)

when n is odd.

In the next section we examine the distribution of the vectors in <.

4 Distribution of <

Let f be a function on Vn. Assume that f satis�es the propagation criterion
with respect to all but a subset < of Vn. Note that < always contains the zero
vector 0. Write < = f0; 1; : : : ; sg. Thus j<j = s + 1.

Set <c = Vn � <. Then f satis�es the propagation criterion with respect to
all vectors in <c.

Consider the set of vectors f0g[<c. Then f0g is a linear sub-space contained
in f0g[<c. When jf0g[<cj > 1, f0; g is a linear sub-space for any nonzero vec-
tor in <c. We are particularly interested in linear sub-spaces with the maximum
dimension contained in f0g [ <c. For convenience, denote by � the maximum
dimension and by W a linear sub-space in f0g[<c that achieves the maximum
dimension.

Obviously, f is bent if and only if � = n, and f does not satisfy the propa-
gation criterion with respect to any vector if and only if � = 0. The case when
1 � � � n � 1 is especially interesting.

Now let U be a complementary sub-space of W , namely U �W = Vn. Then
each vector  2 Vn can be uniquely expressed as  = � � �, where � 2 W and
� 2 U . As the dimension of W is �, the dimension of U is equal to n� �. Write
U = f0; �1; : : : ; �2n���1g.

Proposition8. <\W = f0g and <\(W��j) 6= �, whereW��j = f���jj� 2
Wg, j = 1; : : : ; 2n�� � 1.

Proof. < \W = f0g follows from the fact that W is a sub-space of f0g [ <c.
Next we consider < \ (W � �j).

Clearly,
Vn = W [ (W � �1) [ � � � [ (W � �2n���1):

In addition,
W \ (W � �j) = �

for j = 1; : : : ; 2n�� � 1, and

(W � �j) \ (W � �i) = �

for any j 6= i. Assume for contradiction that < \ (W � �j0) = � for some j0,
1 � j0 � 2n�� � 1. Then we have W � �j0 � <c. In this case W [ (W � �j0)
must form a sub-space of Vn. This contradicts the de�nition that W is a linear
sub-space with the maximum dimension in f0g [ <c. This completes the proof.

ut

The next corollary follows directly from the above proposition.

Corollary9. The size of < satis�es j<j � 2n�� and hence the rank of < is at
least n � �, where � is the maximum dimension a linear sub-space in f0g [ <c

can achieve.
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5 Relating Nonlinearity to Propagation Characteristics

We proceed to the discussion of the nonlinearity of f . The main di�culty lies in
�nding a good approximation of h�; `ii for each i = 0; : : : ; 2n� 1, where � is the
sequence of f and �i is a row of Hn.

First we assume that

W = fj = (a1; : : : ; a�; 0; : : : ; 0); ai 2 GF (2)g (5)

U = fj = (0; : : : ; 0; a�+1; : : : ; an); ai 2 GF (2)g (6)

where W is a linear sub-space in f0g[<c that achieves the maximumdimension
� and U is a complementary sub-space of W . The more general case where (5)
or (6) is not satis�ed can be dealt with after employing a nonsingular transform
on the input of f . This will be discussed in the later part of this section.

Recall that < = f0; 1; : : : ; sg and �(�) = h�(0); �(�)i, where �(�) is the
sequence of f(x � �). Since �() 6= 0 for each  2 < while �() = 0 for each
 2 <c = Vn � <, (4) is specialized as

(�(0);�(1); : : : ;�(s))Q = (h�; `0i
2; : : : ; h�; `2n�1i

2): (7)

where � is the sequence of f , `i is the ith row of Hn and Q comprises the 0th,
1th, : : :, sth rows of Hn. Note that Q is an (s + 1)� 2n matrix.

Let ` be the th row of Hn, where  2 <. Note that  can be uniquely
expressed as  = �� �, where � 2 W and � 2 U . Let `0 be the �th row of H�

and `00 be the �th row of Hn��. As Hn = H� �Hn��, ` can be represented by
` = `0 � `00, where � denotes the Kronecker product.

From the construction of Hn��, we can see that the �th row of Hn�� is an
all-one sequence of length 2n�� if � = 0, and a balanced (1;�1)-sequence of
length 2n�� if � 6= 0.

Recall that < \W = f0g (see also Proposition 8). There are two cases as-
sociated with  = � � � 2 <:  = 0 and  6= 0. In the �rst case, ` = `0 � `00

is the all-one sequence of length 2n, while in the second case, we have � 6= 0
which implies that `00 is a balanced (1;�1)-sequence of length 2n�� and hence
` = `0 � `00 is a concatenation of 2� balanced (1;�1)-sequences of length 2n��.

Therefore we can write Q = (Q0; Q1; : : : ; Q2��1), where each Qi is a (1;�1)-
matrix of order (s+1)�2n��. It is important to note that the top row of each Qi

is the all-one sequence, while the rest are balanced (1;�1)-sequences of length
2n��.

With Q0, we have

(�(0);�(1); : : : ;�(s))Q0 = (h�; `0i
2; : : : ; h�; `2n���1i

2):

Let �0 be the all-one sequence of length 2n��. Then

(�(0);�(1); : : : ;�(s))Q0�
T
0 = (h�; `0i

2; : : : ; h�; `2n���1i
2)�T0 :

This causes

(�(0);�(1); : : : ;�(s))

2
664
2n��

0
...
0

3
775 =

2n���1X
j=0

h�; `ji
2

142



and
2n���1X
j=0

h�; `ji
2 = 2n���(0) = 2n��+n = 22n��:

Similarly, with Qi, i = 1; : : : ; 2� � 1, we have

2n���1X
j=0

h�; `j+i2n��i
2 = 22n��:

Thus we have the following result:

Lemma10. Assume that f , a function on Vn, satis�es the propagation criterion
with respect to all but a subset < of vectors in Vn. Set <c = Vn � < and let W
be a linear sub-space with the maximum dimension �, in f0g [ <c, and U be
a complementary sub-space of W . Assume that W and U satisfy (5) and (6)
respectively. Then

2n���1X
j=0

h�; `j+i2n��i
2 = 22n��

for all i = 0; 1; : : : ; 2� � 1, where � is the sequence of f and each `k is a row of
Hn.

Lemma 10 can be viewed as a re�nement of Parseval's equation
P2n�1

j=0 h�; `ji2 =

22n. It implies that jh�; `jij � 2n�
1
2
� for all j = 0; : : : ; 2n � 1. Therefore by

Lemma 6 we have Nf � 2n�1 � 2n�
1
2
��1.

So far we have assumed that W and U satisfy (5) and (6) respectively. When
this is not the case, we can always �nd a nonsingular n � n matrix A whose
entries are from GF (2) such that the sub-spaces W 0 and U 0 associated with
f 0(x) = f(xA) have the required forms. f 0 and f have the same algebraic degree
and nonlinearity (see Lemma 10 of [SZZ94b]). This shows that the following
theorem is true.

Theorem11. For any function on Vn, the nonlinearity of f satis�es Nf �

2n�1� 2n�
1
2
��1, where � is the maximum dimension of the linear sub-spaces in

f0g [ <c.

Theorem 11 indicates that the nonlinearity of a function is determined by
the maximum dimension that a linear sub-spaces in f0g [ <c can achieve, but
not by the size of <c.

In [SZZ94e], we have proved that Nf � 2n�1�2
1
2
(n+t)�1, where t is the rank

of <. By Corollary 9, we have t � n � �. This implies that 2n�1 � 2n�
1
2
��1 �

2n�1�2
1
2
(n+t)�1. Thus Theorem 11 is an improvement to the result in [SZZ94e].

This improvement can be demonstrated by a concrete example. In [SZZ94e], the
following function on V5

f5(x1; x2; x3; x4; x5) = (1� x1)(1� x2)x3 � (1� x1)x2x4 �

x1(1� x2)(x3 � x4)� x1x2(x4 � x5)
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has been shown to satisfy the propagation criterion with respect to all but the
following �ves vectors in V5:

< = f(0; 0; 0; 0;0); (0;0;0;0; 1); (0;0; 0; 1; 0); (0; 0; 1;0;0); (0; 0;1;1; 1)g:

The rank t of < is equal to 3. By using the result of [SZZ94e], Nf5 � 25�1 �

2
1
2
(5+3)�1 = 24�23 = 8. On the other hand, we can setW = f(a1; a2; a3; a4; a5)jai 2

GF (2); a1� a2 � a3 = 0g. W is a four-dimensional sub-space in f0g[<c. Using

Theorem 11 with � = 4, we have Nf5 � 25�1 � 25�
1
2
��1 = 24 � 22 = 12 > 8.

(Note that according to [CKHFMS85], the maximumnonlinearity a function on
V5 can achieve is 12. Hence we have Nf5 = 12.)

6 A Tight Lower Bound on Nonlinearity of Functions with

Propagation Characteristics

By Theorem 11, Nf � 2n�1� 2n�
3
2 if f , a function on Vn, satis�es the propaga-

tion criterion with respect to at least one vector in Vn. This section shows that
this lower bound can be signi�cantly improved. Indeed we prove that Nf � 2n�2

and also show that it is tight.

Theorem12. If f , a function on Vn, satis�es the propagation criterion with
respect to one or more vectors in Vn, then the nonlinearity of f satis�es Nf �
2n�2.

Proof. As in the previous sections, we denote by < the set of vectors in Vn
with respect to which the propagation criterion is not satis�ed by f . We also
let <c = Vn � <, and W be a linear sub-space in f0g [ <c that achieves the
maximum dimension �.

By Theorem 11, the theorem is trivially true when � > 1. Next we consider
the case when � = 1. We prove this part by further re�ning the Parseval's
equation.

As in the proof of Lemma 10, without loss of generality, we can assume that

W = fj = (a1; 0; : : : ; 0); a1 2 GF (2)g (8)

U = fj = (0; a2; : : : ; an); ai 2 GF (2)g (9)

Similarly to Lemma 10, we have

2n�1�1X
j=0

h�; `
j+i22n�1 i

2 = 22n�1; i = 0; 1; (10)

where � is the sequence of f and `k is a row of Hn.
Comparing the �rst row of (2), we have

(a0; a1; : : : ; a2n�1) = 2�n(h�; `0i; � � � ; h�; `2n�1i)Hn

or equivalently,

2n(a0; a1; : : : ; a2n�1) = (h�; `0i; � � � ; h�; `2n�1i)Hn (11)
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where each aj = �1 and (a0; a1; : : : ; a2n�1) is the �rst row of the matrix M
described in (2).

Rewrite `i, the ith row of Hn, as `(�i), where �i is the binary representation
of an integer i in the ascending alphabetical order. Set

N = (h�; `(�i � �j)i); 0 � i; j � 2n � 1:

N is a symmetric matrix of order 2n with integer entries. In [Rot76], Rothaus
has shown that NN = NNT = 22nI2n . We can split N into four sub-matrices
of equal size, namely

N =

�
N1 N2

N2 N1

�

where each Nj is a matrix of order 2n�1. As NN = 22nI2n , we have N1N2 = 0.
Let (c(�0); c(�1); : : : ; c(�2n�1�1)) be an arbitrary linear sequence of length

2n�1. Then

(c(�0); c(�1); : : : ; c(�2n�1�1); c(�0); c(�1); : : : ; c(�2n�1�1))

is a linear sequence of length 2n, and hence a row of Hn. Thus from (11), we
have

2n�1�1X
j=0

c(�j)h�; `(�j)i+
2n�1�1X
j=0

c(�j)h�; `(�j � 2n�1)i = �2n:

Hence

(
2n�1�1X
j=0

c(�j)h�; `(�j)i+
2n�1�1X
j=0

c(�j)h�; `(�j � �2n�1)i)
2 = 22n: (12)

Rewrite the left hand side of (12) as

(
2n�1�1X
j=0

c(�j)h�; `(�j)i)
2 + (

2n�1�1X
j=0

c(�j)h�; `(�j � �2n�1)i)
2

+ 2(
2n�1�1X
j=0

c(�j)h�; `(�j)i)(
2n�1�1X
j=0

c(�j)h�; `(�j � �2n�1)i)

where

(
2n�1�1X
j=0

c(�j)h�; `(�j)i)(
2n�1�1X
j=0

c(�j)h�; `(�j � �2n�1)i)

=
2n�1�1X
t=0

2n�1�1X
j=0

c(�j)h�; `(�j)ic(�j � �t)h�; `(�j � �t � �2n�1)i: (13)

As (c(�0); c(�1); : : : ; c(�2n�1�1)) is a linear sequence, c(�j)c(�j��t) = c(�t).
Hence (13) can be written as

2n�1�1X
t=0

c(�t)
2n�1�1X
j=0

h�; `(�j)ih�; `(�j � �t � �2n�1)i:
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Since N1N2 = 0,

2n�1�1X
j=0

h�; `(�j)ih�; `(�j � �t � �2n�1)i = 0:

This proves that (13) is equal to zero and hence

(
2n�1�1X
j=0

c(�j)h�; `(�j)i)
2 + (

2n�1�1X
j=0

c(�j)h�; `(�j � �2n�1)i)
2 = 22n:

By Lemma 7,

2n�1�1X
j=0

c(�j)h�; `(�j)i = 0 or �2n: (14)

Since (c(�0); c(�1); : : : ; c(�2n�1�1)) is an arbitrary linear sequence of length
2n�1 and each linear sequence of length 2n�1 is a column of Hn�1, from (14) we
have

(h�; `0i; : : : ; h�; `2n�1i)Hn�1 = 2n(b0; : : : ; b2n�1�1) (15)

where bj = 0 or �1. Therefore

(h�; `0i; : : : ; h�; `2n�1i)2
1
2
(1�n)Hn�1 = 2

1
2
(n+1)(b0; : : : ; b2n�1�1):

Recall that a matrix A of order s is said to be orthogonal if AAT = Is. It is easy
to verify that 2

1
2
(1�n)Hn�1 is an orthogonal matrix. Thus

2n�1X
j=0

h�; `�j
i2 = 2n+1

2n�1�1X
j=0

b2j :

On the other hand, by (10) we have

2n�1X
j=0

h�; `�j
i2 = 22n�1:

Hence
2n�1�1X
j=0

b2j =
2n�1�1X
j=0

jbjj = 2n�2:

Now let �(�i) denote the ith row of Hn�1, where �i 2 Vn�1 is the binary
representation of i, i = 0; 1; : : :; 2n�1 � 1. From (15),

(h�; `0i; � � � ; h�; `2n�1i)Hn�1�(�i)
T = 2n(b0; : : : ; b2n�1�1)�(�i)

T : (16)

Note that

h�(�i); �(�j)i =

�
2n�1 if j = i
0 if j 6= i
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Thus

Hn�1�(�i)
T =

2
6666666664

0
...
0

2n�1

0
...
0

3
7777777775

(17)

where 2n�1 is on the ith position of the column vector.
Write �(�i) = (d0; d1; : : : ; d2n�1�1). Then

(b0; : : : ; b2n�1�1)�(�i)
T =

2n�1�1X
j=0

djbj:

As dj = �1, we have

j
2n�1�1X
j=0

djbjj �
2n�1�1X
j=0

jbjj = 2n�2: (18)

From (16), (17) and (18)

2n�1jh�; `iij � 2n
2n�1�1X
j=0

jbjj = 22n�2

and hence
jh�; `iij � 2n�1

where i is an arbitrary integer in [0; : : : ; 2n�1� 1]. Similarly,

jh�; `iij � 2n�1

holds for all i = 2n�1; 2n�1 + 1; : : : ; 2n � 1. By Lemma 6, the nonlinearity of f
satis�es

Nf � 2n�1 � 2n�2 = 2n�2:

This completes the proof. ut

As an immediate consequence, we have

Corollary13. Let f be a function on Vn. Then the following statements hold:

1. if the nonlinearity of f satis�es Nf < 2n�2, then f does not satisfy the
propagation criterion with respect to any vector in Vn.

2. if f satis�es the SAC, then the nonlinearity of f satis�es Nf � 2n�2.
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Finally we show that the lower bound 2n�2 is tight. We achieve the goal
by demonstrating a function on Vn whose nonlinearity is equal to 2n�2. Let
g(x1; x2) = x1x2 be a function on V2. Then the nonlinearity of g is Ng = 1.
Now let f(x1; : : : ; xn) = x1x2 be a function on Vn. Then the nonlinearity of f
is Nf = 2n�2Ng = 2n�2 (see for instance Lemma 8 of [SZZ94c]). f satis�es the
propagation criterion with respect to all vectors in Vn whose �rst two bits are
nonzero, which count for three quarters of the vectors in Vn. It is not hard to
verify that

f(0; 0; 0; : : : ; 0); (1; 0; 0; : : :; 0); (0; 1; 0; : : :; 0); (1; 1; 0; : : :; 0)g

is the linear sub-space that achieves the maximum dimension � = 2.
Thus we have a result described as follows:

Lemma14. The lower bound 2n�2 as stated in Theorem 12 is tight.

7 Conclusion

We have shown quantitative relationships between nonlinearity, propagation
characteristics and the SAC. A tight lower bound on the nonlinearity of a func-
tion with propagation characteristics is also presented.

This research has also introduced a number of interesting problems yet to
be resolved. One of the problems is regarding the size and distribution of <c,
the set of vectors where the propagation criterion is satis�ed by a function on
Vn. For all the functions we know of, <c is either an empty set or a set with at
least 2n�1 vectors. We believe that any further understanding of this problem
will contribute to the research into the design and analysis of cryptographically
strong nonlinear functions.
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