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Abstract: The paper contains completeness criterions for pseudosimple sets. Those
criterions are constructed using e�ectivization of the de�nitions as well as extensionally
bounded functions.
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A recursively enumerable (r.e.) set is called complete (Turing-complete) if
any r.e. set can be reduced to that set using Turing reducibility. Optionally com-
plete sets can have some interesting properties, for instance they can be simple,
pseudosimple, etc. Problems of constructing completeness criterions for simple
sets by an e�ectivization of de�nitions have been investigated by McLaughlin,
Smullyan, Lachlan, Arslanov, etc. History and systematical description of that
can be found in [Arslanov 87].

Simple sets fall into class E1 of r.e. set classi�cation by Uspenskij and Dekker-
Myhill [Rogers 67]. For creative sets (E4) the criterions have been constructed
even before. However we do not know any speci�c criterion for pseudosimple
(E2) and pseudocreative (E3) sets. In this paper we propose some completeness
criterions for pseudosimple sets.

Most of our notation follows [Rogers 67] also r. means recursive, r.e. means
recursively enumerable and i.r.e. means in�nite recursively enumerable. We use
[a; b] for fx 2 N j a � x � bg and *) as ", under de�nition". Sometimes we
use "number of" as "index of". Let us recall the following de�nitions from
[Rogers 67]:

De�nition 1. A is pseudosimple *) (1) A is r.e. but not r.; (2)
�
9i:r:e:C � A

�
8Wz

�
Wz �

�
AnC

�
) jWz j <1

�
. Such C we will denote CA.

De�nition 2. A is pseudosimple with center C *) (1) A is pseudosimple;
(2)

�
9i:r:e:C � A

�
8Wz

�
Wz � A) jWznCj <1

�
.

Above de�nitions allow the following e�ectivization:
De�nition 10. A is weakly e�ectively pseudosimple *) (1) A is pseudosimple;

(2) (9 total f �T A) 8Wz

�
Wz �

�
AnCA

�
) jWzj � f(z)

�
.

De�nition 20. A is weakly e�ectively pseudosimple with center C *) (1) A
is pseudosimple with center C; (2) (9 total f �T A) 8Wz[Wz � A ) jWznCj �
f(z)].

First prove two complementary lemmas.
Lemma 1. For any complete set A and any r.e. set M the following function

is total and recursive in A:

f(z) =

�
1;Wz \M 6= ;;
0;Wz �M:
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Proof. fx jWx \M 6= ;g �T A because fx j Wx \M 6= ;g is an r.e. set.
Therefore f is computable with oracle A.2

Lemma 2. Let A be complete and g be partial recursive in A. Then the
following function is partial recursive in A:

� (z) =

���Wg(z)

�� ; g(z) # and ��Wg(z)

�� <1;

"; otherwise:

Proof. Let us make computation of � as follows. Given z we start compu-
tation of g(z) and if it ends, we enumerate numbers of r.e. sets Wg(z) \ [0;1],
Wg(z) \ [1;1], : : :, Wg(z) \ [i;1], : : : until some of them fall into fx j Wx = ;g
which is recursive in A. Let it happen when i = n so we set �(z) equal to��Wg(z) \ [0; n� 1]

��. Note we use uniform recursiveness of Wi in respect to com-
plete A.2

Theorem 1. (A is pseudosimple and complete) , (A is weakly e�ectively
pseudosimple and CA �T A).

Proof. ). Let A be pseudosimple and complete then obviously CA �T A.
De�ne total f as follows:

f(z) =

�
0;Wz \

�
CA [A

�
6= ;;

jWz j ;Wz �
�
AnCA

�
:

f is computable with oracle A by lemma 1,2, and because A [CA is an r.e.
set, and AnCA is immune. Thus A is weakly e�ectively pseudosimple.

(. Using f , which is recursive in A, and possibility to write out elements of
AnCA in increasing order with oracle A, construct initial segment�
�0; �1; : : : ; �f(z)

	
= X(z) of enumeration of AnCA in increasing order. An r.e.

index ofX(z) can be computed with oracle A because X(z) is �nite and recursive
in A. Let g(z) be that r.e. index. So g �T A and 8z

�
Wz 6= Wg(z)

�
. Thus A is

complete by the Arslanov theorem [Arslanov 87]. (The Arslanov theorem used
here and below states that for any r.e.s. A [(A is complete), (9 total f �T A
8z[Wz 6= Wf(z)])]).2

Another completeness criterion can be obtained introducing concept of spe-
cial function.

De�nition 3. Let A be weakly e�ectively pseudosimple. We call total and
recursive in A function f special for A if

f(z) =

�
jWz j+ t;Wz � (AnCA); t � 1;
0; otherwise:

Theorem 2. (A is pseudosimple and complete) , (A is weakly e�ectively
pseudosimple and there is f special for A).

Proof. ). De�ne f as follows:

f(z) =

�
0;Wz \

�
CA [A

�
6= ;;

jWzj+ 1;Wz �
�
AnCA

�
:

f can be computed with oracle A by lemmas 1,2, and because A [ CA is
an r.e. set, and AnCA is immune. So A is weakly e�ectively pseudosimple with
special function f .

(. Let g be de�ned as follows:
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Wg(z) =

�
fag ;where a 2

�
AnCA

�
if f(z) = 0;

fbg ;where b 2 A if f(z) 6= 0:

g can be computed with oracle A because f is recursive in A. Also g is total
and obviously does not have �xed points so we can apply the Arslanov theorem
that causes A is complete.2

There is also another approach to e�ectivization of the de�nitions. The ap-
proach is based on use of functions evaluating complexity characteristics of set
other than the number of elements. For instance, Lachlan in [Lachlan 68] used
the number of value changes of characteristic function for a given r.e. set on
a cohesive set building su�cient conditions for complete maximal sets. Com-
pleteness criterion for maximal sets [Bulitko 92] constructed using Kolmogorov
complexity of set initial segments is another example. Next step in that direction
is use of extensionally bounded functions to construct completeness criterions
for special classes of simple sets. That approach has been posed by V.K.Bulitko
in [Bulitko 95]. In present paper we use that approach to describe pseudosimple
and complete sets.

De�nition 4. Total f is extensionally bounded (e.b.) *) 8Wx9c8Wz

[Wz = Wx ) f(z) � c].
Theorem 3. (A is pseudosimple and complete) , (A is r.e. but not r. &

9i:r:e:CA � A such that the following function f :

f(z) =

�
jWz \ [0; z]j+ 1;Wz � (AnCA);
0; otherwise;

is e.b. and recursive in A):
Proof. ). Obviously A is r.e. but not r. f is computable with oracle A by

lemma 1 and because AnCA is immune. For any number i of r.e. X �
�
AnCA

�
f(i) is bounded by cardinality of X that is �nite because A is pseudosimple. f is
equal to 0 for a number of an r.e. set which is not a subset of AnCA. Therefore
f is e.b.

(. Assume 9Wz �
�
AnCA

�
[jWz j =1]. Then taking in account in�niteness

of Wz index set we get f is not bounded on Wz index set. That contradicts
with the de�nition of e.b. function. Therefore our assumption is wrong and A is
pseudosimple. Completeness of A can be proved in the same way as in theorem
2.2

Let us consider pseudosimple sets with center.
Theorem 4. (A is pseudosimple with recursive center C and complete) , (A

is weakly e�ectively pseudosimple with recursive center C).
Proof. ). De�ne f as follows:

f(z) =

�
0; (Wz \A) 6= ;;
jWznCj ;Wz � A:

f is computable with oracle A by lemmas 1,2 and
�
8Wz � A

�
[jWznCj <1].

Therefore A is weakly e�ectively pseudosimple with recursive center.
(. We can get total function g �T A that does not have �xed points doing

in the same way as in the �rst theorem. Using the Arslanov theorem we obtain
completeness of A.2
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Situation regarding case of non-recursive (in general) center is described by
the following theorems and remarkable enough. Trying to get the criterion we
succeeded in way of using e.b functions only.

Theorem 5. (A is weakly e�ectively pseudosimple with center C recursive in
A) ) (A is pseudosimple with center C and complete).

Proof. Follows from the �rst theorem.2
De�nition 5. Let A be weakly e�ectively pseudosimple with center C. Call

total and computable with oracle A function f bounding for A if

f(z) =

�
jWznCj+ t;Wz � A;t � 1;
0; otherwise:

Theorem 6. ( A is weakly e�ectively pseudosimple with center C and there is
bounding for A function f) ) (A is pseudosimple with center C and complete).

Proof. De�ne g as follows:

Wg(z) =

�
fag ;where a 2 A if f(z) = 0;
fbg ;where b 2 A if f(z) 6= 0:

g can be computed with oracle A because f is recursive in A. Also g is total
and does not have �xed points. Thus A is complete by the Arslanov theorem.2

Theorem 7. (A is pseudosimple with center C and complete), (A is r.e. but
not r.; 9i:r:e:C � A; the following f is e.b. and computable with oracle A):

f(z) =

�
jWznC \ [0; z]j+ 1;Wz � A;
0; otherwise:

Proof. ). Obviously A is r.e. but not r. f is computable with oracle A
by lemma 1 and because having oracle A we are able to write out all of Wz

elements not belonging to C and situated in [0; z]. f is e.b. because f is bounded
on numbers of r.e. X � A by jXnCj, which is �nite because A is pseudosimple
with center, and f is equal to 0 on numbers of an r.e. set which is not a subset
of A.

(.A is pseudosimple with center C because f is e.b. and therefore
�
8Wz � A

�
[jWznCj <1] (otherwise we would get unbounded f taking in account that any
r.e. set has an in�nite number of its indexes). Completeness of A can be proved
in the same way as in theorem 6.2
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