
Testing a High{Speed Data Path

The Design of the RSA� Crypto Chip

Wolfgang Mayerwieser
(Graz University of Technology, Austria

wmayer@iaik.tu-graz.ac.at)

Karl C. Posch
(Graz University of Technology, Austria

kposch@iaik.tu-graz.ac.at)

Reinhard Posch
(Graz University of Technology, Austria

rposch@iaik.tu-graz.ac.at)

Volker Schindler
(Graz University of Technology, Austria

vschindl@iaik.tu-graz.ac.at)

Abstract High speed devices for public key cryptography are of emerging interest.
For this reason, the RSA� crypto chip was designed. It is an architecture capable of
performing fast RSA encryption and other cryptographic algorithms based on modulo
multiplication. Besides the modulo multiplication algorithm called FastMM, the reasons
for its high computation speed are the As Parallel As Possible (APAP) architecture,
as well as the high operation frequency. The RSA� crypto chip also contains on{chip
RAM and a special{purpose control logic, enabling special features like encrypted key
loading. However, this control mechanism inuences to some extend testability of the
MM data path which is the heart of the chip. For this reason, the RSA� crypto chip
has been designed to be able to evaluate the behaviour of the pure MM data path.
In the following, we describe the strategies used with the RSA� crypto chip for testing
the MM data path under realistical conditions. In this context, analyzing control signal
ow turns out to be the key action.
This work has been sponsored as part of the project Nr. P9384PHY \Sichere Kommu-
nikation bei hohen Geschwindigkeiten" by the Austrian Science Foundation.
Key Words: high speed multipliers, hardware algorithms, design for testability, pub-
lic key cryptography

1 Introduction

Simulating a CMOS VLSI design and testing the prototype of a newly designed
chip is a sophisticated and time consuming task. This is in particular true in
the special case of the RSA� Crypto Chip, which has as its core a data path
of rather high complexity for performing modulo multiplications (MM), orga-
nized as a bitslice SIMD architecture [Lippitsch et al (1992)]. Several reasons
are responsible for the need of detailed testing:

{ The modulo multiplier is built in modi�ed domino logic [Weste et al (1993)],
which results in smaller area and higher speed, but requires a very careful
design process.

Journal of Universal Computer Science, vol. 1, no. 11 (1995), 728-743
submitted: 28/6/95, accepted: 18/11/95, appeared: 28/11/95, Springer Pub. Co.

728



{ The necessity for handling very large integers for a secure RSA implemen-
tation causes a width of the MM data path of about 700 bits. Designing
CMOS circuits of this size leads to speci�c problems not present when de-
signing much smaller systems.

Therefore, it is quite advisable to spend very much e�ort on simulating the
chip's function, and to provide built{in testing features. Furthermore, stand{
alone testing of the MM data path without control logic driving it would be a
preferable strategy.

We will concentrate on the last item. Real stand{alone testing of the MM
data path in a separate package results in feeding its control signals directly via
the chip's pads. At this point, a problem arises: The maximumclock rate allowed
by the pads is lower than the clock rate we would need at the MM data path
to reach the desired processing speed by a factor of about 5. It makes no sense
(and even might be impossible for dynamic logic) to test the MM data path at
a much lower speed than it was designed for. Therefore we cannot avoid adding
some kind of control logic between the pads and the MM data path.
Test results should not be inuenced by that control structure. It should not
cause any changes to the layout of the MM data path, and it must be of very
high reliability. Both requirements call for an \as simple as possible" control
structure. The key for �nding such a minimum version of the control structure
is to analyze the control signal ow, which allows for reducing redundancy, and
even leads to the use of a modi�ed version of the original modulo multiplication
algorithm for optimizing control signal ow.

In this paper, we will take a closer look at the modulo multiplication algo-
rithm (which is the heart of the RSA implementation), as well as at the MM data
path designed for performing this operation e�ciently. After analyzing the con-
trol signal ow, enough information is available to introduce a simple mechanism
for compensating the clock rate di�erence without loss of overall performance.
Finally, we will show an outline of a possible hardware implementation.

2 The FastMM Algorithm

The RSA algorithm [Rivest et al (1978)] performs both, encryption and decryp-
tion, by calculating

c = Cx (mod N );

with c, C the cipher text and plain text or vice versa, and x the encryption or
decryption key. To meet security demands, the modulus N must be of a length
of approximately 700 bits. Exponentiation can be performed by the well known
Square{and{Multiply algorithm [Knuth (1981)]. Therefore, for our purpose it
is su�cient to consider the RSA implementation as a sequence of continued
modulo multiplications with very long integers, separated by simple register
transfer operations.

With the RSA� Crypto Chip, modulo multiplication is done by the FastMM
algorithm [Posch et al (1990)]. This algorithm performs

y = a � b mod N + e �N; e 2 f0; 1; 2g;

which is much easier to compute than the exact modulo multiplication

z = a � b mod N;

729



as it avoids division and uses multiplication only like the Montgomery approach
[Montgomery (1985)]. We will refer to y as relaxed residuum, since it is possibly
not fully reduced.

The e�ciency of FastMM is based on a fast and good approximation Q of
the quotient q = ba�b

N
c, which is used to calculate the relaxed residuum

y = a � b� Q �N:

Q is calculated as follows:

Q =

�j
a � b � 2�(k�1)

k � 1

N
� 22k+4

�
� 2�(k+5)

�

k is the length of the modulus N in bits. For convenience, we introduce

NegN = �N

N1 =

�
1

N
� 22k+4

�

Note that both, NegN as well as N1 can be precomputed.
Now, FastMM can be represented using the following symbolic instructions (w[i]
denotes the i rightmost bits of w, [i]w denotes the i leftmost bits of w):

X[2k + 4] a[k + 2] � b[k+ 2] (A)

Q[2k+ 10] N1[k + 5] � [k + 5]X (B)

y[k + 2] NegN [k + 2] � [k + 5]Q+X[k + 2] (C)

In [Posch et al (1990)] it is shown that the results of continued relaxed modulo
multiplications never exceed the limit given by e. Therefore, only after the last
multiplication a �nal modulus reduction might be necessary. Obviously, this re-
duction step does not decrease throughput, compared to the hundreds of modulo
multiplications which are to be performed for getting the relaxed result. This
�nal modulus reduction can be done by adding NegN to the result. Note that
NegN and the possibility to perform an addition are needed by the FastMM al-
gorithm, anyway. Therefore, the �nal modulus reduction requires no additional
hardware e�ort or constants.

3 The MM Data Path

3.1 The Structure of the MM Data Path

The design of the MM data path, shown in [Figure 1], meets the special re-
quirements of the FastMM algorithm. It consists of several main registers with
length 696 bits (IO, Cph, Mkd, NegN, N1, Low, High), an APAP{structure
[Lippitsch et al (1991)] (described in [Section 3.2]) and a few auxiliary registers
of length eight bits. Adder-1 and Adder-2 are needed for converting the redun-
dant number representation | used by register High and the APAP{adder |
into binary numbers. Adder-3 performs the addition of multiplication step (C).
The purpose of the transmission gates as well as the overall function of the MM

730



APAP

data in data out

2�

Mult-K

Shr-IO
Ld-IO

Evl-IO

Shr-Cph
Ld-Cph

Evl-Cph

Ld-N1

Evl-N1

Ld-Mkd

Shr-High
Ld-High

Ld-NegN

Evl-NegN

Shr-Low
Ld-Low

Evl-Low

Adder

Multiplier

En-AC

En-C En-Cut

High

IO

Cph

N1

Mkd

NegN

Low

LSB-IO

MSB-Low

MSB-IO

+

+

+

LSB-Low

LSB-High

LSB-Add

Trp

q

q

qq
��

��

-
-

-

-
-

-

-

-

-

-
-

-

-

-

-
-

-

-

-

6

6

6

6

6
6

?

?

-

-

-

-

-

-

-
-

-
-

�

�

�

�

�

�

�

-
-

-
-

- ?-

-

-

-

�

�

��
�

��
�

��
�

HH
H

HH
H

HH
H

��
�
HH

H

696

BUS

696

696
696

696696 bit

8 bit

1 bit

Adder-1

Adder-2

Adder-3

Figure 1: The MM data path

731



data path will become clear in [Section 3.3].
We will use the main registers in the following way: The IO register is needed
for input/ouput operations, Cph (for cipher text) is commonly used for storing
the last result while the next modulo multiplication is running. NegN and N1
hold the corresponding constants mentioned in [Section 2], Mkd must contain the
actual multiplicand. Low receives the lower part of the result of a multiplication
in binary number representation, while High gets the higher part in redundant
number representation.

The MM data path requires quite many control signals, denoted as a control
word.
We present a complete list of the control signals which shows the actions in each
clock cycle if the corresponding signal is active:

Evl-X: Write value of register X to the 696 bit bus, where X can be one of the
following: IO, Cph, NegN, N1, Low.

Ld-Y: Load register Y with the value of the 696 bit bus, where Y can be one of
the following: IO, Cph, NegN, N1, Low, Mkd.

Ld-High: Load register High with the current value of the APAP{adder, then
clear the APAP{adder.

Shr-High: Enable storing the least signi�cant byte of register High to LSB-High,
then shift High to the right by one byte.

Shr-Low: Shift Low to the right by one byte, including MSB-Low.
Shr-IO: Shift IO to the right by one byte including MSB-IO, thus loading a new

byte from outside via MSB-IO.
LSB-IO bu�ers the least signi�cant byte of IO and provides it for output.

Shr-Cph: Shift right Cph by one bit.
En-AC: Enable storing the least signi�cant byte of the APAP{adder to LSB-Add

during operation (A) resp. (C) of FastMM.
En-C: Enable storing the least signi�cant byte of register Low to LSB-Low during

operation (C) of FastMM.
En-Cut: Cut o� the bit stream on changing from high to low.
2�: Eight bits, holding the value of 2�.
Mult-K: Load register Trp with 2� for multiplying with Mkd.

3.2 The APAP{Structure

The APAP (As Parallel As Possible){structure represents a mixture of a seri-
al/parallel multiplier and a full parallel Wallace tree multiplier [Wallace (1964)].
This approach has been chosen because for long integer arithmetic convention-
al serial/parallel multipliers would be far too slow, whereas a full Wallace tree
multiplier cannot be implemented on reasonable chip area with current tech-
nology. The degree of parallelism (i.e., the number p of new partial products
that can be processed each cycle) may vary between certain boundaries, which
allows for scaling the APAP design. To avoid carry delays, redundant number
representation is used.

For our purpose, we hide these implementation details, since we are only
interested in the overall understanding of control signal handling. Therefore,
we consider the APAP{structure together with Adder-2, as well as High to-
gether with Adder-1 to be \black boxes", thus hiding the internal function
of the APAP{adder and the redundant number representation. (However, for

732



understanding the timing of the control signal sequence, the number of cycles
consumed by the APAP{adder and Adder-1 resp. Adder-2 would have to be
known.) Multiplication can now simply be described as a serial/parallel multi-
plication, where p bits of the multiplier are processed each cycle. For the RSA�
Crypto Chip, p = 8 has been chosen.
The following example [Figure 2] provides such a pure behavioural description

� 654987

4374

5493

8144

6513

7953

?
High

�

�

�

8>><
>>:

�

-
8>><
>>:

�

-

HHj

HHj

HHj

Lsb-Addi+c

Lsb-Addi+c+1

Lsb-Addi+c+2

Trpi+2 Trpi+1 Trpiz }| {Mkd

Figure 2: Multiplication scheme

of the multiplication procedure. It uses decimal digits instead of bytes, showing
the principle of calculating the product of the multiplicand 789 and the multipli-
er 456. Regn denotes the content of Reg at the nth cycle; c is a positive constant
depending on the APAP{structure and the adders.
The APAP{adder gets the �rst partial product (PP) by multiplying the mul-
tiplicand (held in Mkd) with the least signi�cant digit of the multiplier. Note
that the least signi�cant digit of this PP represents the least signi�cant digit
of the the �nal result and can be loaded into Lsb-Add. Therefore, this PP is
shifted to the right by one digit, being aligned for the addition with the PP of
the next multiplication cycle as well. The least signi�cant digit of the result of
that addition represents the next digit of the result, and so forth. After the mul-
tiplicand has been multiplied with the most signi�cant digit of the multiplier,
the APAP{adder contains the higher part of the result, which can be loaded into
High.

Note that the APAP{adder always shifts its content to the right by one byte

733



each cycle, while Low resp. High can be forced by the corresponding control
signals to do so. It is important to understand that the MM data path is able to
perform these actions in parallel: For example, while the APAP{multiplier is fed
from High via Trp with a sequence of bytes to multiply, former multiplication
results may be shiftet into register Low. There are concurrent data streams, and
their ow is controlled by a few control signals.

3.3 Performing a Modulo Multiplication with the MM Data Path

operation action Mkd High Low

Mult-2� b! High b[k + 2]

a! Mkd a[k + 2]

Mult. step (A) a[k + 2] [k + 5]X X[k+ 2]

N1! Mkd N1[k + 5] [k + 5]X X[k+ 2]

Mod-Mul Mult. step (B) N1[k + 5] [k + 5]Q X[k+ 2]

NegN ! Mkd NegN [k+ 2] [k + 5]Q X[k+ 2]

Mult. step (C) NegN [k+ 2] y[k + 2]

Table 1: The FastMM scheme with the MM data path

Table 1 shows the overall scheme of the modulo multiplication with the MM
data path. Once registers NegN and N1 are loaded with the corresponding con-
stants, the multiplier b must get into High. Figure 1 shows that this can only
be done by loading it into Mkd �rst, followed by a multiplication by one. We
will call this operation Mult-2�, because we assign the correct value to � (in
this context we consider � = 0) and set Mult-K to high for one cycle. This way,
the content of Mkd gets multiplied with one (i.e., 2�), and must be loaded from
the APAP{adder into High at the very right moment, since the APAP{adder is
shifting its content permanently.

After loading Mkd with the multiplicand a, we can start with operation
Mod-Mul, the modulo multiplication using the FastMM algorithm. Figure 3 |
which shows the control signal waveforms of a 664{bit modulo multiplication
simulation | can now be understood:
We start multiplication step (A) with setting high Shr-High to feed the APAP{
structure with the multiplier byte by byte. En-AC, En-Cut and Shr-Low are also
set to high for shifting the lower part of the intermediate result into Low; it will
be needed in step (C). When the higher part of the result is ready, it is load-
ed into High by activating Ld-High. At the same time, N1 can be loaded into
Mkd, starting multiplication step (B). This step is similar to step (A) except that
shifting the result into Low is omitted. Step (C) starts with loading NegN into
Mkd and is equal to step (A), but additionally sets En-C to high, thus adding the
lower part of the multiplication result with the previous content of Low. After
this procedure, the �nal result can be fetched from Low.

734



� -Mult-2� Mod-Mul

-�
-� -�

(A) (B) (C)

Mult-K

Ld-High

Ld-Mkd

Evl-Cph

Shr-High

En-AC

En-C

En-Cut

Shr-Low

Evl-N1

Evl-NegN

Figure 3: Timing diagram of the control signals during Mult-2� and Mod-Mul

3.4 Observations about the Control Words

We note that the two operations Mult-2� and Mod-Mulwork correctly if and only
if their related sequences of control words appear in a given order with a given
timing; in particular, the control words within these two operations must not be
separated by any additional control word, not even by a NOP (that is, a control
word which performs no operation onto the MM data path). That is because
the ow of the di�erent data streams will proceed with the internal clock, and
synchronization with external feeding of control words is to be assumed at given
cycles. Obviously, a wrong product would be calculated otherwise. We will refer
to such a non{interruptable sequence of control words as an atomic sequence.
We further note that throughout the algorithm some control words are repeated
several times. These sections will be referred to as stable sections.

With respect to [Section 5] it is useful to consider an atomic sequence as a
sequence of stable sections, where the number of the stable sections is called the

735



stable sections

cycle n

cycle n+ 15 ?

control word A
1 cycle

control word B
7 cycles

control word C
2 cycles

control word A
5 cycles

Z
Z

Z
Z

Z
Z

Z
ZZ}

XXX
XXX

XXXy

���������9
�

�
�

�
�

�
�

��=

Figure 4: An atomic sequence, consisting of several stable sections

depth of the atomic sequence. Figure 4 shows an atomic sequence of a length of
15 cycles and depth 4.

4 A Modi�cation of the FastMM Algorithm: FastMM�

A closer look at the FastMM algorithm shows that truncation of intermediate
results is necessary. For reasons of regularity it would be easier to implement
truncation only at multiples of i bits rather than at arbitrary positions. With
FastMM, values would generally be cut o� at positions 6= i � n.

To facilitate implementation, a solution of this problem is given by a method
called preshifting. With this method, constants NegN and N1 as well as a and
b are preshifted to the left by certain values. Loading the multiplier into High

is done by using a � 6= 0 when performing operation Mult-2�, thus shifting the
multiplier to the left by � bits for aligning at a desired border. After the modulo
multiplication is �nished, a �nal alignment is necessary to get the correct result.
Furthermore, En-Cut must be able to truncate at arbitrary bit borders rather
than at a position i � n.
It is needless to mention that these additional procedures make the handling
of the control signals more complicated. Therefore, the lengths of stable sec-
tions within the atomic sequence of operation Mod-Mul are shortened, increasing
the depth of the atomic sequence | this is disadvantageous, as we will see in
[Section 5]. For that reason, we would prefer an algorithm which avoids these
di�culties.

736



The obvious goal in algorithm design is to minimize depth for a given algo-
rithm by control word rearranging. A solution is given by a modi�ed version of
FastMM, called FastMM�.
FastMM� consists of the following steps:

X  a � b

Z  M1 �
X

2shift1

y  NegN �
Z

2shift2
+X

The basic idea is to apply shifts only to constants which can be performed in
advance. This algorithm has the same structure as FastMM, but uses a di�erent
constant M1 instead of N1. Preshifting will not be necessary because shift1
and shift2 can be determined to meet the conditions shift1 � 0 (mod i) and
shift2 � 0 (mod i). Typically, one chooses i = log2 r, where r is the radix on
which the long integer hardware is operating. The goals de�ned above can be
achieved by calculating M1, shift1 and shift2 in the following way:

adj2 = (k � 1) mod i

adj1 = i� ((k + 5 + adj2) mod i)

shift1 = k � 1� adj2

shift2 = k + 5 + adj1 + adj2

M1 = 22k+4+adj1 �
1

N

k is the length of the modulus N in bits.
A further bene�t of FastMM� is that it allows optimization in terms of the

possibility to change more control signals at the same time (i.e., a higher degree
of parallelism) than with FastMM. This results in a signi�cant reduction of
the depth of the atomic sequence associated with Mod-Mul. Additionally, for
FastMM� � is always 0, therefore control signals associated with 2� may be
omitted.

5 Managing the Clock Rate Di�erence Using a FIFO

In this section, a method for compensating the di�erence between the maxi-
mum clock rate allowed by the pads and the clock rate of the MM data path is
presented.

First, data ow at the control signal interface will be reduced. This can easily
be done because the MM data path doesn't need to be fed with one control word
each cycle if we use stable sections instead. Each stable section is described by the
corresponding control word and the numer of cycles it is \stable" [see �gure 4].
The control structure between the pads and the MM data path now consists of
a bu�er for the control word, and a down counter to decide when to fetch the
control word of the next stable section. That would be su�cient if each stable
section consisted of enough cycles, ensuring that continuous fetching of control
words never exceeds the maximum clock rate allowed by the pads.

737



Unfortunately, there are a lot of stable sections consisting only of a few cycles.
Therefore, a mechanism has to be added which feeds internally generated NOPs
into the MM data path until the next control word is available. Otherwise, con-
trol words could inuence the MM data path in a wrong way.
However, this will still not work because atomic sequences must not be interrupt-
ed by NOPs. (The problem arises because of the existence of atomic sequences
which contain stable sections of length one, as we will see in [Section 5.1].) The

MM Data Path
- -data in data out

?

counter control word bu�er

rep. count control word

? ?

rep. count control word

? ?

? ?

? ?

...
...

9>>>>>>>>>>=
>>>>>>>>>>;

f stage FIFO

Figure 5: A FIFO for compensating the clock rate di�erence

solution is to add a FIFO between the pads and the control word bu�er [see
�gure 5]. Inserting NOPs in between an atomic sequence can be prevented by
preceding each atomic sequence with an externally inserted NOP as the control
word, and a repeat count big enough to �ll the FIFO with the stable sections
of the entire atomic sequence. When the down counter expires, the stages of
the FIFO are shifted, and the counter gets the next repeat count as start val-
ue. Internally generated NOPs will only reach the MM data path if the FIFO
is cleared before the next external control word could reach the control word
bu�er. Therefore, the depth of the FIFO must not be lower than the depth of
the longest atomic sequence.
As will be shown in [Section 5.2], analyzing atomic sequences of FastMM� allows
for reducing this depth.

738



5.1 Atomic Instruction Sequences of FastMM�

For observing the control word ow at the MM data path, a simulation envi-
ronment has been developed. This environment uses GENIE1 for controlling the
simulation of an RSA encryption with Lsim2. The simulation is based on an
functional M 3{model of the MM data path.
The use of the procedural simulation interface provided by GENIE has several
advantages:

{ Simulation runs of high complexity can be controlled and evaluated by using
a C{like language, thus allowing a higher level of abstraction than with
conventional methods.

{ Straightforward observation of the 696 bit wide MM data path becomes
enabled.

{ One can get the sequence of stable sections (that is, the control words and the
associated number of cycles) for a modulo multiplication totally automatic.

{ Flexibility in controlling the simulation simpli�es extracting the atomic se-
quences.

{ Once the simulation environment is \debugged", the occurance of errors
when analyzing the interface is minimized.

Using this environment, the control signal interface of the MM data path can
easily be analyzed for di�erent algorithms as well as for di�erent implementations
of the same algorithm. Additionally, it supplies the control words needed for
controlling a test chip which uses the proposed FIFO.

Control Word Repetitions

1 0180000h 0
2 0100000h 1
3 0104000h 0

Table 2: Stable sections of Mult-2�

In [Table 2] and [Table 3], the atomic sequences for Mult-2� and Mod-Mul of
a full 664 bit modulo multiplication are shown. For each stable section the �rst
value represents the control word, the second value the required repeat count.
We observe that Mod-Mul calls for a FIFO of at least depth 9. This result is
only valid for the FastMM� algorithm; as mentioned in [Section 4], the FastMM
algorithm would increase depth signi�cantly.

1 GENIETM (General Interpreted Environment) is a general{purpose interpreted
language well{suited for use as a control language attached to application programs
like Lsim.

2 LsimTM is a MentorGraphicsR design automation tool that allows to analyze the
behaviour of electronic designs ranging from high{level, abstract system models
through full{custom integrated designs.

3 M is a hardware description language for describing the behaviour of circuits in
functional models, for use with the Lsim simulator.

739



Control Word Repetitions

1 0158020h 88
2 014E420h 0
3 0148020h 6
4 0148000h 81
5 015F000h 0
6 0158000h 5
7 0178020h 85
8 0124020h 0
9 0120020h 1

Table 3: Stable sections of Mod-Mul

5.2 Reducing Depth of the Instruction FIFO

Having in mind [Table 3], we are able to introduce some optimizations. Since
Mod-Mul starts with a control word which is repeated many times, this atomic
sequence doesn't need to be preceded by an externally inserted NOP; the FIFO
will be �lled, anyway. Thus, waste of execution cycles can be reduced. That
is true because we made the implicit assumption Te=Ti � r, where Te is the
external cycle time (the maximumcycle time allowed by the pads), and Ti is the
internal cycle time the MM data path uses. It seems to be adequate to assume
r = 5.
A closer look at [Table 3] shows that for r = 5 a FIFO of depth 3 is su�cient
because within Mod-Mul there are stable sections long enough to prevent clearing
out the FIFO. This depth also satis�es Mult-2�.

A second possible method to reduce the depth of the FIFO is to split the
atomic sequence associated with Mod-Mul into three shorter atomic sequences
associated with the multiplication steps (A), (B) and (C). This method adds
extra cycles to the entire modulo multiplication, but does not lead to a smaller
FIFO than the �rst method does. Because speed of the modulo multiplication is
the bottleneck of an RSA implementation, that method is not of prime interest.

6 An Outline of the Hardware Implementation

Using a FIFO for controlling the MM data path meets the goal of having an
\as simple as possible" control structure for testing purposes. It would be quite
consistent to avoid extremely complex design methods when implementing the
FIFO in hardware. For the same reason, shifting the contents of the FIFO stages
is chosen to be done synchronously rather than asynchronously.
The clock of the MM data path is used, since the FIFO must operate at the
same (high) speed. This high speed seems to be the only substantial di�culty
when designing the FIFO circuit layout.

As we have seen in [Section 5], a down counter will be needed. It has to ful�l
the given timing constraints: decrementing, detecting underow, setting up load
signals for the stages and shifting the stages must work within a single cycle.
Therefore, the down counter is replaced by a shifter, as shown in [Figure 6]. This

740



down counter
(n bits)

c

shifter
(2n bits)

00 0 0 0 0 00 1� � � � � �

b2n�1 bc b1 b0� � � � � �

+

-

Figure 6: Replacing the down counter by a shifter

way, much of time is saved because shifting a single bit works a lot faster than
decrementing a counter, and no decoder is necessary for detecting whether the
next control word has to be loaded; this can be done by inspecting the single bit
b0. To avoid an excessively long shifter, its length can be decreased by limiting
the repeat count to a certain power of two, thus splitting long stable sections.
On the increasing FIFO depth resulting thereof and the length of the shifter a
good compromise has to be evaluated.

Figure 7 shows a schematic diagram with a FIFO of depth 4. Precise timing
issues are omitted; in particular, the circuit for the handshake signal timing has
to be designed carefully. Special attention has to be paid to the asynchronous
Strobe input to avoid metastable states and synchronization failure.
The handshake procedure works in the following way: If the top FIFO stage
is empty, Busy is set to low, indicating a request for the next control word.
The positive edge of Strobe signals that the next control word is available from
outside, and sets Busy to high. For the time Busy is low, internal NOPs with
repeat count 0 are to be inserted. This is done by \anding" the input signals
with Busy. Additionally, the Ext bit is cleared, indicating an internally generated
NOP. If Busy is high and the load signal for the top stage is set, there must have
been a rising edge of Strobe (because the load signal resets Busy). In that case,
the top stage is loaded from outside.
Load signals are generated as follows: Expiration of the shifter means to load
all stages. If any stage is marked as an internally generated NOP, it should be
overwritten at the next cycle, and all stages above have to move down; with
other words, the decision for shifting an upper stage depends on the state of
all underlying stages. This results in cascaded OR gates, shown in [Figure 7].
Remember there is only one cycle for setting up all load signals, therefore serious

741



q

q

q

q

MM Data Path

- -

?

data in data out

shifter control word bu�er
b0

? ? ?

Ext rep. count control word

�

�-

HH�
�d

��
q

?

Ext rep. count control word �-

HH�
�d�
�

? ? ?

Ext rep. count control word �-

HH�
�d�
�
q ? ? ?

Ext rep. count control word �-

HH�
�d�
�
q

E
E
EE

%
%
%%q -

q
6

?

? ? ?

�
�

����

q

q

6

q
��

Strobe Busy rep. count control word

clk

set

HSL
reset

ld

q

ld

q ld

q ld

ld

HSL: Handshake
Signal Logic

Figure 7: Schematic diagram of the FIFO

delays caused by cascaded gates must be avoided.

7 Conclusion

In order to design a chip for testing the MM data path, we searched a minimum
version of the control structure. After analyzing the data ow at the control
interface, we introduced a FIFO for compensating the di�erence of the maximum
clock rate allowed by the chip's pads, and the clock rate the MM data path

742



requires to reach the desired encryption rate.
Simulation results for a complete 664 bit RSA run based on M{models of

the FIFO and the MM data path showed that it is su�cient to precede the
whole sequence of multiplications with only a few NOPs, if we use the FastMM�

algorithm and do not reduce the depth of the FIFO as described in [Section 5.2].
In this case, not even a single additional NOP needs to be inserted in between
that sequence of multiplications. Because almost all cycles of a complete RSA
run are needed for that sequence of multiplications, overall performance is not
signi�cantly a�ected by a slow clock rate at the pads. Therefore, if there is no
need to reduce the depth of the FIFO (e.g. for shrinking down its size to save chip
area), an RSA chip using the proposed control stucture might be appropriate
even beyond testing purposes.

References

[Knuth (1981)] , D.E. Knuth: The Art of Computer Programming. Second Edition,
Volume 2 / Seminumerical Algorithms, Addison{Wesley (1981), pp 441{442.

[Lippitsch et al (1991)] P. Lippitsch, K.C. Posch, R. Posch: Multiplication As Parallel
As Possible. First International Conference of the Austrian Center for Parallel
Computation, (Sep. 1991).

[Lippitsch et al (1992)] P. Lippitsch, K.C. Posch, R. Posch, V. Schindler: A scalable
design with encryption rates from 200 kBit/s to 1.5 MBit/s. 32nd International
Science Week, Damascus, (Dec. 1992).

[Montgomery (1985)] P.L. Montgomery: Modulo Multiplication without Trial Division.
Mathematics of Computation, Volume 44, Number 170, (Apr. 1985). pp 519{521.

[Posch et al (1990)] K.C. Posch, R. Posch: Approaching encryption at ISDN speed us-
ing partial parallel modulus multiplication.Microprocessing and Microprogramming
29, (1990), pp 177{184.

[Rivest et al (1978)] R. Rivest, A. Shamir, L. Adleman: A method for obtaining digital
signatures and public{key cryptosystems. Comm. ACM (1978), pp 120{126.

[Wallace (1964)] C.S. Wallace: A suggestion for a fast multiplier. IEEE Transactions
on Electronic Computers, Vol. EC{13, (Feb. 1964), pp 14{17.

[Weste et al (1993)] N.H.E. Weste, K. Eshraghian: Principles of CMOS VLSI Design.
A Systems Perspective. Second Edition, Addison{Wesley (1993).

743


