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Abstract: Chaitin's algorithmic de�nition of random strings|based on the com-
plexity induced by self-delimiting computers|is critically discussed. One shows that
Chaitin's model satisfy many natural requirements related to randomness, so it can be
considered as an adequate model for �nite random objects. It is a better model than
the original (Kolmogorov) proposal. Finally, some open problems will be discussed.
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1 Motivation

Suppose that persons A and B give us a sequence of 32 bits each, saying that
they were obtained from independent coin 
ips. If A gives the string

u = 01001110100111101001101001110101

and B gives the string

v = 00000000000000000000000000000000;

then we would tend to believe A and would not believe B: the string u seems
to be random, but the string v does not. Further on, if we change the value of a
bit (say, from 1 to 0) in a (non) \random" string, then the result is still a (non)
\random" string. If we keep making such changes in a \random" string, then we
will eventually complete distroy randomness.

Laplace [21], pp.16-17 was, in a sense, aware of the above paradox, as it may
be clear from the following phrase:

In the game of heads and tails, if head comes up a hundred times in a row
then this appears to us extraordinary, because after dividing the nearly
in�nite number of combinations that can arise in a hundred throws into
regular sequences, or those in which we observe a rule that is easy to
grasp, and into irregular sequences, the latter are incomparably more
numerous.

1 This paper is an expanded version of an invited lecture given to the International
Symposium The Foundational Debate, Vienna, 15-17 September, 1994.

2 This work has been partially supported by Auckland University Research Grant
A18/XXXXX/62090/F3414022.
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In other words: non random strings are strings possessing some kind of regu-
larity, and since the number of all those strings (of a given length) is small, the
occurrence of such a string is extraordinary.

Furthermore, regularity is a good basis for compression. Accordingly, ran-
domness means the absence of any compression possibility; it corresponds to
maximum information content (because after dropping any part of the string,
there remains no possibility of recovering it). As we shall prove in Section 5,
most strings have this property. In opposition, most strings we deal with do not.

The information content of a phrase in a natural language (English, for exam-
ple) can be recovered even some letters (words) are omitted. The reason comes
from the redundancy of most spoken languages. As a consequence, there exist
many e�cient programs to compress texts written in natural languages. It is im-
portant to emphasize that all these methods work very well on texts written in
some natural language, but they do not work well on average, i.e. on all possible
combinations of letters of the same length. Redundancy is also a very powerful
handle to readers of mathematical books (and, in general, of scienti�c literature),
and also to cryptanalysts (for example, Caesar's ciphers|just permutations of
letters|can be broken by frequency analysis; see more on this topic in Salomaa
[27]). A hypothetical language in which there are only strings with maximum in-
formation content gives no preference to strings (i.e. they have equal frequency);
this makes the cipher impossible to break. However, such languages do not exist
(and cannot be constructed, even with the help of the best computers, available
now and in the future); redundancy is essential and inescapable in a spoken
language (and to a large extent in most arti�cial languages; see Marcus [25]).

Before passing to some the formal treatment it is natural to ask the follow-
ing question: Are there any random strings? Of course, we do not have yet the
necessary tools to properly answer this question, but we may try to approach
it informally. Let us call canonical program the smallest program generating a
string. We claim that every canonical program should be random, independently
if it generates or not a random output. Indeed, assume that x is a canonical pro-
gram generating y. If x is not random, then there exists a program z generating
x which is substantially smaller than x. Now, consider the program

from z calculate x, then from x calculate y.

This program is only a few letters longer than z, and thus it should be much
shorter than x, which was supposed to be canonical. We have reached a contra-
diction.

Borel [1, 2] was the �rst author who systematically studied random sequences.
The complexity-theoretic approach was independently initiated by Kolmogorov
[22] and Chaitin [9]. For more historical facts see Chaitin [17] (A Life in Math),
Uspensky [31], Li and Vit�anyi [23] and Calude [4].

2 Computers and Complexities

Denote by N the set of natural numbers; N+ = N n f0g. If S is a �nite set,
then #S denotes the cardinality of S. We shall use the following functions: i)
rem(m; i), the remainder of the integral division of m by i (m; i 2 N+), ii) b�c,
the integral part of the real �, iii) logQ; the base Q logarithm, log = blog2c.
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Fix A = fa1; : : : ; aQg; Q � 2, a �nite alphabet. By A� we denote the free
monoid generated by A (under concatenation). The elements of A� are called
strings; � is the empty string. For x in A�; jxj is the length of x(j�j = 0). For
m in N , Am = fx 2 A� j jxj = mg. For every x 2 A� and natural n put
xn = xx : : :x, (n times); x0 = �.

Every total ordering on A, say a1 < a2 < � � � < aQ, induces a quasi-
lexicographical order on A� : � < a1 < � � � < aQ < a1a1 < � � � < a1aQ <
aQaQ < � � � < a1a1a1 < � � �. We denote by string(n) the nth string in A� ac-
cording to the quasi-lexicographical order. The induced order on each set Am

coincides with the lexicographical order.
Working with partial recursive (p.r.) functions ' : A� � A�

o
! A� (called

sometime blank-endmarker computer|see Chaitin [15]) we adopt the notations
from Calude [3]. If x 2 dom('), that is x is in the domain of ', then we write

'(x) < 1. A Chaitin computer is a p.r. function C : A� � A�
o
! A� with a

pre�x-free domain (i.e. for every string z, there is no pair of distinct strings x; y
such that U (x; z) < 1; U (y; z) < 1, and x is a pre�x of y). To a Chaitin
computer C one associates the self-delimiting complexity or Chaitin complexity

HC : A�
o
! N; HC(x=y) = minfjzj j z 2 A�; C(z; y�) = xg;

with the convention min; = 1; here y� = minfw 2 A� j U (w; �) = yg, the
operator min being taken according to the quasi-lexicographical order.

The basic result obtained by Chaitin [9] (called the Invariance Theorem)
states the existence of a Chaitin computer U (called universal Chaitin computer)
such that for every Chaitin computerC there exists a constant c (depending upon
U and C) such that

HU (x=y) � HC(x=y) + c;

for all x; y 2 A�.3 The complexity induced by a blank-endmarker computer
'; K' is de�ned by K'(x=y) = minfjzj j z 2 A�; '(z; y) = xg. A similar
Invariance Theorem holds true for blank-endmarker computers. See also Chaitin
[9, 10], Kolmogorov [22], Martin-L�of [26], Calude [3].

For this paper we �x a universal Chaitin computer U and denote by H
the induced complexity. Also, �x a universal blank-endmarker computer  :
A� � A�

o
! A� and denote by K the induced complexity. By H(x); K(x) we

denote the complexities H(x=�); K(x=�), respectively.
Let f; g; h : A� ! [0;1) be three functions. We write f � g + O(h) in case

there exists C > 0 such that f(x) � g(x) + Ch(x), for almost all strings x. We
write f = g + O(h) in case f � g + O(h) and g � f + O(h); f � g means that
there exists two positive reals �; � such that

f(x) � �g(x) and g(x) � �f(x), for almost all strings x.

3 Chaitin Random Strings

To motivate our approach we use the analogy between \tallness" and \random-
ness". To appreciate if a person is or is not tall we proceed as follows. We choose
a unity measure (say, centimetre) and we evaluate the height. We get an absolute

3 Exact values for all additive constants discussed in this paper have been recently
computed by Chaitin [19]|using a Lisp model of computation.
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value. Next, we establish \a set of people of reference". For instance, if we have
to appreciate how tall is a little girl we �x an age and we relate her height to
the average height of girls of that age. But, if we discuss the same question for a
teenager, the situation is completely di�erent. It follows that the adjective tall
is relative. To correctly appreciate it we need both components: the exact one
(height) and the relative one (comparison within a �xed set). It is fortunate that
in English we have two words to express this: height and tall.

For randomness we proceed in a similar way, trying to capture, as best as
possible, the idea that a string is random if it cannot be algorithmically com-
pressed. First we use a measure of complexity for strings (H); this represents the
\absolute component". Secondly, we de�ne randomness \relative to a set"|the
relative component. In our case we appreciate the degree of randomness of a
string with respect to the set of all strings, over a �xed alphabet, having the
same length.4

Of course, the success or failure of the approach depends upon the measure
of complexity we are adopting. The use of self-delimiting programs instead of
blank-endmarker programs is motivated by Chaitin [16] as follows:

A key point that must be stipulated ... is that an input program must
be self-delimited: its total length (in bits) must be given within the pro-
gram itself. (This seemingly minor point, which paralyzed progress in the
�eld for nearly a decade, is what entailed the rede�nition of algorithmic
randomness.) Real programming languages are self-delimiting, because
they provide constructs for beginning and ending a program. Such con-
structs allow a program to contain well-de�ned subprograms nested in
them. Because a self-delimiting program is built up by concatenation and
nesting self-delimiting subprograms, a program is syntactically complete
only when the last open subprogram is closed. In essence the beginning
and ending constructs for programs and subprograms function respec-
tively like left and right parentheses in mathematical expressions.

We �rst recall the asymptotical behaviour of the complexity H (see Chaitin
[12, 14]):

Theorem 3.1. Let f : N ! A� be an injective, recursive function. a) One
has: X

n�0

Q�H(f(n)) � 1:

b) Consider a recursive function g : N+ ! N+.5

i) If
P

n�1Q
�g(n) =1, then H(f(n)) > g(n); for in�nitely many n 2 N+.

ii) If
P

n�1Q
�g(n) <1, then H(f(n)) � g(n)+O(1).

Proof. a) It is plain that:X
n�0

Q�H(f(n)) �
X
x2A�

Q�H(x) �
X
x2A�

P (x) � 1:

4 So, the \context" is determined by the length and the size of the alphabet.
5 Actually, this part is still true in case g is a function semi-computable in the limit
from above.

51



b) i) Assume �rst that
P

n�1Q
�g(n) =1. If there exists a natural N such that

H(f(n)) � g(n); for all n � N;

then we get a contradiction:

1 =
X
n�N

Q�g(n) �
X
n�N

Q�H(f(n)) �
X
n�0

Q�H(f(n)) � 1:

In view of the hypothesis in b) ii), there exists a natural N such thatP
n�N Q

�g(n) � 1. We can use Kraft-Chaitin Theorem in order to construct

a Chaitin computer C : A� � A�
o
! A� with the following property: For every

n � N there exists x 2 A� with jxj = g(n) and C(x; �) = f(n). So, there exists
a natural c such that for all n � N ,

H(f(n)) � HC(f(n)) + c � g(n) + c:

2

Example 3.2.
P

n�0Q
�H(string(n)) � 1:

Example 3.3. i) Take g(n) = blogQ nc. It is seen that
P

n�1Q
�g(n) =1, so

H(string(n)) > blogQ nc, for in�nitely many n � 1.
ii) For g(n) = 2blogQ nc, one has:

X
n�1

Q�g(n) � Q
X
n�1

1

n2
<1;

so H(string(n)) � 2blogQ nc + O(1). For Q > 2 and g(n) = blogQ�1 nc, one
has: X

n�1

Q�g(n) � Q
X
n�1

1

nlogQ�1 Q
<1;

so H(string(n)) � blogQ�1 nc+ O(1).

Remark. Chaitin complexityH can be characterized as a minimal function,
semi-computable in the limit from above, that lies on the borderline between the
convergence and the divergence of the seriesX

n�0

Q�H(string(n)):

Put HC(x; y) = HC(< x; y >), where <;>: A� � A� ! A� is a recursive
bijection.

The following three formulae come from Chaitin [12, 13, 14]:

Lemma 3.4. There exists a natural c such that for all string s x; y 2 A� one
has

H(x) � H(x; y) + c;

H(x; y) � H(x) +H(y=x) + c;

H(x; y) � H(x) +H(y) + c:
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We are in the position to evaluate the complexity of the most complex strings
of a given length (�rst obtained in Chaitin [12]).

Theorem 3.5. For every n 2 N , one has:

max
x2An

H(x) = n+H(string(n)) +O(1):

Proof. In view of Lemma 3.4, for every string x of length n,

H(x) � H(string(n); x) + O(1) � H(string(n))

+H(x=string(n)) + O(1):

To get the relation

max
x2An

H(x) � n +H(string(n)) + O(1)

we shall prove that for every string x of length n,

H(x=string(n)) � n+O(1):

Fix n � 0 and de�ne the Chaitin computer Cn : An � A�
o
! A� by

Cn(x; y) = x if U (y; �) 6=1:

Accordingly, U ((string(n))� ; �) = string(n) and

H(x=string(n)) � HCn(x=string(n)) + O(1)

= minfjzj j z 2 A�; Cn(z; (string(n))
�) = xg+O(1)

� n+O(1):

To prove the converse relation we need the following
Intermediate Step. For every n � 0,

#fx 2 An j H(x) < n+H(string(n)) � t +O(1)g < Qn�t+O(1):

By Lemma ?? one has:

H(x) < n+H(string(n)) � t+O(1)() H(x=string(n)) < n� t+O(1);

so
#fx 2 An j H(x) < n+H(string(n)) � t+ O(1)g =

#fx 2 An j H(x=string(n)) < n� t +O(1)g < Qn�t+O(1):

Accordingly, not all strings of length n have the complexity less than n +
H(string(n)) + O(1), i.e. maxx2An H(x) � n+H(string(n)) + O(1). 2

The above discussion may be concluded with the following de�nition. Let
� : N ! N be the function de�ned by

�(n) = max
x2An

H(x):

In view of Theorem 3.5, �(n) = n+H(string(n))+O(1):We de�ne the random
strings of length n to be the strings with maximal self-delimiting complexity
among the strings of length n, i.e. the strings x 2 An having H(x) � �(n):
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De�nition 3.6. A string x 2 A� is Chaitin m-random (m is a natural
number) if H(x) � �(jxj)�m; x is Chaitin random if it is 0-random.

The above de�nition depends upon the �xed universal computer U ; the gen-
erality of the approach comes from the Invariance Theorem.

Obviously, for every length n and for every m � 0 there exists a Chaitin
m-random string x of length n. Denote by RANDC

m; RAND
C , respectively, the

sets of Chaitin m-random strings and random strings.
It is worth to note that the property of Chaitinm-randomness is asymptotic.

Indeed, for x 2 RANDC
m, the larger is the di�erence between jxj andm, the more

random is x. There is no sharp dividing line between randomness and pattern,
but it looks as though all x 2 RANDC

m with m � H(string(jxj)) have a true
random behaviour.

How many strings x 2 An have maximal complexity, i.e.H(x) = �(jxj)? The
answer was given by Chaitin [18]:

Theorem 3.7. There exists a natural constant c > 0 (which depends upon the
size of the underlying alphabet, Q) such that


(n) = #fx 2 An j H(x) = �(jxj)g > Qn�c;

for all natural n.

How large is c? Out of Qn strings of length n, at most Q + Q2 + � � � +
Qn�m�1 = (Qn�m � 1)=(Q � 1) can be described by programs of length less
than n � m. The ratio between (Qn�m � 1)=(Q � 1) and Qn is less than 10�i

as Qm � 10i, irrespective of the value of n. For instance, this happens in case
Q = 2;m = 20; i = 6; it says that less than one in a million among the binary
strings of any given length is not Chaitin 20-random.

So, in a strictly quantitative sense, almost all strings are Chaitin random.

Problem. Denote by (cQ)Q�2 the sequence of constants appearing in Theo-
rem 3.7. Is this sequence bounded?

The rest of this paper will be devoted to the analysis of the adequacy of
Chaitin's de�nition of randomness.

4 A Statistical Analysis Random Strings

In this section we confront Chaitin's de�nition of randomness with the prob-
ability point of view. As we have already said, the present proposal identi�es
randomness with incompressibility. In order to justify this option we have to
show that the strings that are incompressible justify the various properties of
stochasticity identi�ed by the classical Probability Theory. It is not so di�cult,
although tedious, to check separately such a single property. However, we may
proceed in a better way, due to the celebrated theory developed by Martin-L�of:
We demonstrate that the incompressible strings do possess all conceivable e�ec-
tively testable properties of stochasticity. Here we include the known properties,
but also the possible unknown ones. A general transfer principle will emerge, by
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virtue of which various results from classical probability theory carry automati-
cally for random strings.

The ideas of Martin-L�of's theory are rooted in the statistical practice. We
are given an element x of some sample space (associated to some distribution)
and we want to test the hypothesis x is a typical outcome. Being typical means
\belonging to every reasonable majority". An element x will be \random" just
in case x lies in the intersection of all such majorities.

A level of a statistical test is a set of strings which are found relatively non-
random (by the test). Each level is a subset of the previous level, containing less
and less strings, considered more and more non-random. The number of strings
decreases exponentially fast at each level. In the binary case, a test contains at
level 0 all possible strings, at level two only at most 1=2 of the strings, at level
three only 1=4 of all strings, and so on; accordingly, at level m the test contains
at most 2n�m strings of length n.

We give now the formal de�nition.

De�nition 4.1. An r.e. set V � A� � N+ is called a Martin-L�of test if
the following two properties hold true:
1) Vm+1 � Vm, for all m � 1 (here Vm = fx 2 A� j (x;m) 2 V g is the m-section
of V),
2) #(An \ Vm) < Qn�m=(Q� 1), for all n � m � 1.

By de�nition, the empty set is a Martin-L�of test.
The set Vm is called the critical region at level Q�m=(Q � 1). (Getting an

outcome string x in Vm means the rejection of the randomness hypothesis
for x.) A string x is declared \random" at level m by V in case x 62 Vm and

jxj > m.
The following example models the following simple idea: If a binary string x

has too many ones (zeros), then it cannot be random.

Example 4.2. The set

V = f(x;m) 2 A� �N+ jj
Ni(x)

jxj
�

1

Q
j> Qm 1p

jxj
g;

where Ni(x) is the number of occurrences of the letter ai in x, is a Martin -L�of
test.

Proof. Clearly, V is r.e. and satis�es condition 1). In view of the formula:

#fx 2 An jj
Ni(x)

jxj
�

1

Q
j> "g �

Qn�2(Q� 1)

n"2
;

one gets

#(An \ Vm) = #fx 2 An jj
Ni(x)

jxj
�

1

Q
j> Qm 1p

jxj
g

=
Qn�2(Q� 1)

Q2m
= Qn�2�2m(Q� 1) �

Qn�m

Q� 1
:

2
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De�nition 4.3. To every Martin-L�of test V we associate the critical level
mV : A� ! N ,

mV (x) =

�
maxfm � 1 j (x;m) 2 V g; if (x; 1) 2 V ,
0; otherwise.

A string x is declared random by a Martin-L�of test V if x 62 Vq, for some
q < jxj, or, equivalently, if mV (x) < jxj � 1.

De�nition 4.4. A Martin-L�of test U is called universal in case for every
Martin-L�of test V , there exists a constant c (depending upon U and V ) such that

Vm+c � Um;m = 1; 2; : : :

It is easy to see that aMartin -L�of test U is universal i� for every Martin-L�of
test V there exists a constant c (depending upon U and V ) such that

mV (x) � mU (x) + c; for all x 2 A�:

Our aim is to prove that almost all Chaitin random strings pass all con-
ceivable e�ective tests of stochasticity, i.e. they are declared random by every
Martin-L�of test.

Theorem 4.5. Fix t 2 N . Almost all strings in RANDC
t will be declared

eventually random by every Martin-L�of test.

Proof. If K is the complexity induced by a �xed universal blank-endmarker
computer, then by a result in Calude, Chitescu [7], the set U = f(x;m) 2
A� � N+ j K(x) < jxj � mg is a universal Martin-L�of test. Every section Ut is
r.e., so when a string x belongs to Ut, then
we can eventually discover this. Moreover, there are less than

Qn�t=(Q� 1)

strings of length n having this property. Thus if we are given jxj = n and t we
need to only know n� t digits to pick out any particular string x 2 An with this
property. I.e., as the �rst x that we discover has this property, the second x that
we discover has this property,...,the ith x that we discover has this property, and
i < Qn�t=(Q� 1). Accordingly, every string x 2 An \ Ut has the property that

H(x= < string(n); string(t) >) < n� t +O(1):

So, by Lemma 3.4:

H(x) < H(x= < string(n); string(t) >) +H(< string(n);

string(t) >) + O(1)

< n� t+H(string(n); string(t)) + O(1)

< n� t+H(string(n)) +H(string(t) + O(1)

< n� t+H(string(n)) + O(logQ t);

since in general H(string(m)) < O(logQm):
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Finally, take x 2 RANDC
t , i.e. H(x) � �(jxj)� t, and �x an arbitrary Martin-

L�of test V . Take a natural T such that T � O(logQ T ) � t. It follows that
x 62 UT|otherwise we would have

H(x) < �(jxj)� T � O(logQ T );

which means T � O(logQ T ) < t. By virtue of the universality of U we get a
constant c such that Vm+c � Um;m = 1; 2; : : :; i.e. x 62 Vc+T . The constant c+T
is independent of x. So, for large enough random strings x, one has x 62 Vm and
jxj > m. 2

5 A Computational Analysis Random Strings

We pursue the analysis of the relevance of Chaitin's de�nition by confronting it
with a natural, computational requirement: there should be no algorithmic way
to recognize what strings are random.

The following result, due to Chaitin [11], Theorem 4.1, was used for deriving
the �rst information-theoretic incompleteness results (see also Chaitin [17]). We
use it now to discuss the uncomputability of RANDC

t .
Let <>: A� � N ! A� be a recursive bijective function.

Theorem 5.1. We can e�ectively compute a constant d such that if

We � f< w;m >2 A� � N j H(w) > mg;

then n � H(e) + d; for all < u; n >2 We.

Recall that a subset X � A� is immune i� it is in�nite and has no in�nite
r.e. subsets.

Corollary 5.2. Let g : N ! N be a recursive function such that the set
S = fw 2 A�jH(w) > g(jwj)g is in�nite. Then, the set S is immune.

Proof. Let We � fw 2 A�jH(w) > g(jwj)g. Put Ve = f< w; g(jwj) > jw 2Weg;
clearly, Ve is r.e. and Ve = Wf(e); for some recursive function f : A� ! A�. So,

Ve =Wf(e) � f< w;m > jH(w) > mg

and in view of Theorem 5.1 from< w; g(jwj) > 2 Ve =Wf(e) we deduce g(jwj) �
H(f(e)) + d, i.e., Ve is �nite. This shows that We itself is �nite. 2

Corollary 5.3. The set RANDC
t is immune for every t � 0.

Proof. Fix t 2 N . It is plain that

RANDC
t � fx 2 A�jH(x) � jxj � tg:

The set fx 2 A�jH(x) � jxj � tg is immune by Corollary 5.2 and every in�nite
subset of an immune set is itself immune. 2
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The above theorem can be expressed as:

(8B � A�)(B in�nite and r.e. ) B nRANDC
t 6= ;):

There are two (classically equivalent) ways to represent the above statement:

1. (8x 2 A�) (Wx in�nite ) 9y 2 A� : y 2Wx ! etminusRANDC
t );

2. 8x 2 A� : (Wx � RANDC
t ) (9n 2 N ) #(Wx) � n):

Based on theses statements we can formulate two constructive versions of
immunity:

The set R � A� is called constructively immune (Li [24]) if there exists a

p.r. function ' : A�
o
!A� such that for all x 2 A�, if Wx is in�nite, then

'(x) 6=1 and '(x) 2 Wx nR.

The set R � A� is called e�ectively immune (Smullyan [30]) if there

exists a p.r. function � : A�
o
!N such that for all x 2 A�, if Wx � R,

then �(x) 6=1 and #(Wx) � �(x).

It is worth noticing that there exist constructively immune sets which are not
e�ectively immune and vice-ve rsa. Moreover, if the complement of an immune
set is r.e., then that set is constructively immune. Hence, we get:

Theorem 5.4. For every t � 0, RANDC
t is constructively immune.

Proof. Fix t 2 N . The set fx 2 A�jH(x) � jxj � tg is constructively immune
since its complement is r.e. As RANDC

t is an in�nite subset of a constructive
immune set it follows that itself is constructive immune. 2

As a scholium of Corollary 5.2 one obtains:

Scholium 5.5. If g : N ! N is a recursive function with limn!1 g(n) =
1; recursively (i.e. there exists an increasing recursive function r : N ! N ,
such that if n � r(k), then g(n) � k) and the set S = fw 2 A� j H(w) > g(jwj)g
is in�nite, then S is e�ectively immune.

Proof. In the context of the proof of
Corollary 5.2, #We = #Wf(e) and if w 2We � fu 2 A� j H(u) > g(juj)g, then

g(jwj) < H(w) � H(f(e)) + d � jf(e)j + 2 log jf(e)j+ d+ c+ c0:

If jwj � r(jf(e)j+2 log jf(e)j+d+c+c0), then g(jwj) > jf(e)j+2 log jf(e)j+d+c+
c0, so w 62 We. Accordingly, ifw 2We, then jwj < r(jf(e)j+2 log jf(e)j+d+c+c0),
i.e.

#We � (Qr(jf(e)j+2 log jf(e)j+d+c+c0) � 1)=(Q� 1);

and the upper bound is a recursive function of e. 2

Corollary 5.6. For all t � 0, RANDC
t is e�ectively immune.

Proof. An in�nite subset of an e�ectively immune set is e�ectively immune. 2
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6 Random Strings Are Borel Normal

Another important restriction pertaining a good de�nition of randomness con-
cerns the frequency of letters and blocks of letters. In a \true random" string
each letter has to appear with approximately the same frequency, namely Q�1.
Moreover, the same property should extend to "reasonably long" substrings.

These ideas have been stated by Borel [1, 2] for sequences. In Chaitin [10]
one shows that Chaitin Omega Number representing the halting probability of
a universal self-delimiting computer is Borel normal.

Motivated by these facts we formalize the Borel normality property for
strings. First, let Ni(x) be the number of occurrences of the letter ai in the
string x, 1 � i � Q. Accordingly, the ratio Ni(x)=jxj is the relative frequency of
the letter ai in the string x.

For strings of length m � 1 we proceed as follows. We consider the alphabet
B = Am and construct the free monoid B� = (Am)�. Every x 2 B� belongs
to A�, but the converse is false. For x 2 B� we denote by jxjm the length of x
(according to B) which is exactly jxjm�1.

For every 1 � i � Qm denote by Nm
i the number of occurrences of yi in the

string x 2 B�; B = fy1; : : : ; yQmg. For example, take A = f0; 1g;m = 2; B =
A2 = f00; 01; 10;11g = fy1; y2; y3; y4g; x = y1y3y3y4y3 2 B�(x = 0010101110 2
A�). It is easy to see that jxj2 = 5; jxj = 10; N2

1 (x) = 1; N2
2 (x) = 0; N2

3 (x) =
3; N2

4 (x) = 1. Note that the string y2 = 01 appears three times into x, but not
on the right positions.

Not every string x 2 A� belongs to B�. However, there is a possibility "to
approximate" such a string by a string in B�. We proceed as follows. For x 2 A�

and 1 � j � jxj we denote by [x; j] the pre�x of x of length jxj � rem(jxj; j) (i.e.
[x; j] is the longest pre�x of x whose length is divisible by j). Clearly, [x; 1] = x
and [x; j] 2 (Aj)�. We are now in a position to extend the functions Nm

i from
B� to A�: put Nm

i (x) = Nm
i ([x;m]), in case jxj is not divisible by m. Similarly,

jxjm = j[x;m]jm.

De�nition 6.1. A non-empty string x 2 A� is called "-limiting (" is a �xed
positive real) if for all 1 � i � Q; x satis�es the inequality:����Ni(x)

jxj
�Q�1

���� � ":

De�nition 6.2. A string x 2 A� is calledBorel normal if f for every natural
m; 1 � m � logQ logQ jxj;

����Nm
j (x)

jxjm
� Q�m

���� �
s

logQ jxj

jxj
;

for every 1 � j � Qm.

In Calude [5] one proves the following result:

Theorem 6.3. For every natural t � 0 we can e�ectively compute a natural
number Mt (depending upon t) such that every string of length greater than Mt

in RANDC
t is Borel normal.
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Theorem 6.3 can be used to prove the following result (a weaker version was
obtained in Calude, Câmpeanu [6]):

Theorem 6.4. For every natural t and for every string x we can �nd two
strings u; v such that uxv 2 RANDC

t .

Proof. Fix t 2 N; x 2 Ai; i � 1. Almost all strings z 2 RANDC
t are Borel

normal by Theorem 6.3, i.e. they satisfy the inequality����Nm
j (z)

bn=mc
� Q�m

���� �
r

logQ n

n
;

for every 1 � j � Qm; 1 � m � logQ logQ n;n = jzj.

Take m = i, x to be the jth string of length i and pick a string z 2 RANDC
t

such that n = jzj = QQ2i+1

. It follows that�����N
i
j (z)

bn=ic
� Q�m

����� �
r

logQ n

n
;

in particular,

Q�i �

r
logQ n

n
�
N i
j(z)

bn=ic
:

To prove that N i
j(z) > 0 it is enough to show that

Q�i >

r
logQ n

n
;

which is true because r
logQ n

n
= Q

2i+1
2

� 1
2
Q2i+1

;

and
1

2
Q2i+1 �

1

2
22i+1 = 4i > 2i+

1

2
:

2

7 Extensions of Random Strings

In this section we deal with the following problem: To what extent is it possible
to extend an arbitrary string to a Chaitin random or no n-random string ?

Theorem 6.4 says that every string x can be embedded into a Chaitin random
string. The next results will put some more light on this phenomenon.

Theorem 7.1. For every natural t and every string x 2 A� there exists a
string u 2 A� such that for every string z 2 A�; xuz 62 RANDC

t .
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Proof. Fix t 2 N and x 2 A�. Append to x a string u such that xu = string(m)
and 1+T < jstring(m)j, where T is a natural number such that T�O(logT ) � t.
Put

y = xuam1 :

Next de�ne the Chaitin computer C(am1 a2(.z)) = yz = xuam1 z, where d(z) is a
self-delimiting program for z. It is seen that

H(yz) � m + 1 +H(z) + O(1)

= jyzj+ (H(z)� jzj) +m � jyj+ O(1)

= jyzj+ (H(z)� jzj)� jstring(m)j +O(1)

� �(jyzj) � t:

This shows that every extension xuz of x lies in A� nRANDC
t . 2

Corollary 7.2. For every natural t we can �nd a string x no extension of
which is in RANDC

t .

The above result shows that in Theorem 6.4 we need both the pre�x u and
the su�x v, i.e. it is not possible to �x u = � and then �nd an appropriate
w. However, such a possibility is regained|conforming with the probabilistic
intuition|as far as we switch from RANDC

t with a �xed t to RANDC
t with an

appropriate, small t.
We start �rst with a preliminary result:

Lemma 7.3. Let < be a partial order on A� which is recursive and unbounded.
Assume that < satis�es the relationX

x<w

Q�jwj�blogQ jwjc =1; for all x 2 A�:

Then, for every string x we can �nd a string y such that x < y and H(y) �
jyj+ blogQ jyjc.

Proof. Assume, by absurdity, that there exists x 2 A� such that for all x < u
one has H(u) < juj+ blogQ jujc. Put

X = fv 2 A� j x < v;H(v) < jvj+ blogQ jvjcg

and notice that X
w2X

Q�H(w) �
X

v2domU�

Q�jvj < 1:

So,

1 >
X
w2X

Q�H(w) �
X
w2X

Q�jwj�blogQ jwjc =
X
x<w

Q�jwj�blogQ jwjc =1;

since
fw 2 A� j x < w;H(w) � jwj+ blogQ jwjcg = ;:

We have got a contradiction. 2
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Theorem 7.4. For every string x and natural n we can �nd a string u such
that: i) jxuj � n , ii) for some natural t (which is about blogQ jxujc), xu 2

RANDC
t .

Proof. Let < = <p be the pre�x order (x <p y in case y = xz, for some string
z). First it is seen that all conditions in Lemma 7.3 are veri�ed: <p is recursive,
unbounded andX

x<pw

Q�jwj�blogQ jwjc =
X
y2A�

Q�jxyj�blogQ jxyjc

�
X
y2A�

Q�jxyj�logQ jxyj

� Q�jxj�logQ jxj
1X
n=1

X
y2An

Q�jyj�logQ jyj

� Q�jxj�logQ jxj
1X
n=1

1

n

=1:

Now take x 2 A� and n � 1. Let y be an arbitrary string such that jxyj � n. By
virtue of the preceding argument we can �nd a string w such that xy <p w and

H(w) � jwj+ blogQ jwjc = �(jwj)� t;

where t = H(string(jwj))� blogQ jwjc is about blogQ jwjc. 2

8 Chaitin's Model vs Kolmogorov's Model

The original de�nition of random strings (see Kolmogorov [22], Chaitin [9, 10,
15]) is motivated by the fact that

max
jxj=n

K(x) = jxj+ O (1);

accordingly, x is called Kolmogorov t-random if K(x) � jxj� t; RANDK
t stands

for the set of Kolmogorov t-random strings.6

All results proven in this paper concerning the adequacy of Chaitin's de�-
nition of random strings actually hold true for Kolmogorov's model of random
strings.7 To the best of our knowledge there are no \natural" properties associ-
ated with randomness valid for one model and not valid for the other one. The
underlying complexitiesH andK are \asymptotical equivalent". Indeed, a crude
relation between H and K is the following:

H(x) � K(x):

6 Martin-L�of [26] used the blank-endmarker complexity of a string relative to its length
to measure the degree of randomness of a string \within" the context of all strings
having the same length.

7 See Chaitin [11, 12, 13, 14, 15], Martin-L�of [26], Solovay [28], Calude [3, 4], Li and
Vit�anyi [23] for a more detailed discussion.
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A more exact relation was obtained by Solovay [28]. Put:

K1(x) = K(x); Kn+1(x) = K(string(Kn(x)));

H1(x) = H(x); Hn+1(x) = H(string(Hn(x))):

Theorem 8.1. The following relations hold true:

H(x) = K(x) +K2(x) + O(K3(x));

K(x) = H(x)�H2(x) + O(H3(x)):

In view of Theorem 8.1 it might be the case that the set of Kolmogorov
random strings actually coincides with the set of Chaitin random strings. This
is not the case!

Using the proof of Theorem 3.5 one can show that every Chaitin random
string is Kolmogorov random. However, the converse is not true as Solovay [28]
has shown. Actually, Solovay [29] conjectures that there exists a constant L such
that for all su�ciently large n, there are at least Qn=2 strings of length n; s,
such that:

K(s) � jxj � L;

H(s) � jsj+H(string(n)) �
1

2
K2(string(n)):

So, many Kolmogorov random strings only \look" random, but in fact, they
are not. It is an open question to �nd out \natural" properties related to the
informal notion of randomness which hold true for Chaitin random strings, but
fail to be true for Kolmogorov random strings. Martin-L�of analysis, developed
in Section 4, is not �ne enough for this problem.

9 The Role of the Underlying Alphabet

It seems that there is a wide spread feeling that the binary case encompasses
the whole strength and generality of coding phenomena, at least from an algo-
rithmic point of view. The problem is the following: Does there exist a binary
asymptotical optimal coding of all strings over an alphabet with q > 2 elements?
Surprisingly, the answer is negative. The answer is negative for both complexities
K and H. As our main interest is directed to Chaitin complexity we shall outline
the results for this complexity measure.

Let q > p � 2 be naturals, and �x two alphabets, A;X, having q and p
elements, respectively. The lengths of x 2 A� and y 2 X� will be denoted by

jxjA and jyjX , respectively. Fix a universal Chaitin computer U : A��A�
o
! A�

and denote by H its induced complexity.

Does there exist a Chaitin computer C : X� � A�
o
! A� which is universal

for the class of all Chaitin computers acting on A�?
The upshot is the following result (see Calude [4], Calude, J�urgensen, and

Salomaa [8]):

Theorem 9.1. There is no Chaitin computer C : X� � A�
o
! A� which is

universal for the class of all Chaitin computers acting on A�.
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The proof is based on the fact that Chaitin complexity cannot be optimized
better than linearly, i.e. the Invariance Theorem is the best possible result in this
direction: For every �x a real number 0 < � < 1, there is no Chaitin computer
C : A� � A�

o
! A� such that for all Chaitin computers D one has:

HC(x) � �HD(x) + O(1):

Let us study Chaitin complexity acting on alphabets of di�erent size. We
need some more notation. For every natural i � 2 put Ai = f0; 1; : : :; i � 1g,
and let us denote by stringi(n) the nth string in A�i (according to the quasi-
lexicographical order induced by 0 < 1 < � � � < i � 1); let Hi : A�i ! N be
Chaitin complexity.

Theorem 9.2.
Let 2 � q < Q. Then, there exists a constant � (which depends upon q;Q) such
that for all x 2 A�q we have:

jHq(x)� (logq Q)Hq(x)j � �:

Proposition 9.3. For every 2 � q < Q and all x 2 A�q ,

HQ(x) < jxj+ O(1):

So, no string x 2 A�q is random over A�Q.
8 In the binary case we have only

two such strings, namely
00 : : :0 and 11 : : :1;

which are obviously non-random. In the non-binary case we have

Q�1X
i=2

in
�
Q
i

�

strings over the alphabet AQ which are non-binary because they do not contain
all Q letters. For instance, for Q = 3 one has 3� 2n such strings, some of them
(in fact, according to Theorem 3.7, more then 3� 2n�c2 , where c2 is a constant
which depends on the size of the alphabet but not on the length n) are random
as binary strings. So, it is shown once again, that randomness is a contextual
property.

10 Conclusion

In view of the above discussion we conclude that Chaitin's model of random
strings satisfy many natural requirements related to randomness, so it can be
considered as an adequate model for �nite random objects. It is a better model
than the original (Kolmogorov) proposal. The distinction between Chaitin and
Kolmogorov models is far from being elucidated, e.g. no property|naturally
associated with randomness|holding true for Chaitin random strings and failing
to be satis�ed by Kolmogorov random strings is actually known. All descriptional
complexities in the binary and non-binary cases have crucial di�erences, so it
appears that it is only natural to discuss the complexity and randomness of �nite
objects in a non-necessarily binary framework.

8 This result follows also from Theorem 6.3.
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