
On the Development and Usability of a Diagram-based
Collaborative Brainstorming Component

Diogo Azevedo, Benjamim Fonseca, Hugo Paredes
(INESC TEC – INESC Technology & Science, Porto, Portugal

UTAD - University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
{diogoa, benjaf, hparedes}@utad.pt)

Stephan Lukosch, Jordan Janeiro

(Systems Engineering Section, Delft University of Technology, Delft, The Netherlands
{s.g.lukosch, j.janeiro}@tudelft.nl)

Robert Owen Briggs

(MIS Department, San Diego University, California, USA
rbriggs@mail.sdsu.edu)

Abstract: The need for computer-supported collaboration has grown over the last years and
made collaboration an important factor within organizations. This trend has resulted in the
development of a variety of tools and technologies to support the various forms of
collaboration. Many collaborative processes, e.g. strategy building, scenario analysis, root
cause analysis and requirements engineering, require various collaboration support tools. Data
flow, fishbone and brainstorming diagrams, play an important role within these synchronous
collaborative applications to create, evaluate, elaborate, discuss, and revise graphical models.
Currently, the necessary tools are not integrated and flexible enough to support such processes.
In this paper, a synchronous collaborative brainstorming diagram editor integrated in a flexible
group support system is described. This approach goes beyond the current state of the art as it
can be seamlessly integrated with other collaboration support tools such as text-based
brainstorming or voting. The usability of the taken approach is evaluated within a case study on
collaborative learning.

Keywords: Brainstorm, Diagram Editor, CSCW, Collaboration, ActionCenters, Diagram-based
Categories: D.2.1, D.2.2, D.2.13, H.5.3, J.0

1 Introduction

Computer Supported Cooperative Work (CSCW) aims at improving the performance
of a group in the execution of tasks by providing suitable information and
communication technologies. Groups can become even more productive when
supported by Group Support Systems (GSS) [Davison, 01] [Briggs, 10]. It is decisive
that GSS adopt techniques for the development of groupware applications – A group
of people working within the same system or application, no matter where they
happen to be – that meet non-functional requirements (quality attributes) such as
interoperability, integration, reliability and usability [Pelegrina, 10]. Currently, there
is lack of support on GSS for such processes. GSS must therefore offer users
collaborative environments where they can interact [Duque, 09], however many of

Journal of Universal Computer Science, vol. 19, no. 7 (2013), 873-893
submitted: 31/8/12, accepted: 31/1/13, appeared: 1/4/13 © J.UCS

these systems fail when providing the right tools for effective collaboration [Grudin,
94]. Analysing how groups work and evolve is necessary when the social dimension
of collaborative work is considered [Grudin, 88]. Therefore, it is useful to support
collaboration engineers (CE) – teach practitioners just the techniques they need to
conduct their own mission-critical work practice successfully – in designing a
collaborative work practice, and then use that design to develop a collaborative
software application tailored specifically for that task, with the right tools,
communication channels, data, and most importantly, collaboration guidance for each
activity [Buttler, 11]. Collaboration engineering researchers are seeking ways to
package collaboration expertise with collaborative technology in a form that
practitioners could reuse without training on either the tools or the collaboration
techniques [Briggs, 10], [Buttler, 11], [Mametjanov, 11]. So following this approach,
by combining the CLSD with the ActionCenters, and with the results of this paper,
practitioners can experience the potential benefits of collaboration technology without
having to take special training.

ActionCenters is a web-based platform to develop and use effective collaborative
practices. In detail, ActionCenters provides:
 A rapid development studio that collaboration engineers can use to create task-
specific collaborative application called ActionCenters;
 An online library of ActionCenters for use by collaboration facilitators;
 A run-time platform where an ActionCenter presents practitioners with tools,
communication channels, information, and collaboration guidance for each step of
their task.

Collaborative graphical systems support a group of people concurrently editing
graphical processes over the network. In the case of object-based graphical editing,
the central shared information space is a unique scene of objects shared among users.
Previous approaches have applied and classified them into locking, serialization and
multi-versioning [Ignat, 06]. In the locking approach adopted by systems such as
Aspects [Biel, 91], Ensemble [Newman-Wolfe, 92] and GroupDraw [Greenberg, 92]
concurrency is restricted, and concurrent editing is allowed only if users are locking
and editing different objects, and moreover responsiveness – the capability to answer
on time – is affected due to delays for lock acquisition [Ignat, 06].

No matter how many capabilities a system provides, it is likely that there will be
work practices that require domain-specific capabilities the system does not yet
support, e.g. specialized editors for different modeling language such as UML or
BPMN [Buttler, 11]. Therefore, the Collaborative Line-and-Symbol Diagramming -
CLSD Component presented herein offers a collaborative environment to manage
graphical models and thereby their related collaborative processes. To create such a
collaborative environment the techniques and diagram types that could be used to
support collaborative diagramming efforts were taken into consideration, and how the
features and functions of a single-user differ from a multi-user diagramming tool in
order to optimize the values that groups can create through collaborative
diagramming. The CLSD Component is developed as component for ActionCenters
and is integrated as a plug-in component within the Computer Assisted Collaboration
Engineering platform (CACE) of ActionCenters. Thereby, the component can be used
in various different processes. ActionCenters presents a step forward in supporting
collaborative processes, since it allows collaboration engineers to design a

874 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

collaborative work practice, and then use that design to develop a collaborative
software application tailored specifically for that task [Briggs, 10][Buttler, 11].
Furthermore, CACE provides collaboration engineers with a rapid application
development environment in which they design collaborative components into
applications to support those work practices [Buttler, 11]. It embeds collaboration
expertise with collaboration technologies [Briggs, 10], so that participants can gain
the same benefits without any special training [Mametjanov, 11].

In the remaining of this paper, the requirement analysis that a GSS system has to
fulfil is presented (section 2.1) followed by the requirements gathered from other
existing diagram-editors (section 2.2) and the requirements that the CLSD Component
demands (section 2.3). In section 2.4 the technical requirements that the chosen GSS
system (ActionCenters) requires to be taken in consideration are also described. In the
next section the architecture (section 3.1) and features (section 3.2) of the CLSD are
presented, as well as the scope description (section 3.3). Before concluding and
pointing to future directions, a case study (section 4) to test the system usability of the
CLSD Component and the related results analysis (section 5) are presented.

2 Requirement Analysis

Appropriating GSSs to better represent a process is a complex task, mainly because
such systems have to be flexible enough to be personalized according the process
[Buttler, 11]. Therefore, this section addresses the requirements that a GSS system has
to fulfil in order to support the CLSD Component. Following, the requirements
gathered from other existing diagram editors are presented and the features that fit our
collaborative diagram editor are selected. The functional requirements that the CLSD
Component has to fulfil in order to allow collaboration engineers to configure
synchronous collaborative applications that actually fit specific collaborative
processes, such as strategy building, scenario analysis, root cause analysis and
requirements engineering are described. Finally, the scope and the technical
requirements of the CLSD Component are addressed.

2.1 GSS Requirements

To illustrate the requirements that a GSS system has to fulfill in order to support the
CLSD Component and the interoperability needed between components a scenario of
a collaborative strategy building process that uses collaborative diagramming and
other collaborative applications, e.g. a text-based brainstorming – performed within a
group of people to generate ideas to solve a problem [Peter, 11] is presented. Three
activities that can be considered in this scenario are [Buttler, 11]:
1. Text-based brainstorming for strategy building (e.g. Outliner Component), where
groups will use a shared-outlining component to review, comment on, and revise a
taxonomy of system requirements to assure that all key concerns will be addressed in
the requirements negotiation;
2. Diagram-based brainstorming (e.g. CLSD Component) to generate a collection of
possible requirements;
3. Diagram-based brainstorming (e.g. CLSD Component) to organize, connect and
manage strategies based on the data gathered in the previous activity, and to reduce

875Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

them to a set they deem worthy of further attention, and to organize them under the
categories of their requirement taxonomy.

In this scenario, the GSS system has to support collaboration engineers in
designing collaborative processes (R1), such as strategy building, root cause analysis,
and design suitable collaboration support (R2). For that the GSS needs to support the
integration of components that support collaborative processes (R3), by allowing re-
using of existing components [Pelegrina, 10]. Furthermore, it must be able to share
and exchange data efficiently (interoperability) between components (R4) [Pelegrina,
10], [Hofte, 95], [Simone, 99], in order to reuse the data gathered for example from
the first activity (text-based brainstorming) into the second activity (diagram-based
brainstorming). Additionally, since all the support that is needed is not known the set
of components must be extensible (R5) [Pelegrina, 10]) by software developers and
an API (R6) to support them [Riehle, 00] should be provided. Finally, our scenario
requires collaborative diagramming (R7), and for that additional requirements have
been identified.

The ActionCenters supports the design of collaborative applications (R1), and
allows components (as our CLSD Component) to be assembled by Collaboration
Engineers into the CACE editor (R2). These components have access to shared data
(R4), are configurable (R3) and can be (re)-designed by other Collaboration
Engineers (R5). They usually consist of a user interface for displaying data shared in a
group, some input mechanism, and business logic. ActionCenters is published under
the BSD license, and is therefore open to anyone who wants to add new components
[Buttler, 11]. Thus, ActionCenters fulfils the requirement R5. Furthermore, the
ActionCenter provides two JavaScript objects to manage data and their updates –
ActionCenterListener, and an ActionCentersAPI (R6) that offers services to create
and support the development of collaborative components. Additionally, the data is
managed through dynamic communication channels using CometD1 to a Universal
Data Model (UDM) [Mametjanov, 11], to dynamically create and store arbitrary
relational data. The UDM and the two JavaScript objects offer some mechanisms to
manage contribution, such as modifiedBy to know who changed the data, and
lockedBy to edit-lock entities and their attributes to provide single-user editing. The
ActionCenters does not have all the necessary tools. As alternative, these tools are
plugged into the ActionCenters as components to simply make them available in the
runtime system [Azevedo, 11].

2.2 Requirements gathered from other existing Diagram Editors

According to [Pelegrina, 10] there are GSS systems addressing some of the
requirements described above, however for our approach ActionCenters were chosen
because it addresses all of the requirements and it fits with our purpose. However,
ActionCenters does not address all requirements needed for Collaborative
Diagramming. For that purpose, our (R7) CLSD Component that consists of an XML
wrapper and an implementation in JavaScript with Ext JS2 and an extended library

1 The Dojo foundation. Cometd. More information can be found in http://cometd.org/, 2011.
2 Ext JS is a javascript framework for developers. More information can be found in

http://www.sencha.com/, 2011.

876 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

called Joint JS3 was implemented. The JointJS library is used to create diagrams that
can be fully interactive for both implementing a diagramming tool (as our CLSD
Component) as well as simply for publishing diagrams (R7.1, R7.2 and R7.3)
[Azevedo, 11]. Some mechanisms to know who changed the data (R7.4), and to edit-
lock entities and their attributes to provide single-user editing (R7.5) make part of the
requirements of the CLSD Component. The last requirements (R7.6 and R7.7) have
been implemented in the XML wrapper, which is the CLSD Component, and the API
provided by the ActionCenters was used as support to implement it.

The list of requirements is based on the analysis of other existing Diagram
Software, such as Banxia4 [Venable, 05], Smart Ideas5 [Kyriakou, 10] and Ext
Designer6. In this case, the requirements address the interaction that Collaborative
Diagramming has to provide to groups while they participate in collaborative
environments. It must be possible for group members to insert, import (text-based)
and manage ideas into a diagram-based format (R7.1), like our previous strategy-
building scenario. Then, ideas are diagram-based organized (clusters and colour
manager) (R7.2) and connected through arrows (R7.3). Furthermore, group members
can unintentionally provoke data conflicts between contributions and therefore it is
required to provide remote field of vision - awareness with the scope (who has been
doing what) of other members’ activities [Dix, 93], and data with their information
and the resources that are nearby [Segal, 95] (R7.4), and furthermore triggered
locking mechanisms when updates occur (R7.5). Moreover, when changing from text
to model based the CLSD Component should allow consensus building such as the
organization of concepts even when their position is not defined (R7.6) (this can
happen when data is imported from other components, such as the Outliner
Component). Finally, the CLSD Component needs to implement a set of rules so that
it would be possible to identify conflicting relations, such as arrows that will be
connected at least at 2 concepts and also concepts that can change automatically from
colour when moving from categories.

The features and requirements that the CLSD Component should support to
create a collaborative modelling tool (R7), a scenario identifying the main and
necessary functionalities of diagram editors was done. In this scenario the diagram
editor should generate (blocks) concepts based on text (R7.1) (previously inserted on
the database or at runtime), and furthermore it should converge on key concepts
allowing users to merge sub-categories from main categories (R7.2). To converge on
the key concepts the diagram editor needs first to allow the connection (link) between
concepts to (R7.3), which also leads to the organization of the diagram (R7.2) (model
relations). It should also have the necessary features and tools in order to provide
awareness to other users in the collaborative environment, such as telepointers,
remote field of vision and so on (R7.4). Furthermore, concurrency control is very

3 Joint JS is a JavaScript library developed by David Durman, More information can be found in

http://www.jointjs.com/, 2011.
4 Banxia (Decision Explorer) is a proven tool for managing software issues. Structure and analyse of

qualitative information. More information can be found in http://www.banxia.com/dexplore/, 2011.
5 Smart Ideas concept-mapping software brings the power of visual learning to classrooms, through

interactive white boards. More information can be found in http://smarttech.com/, 2011.
6 Ext Gui Designer is a graphical user interface builder for web applications. Developed by Sierk Hoeksma.

More information can be found in http://www.projectspace.nl/, 2011.

877Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

common in collaborative scenarios since there is more than one user trying to
manipulate the same data, which leads to the requirement of locking contributions
upon their manipulation (R7.5). Moreover, in this scenario the diagram editor should
provide consensus building on relations when moving from text to model (R7.6), as
well as identify conflicting relations (R7.7) (an arrow will be connected at least at
two concepts).

The requirements gathered from COMA, SmartIdeas and Banxia [Azevedo, 11]
were compared to the above scenario to validate the behavior of the scenario itself
and to see if these requirements fit with it. This comparison was done to see if it is
possible to implement it in collaborative diagram editors, such as the CLSD
Component. After making such analysis and concluding that the above scenario
match with the approach used in the diagram editors studied, the main features that
the CLSD Component should provide and the requirements mentioned in the above
scenario that must match with the requirements implemented in the CLSD
Component where described in the following section.

2.3 Collaborative Line-and-Symbol Diagramming Requirements

The detailed analysis of diagram editors and their features revealed the most
important requirements: add, edit and delete concepts (brainstorming concepts, ideas,
words, blocks and so on); add and delete arrows to connect concepts; add, edit and
delete notes; and auto save concepts, arrows, notes and diagrams every time any
change is made. Furthermore other important requirements are: cluster concepts by
displaying different colours for each category; export diagrams through XML files to
be displayed out of the ActionCenters; add and delete telepointers (limited to 1 per
user). To create a collaborative environment awareness that [Dourish, 92] defined as
an understanding of others activities, which provides a context for your own activity
should be concerned. According to [Gutwin, 04b] group awareness information
includes knowledge about who is on the collaborative environment, where they are
working, what are they doing and their subsequently intentions [Pelegrina, 10].
Therefore, locking mechanisms, remote field of vision and telepointers extend the
requirements of working in collaborative environments.

Furthermore the studied requirements were compared with the requirements that
our CLSD Component support. CLSD Component generate concepts based on text
fetched from other existing components or from the database, or at runtime (R7.1); it
is possible to connect concepts with arrows (R7.3) and differentiate them from
categories and subcategories by highlighting their path (R7.2); it also allow users to
know who changed the data, and to edit-lock entities and their attributes to provide
single-user editing (R7.4) (R7.5), such features have been supported by the
ActionCentersAPI; the organization of the diagram (R7.6) is possible in the CLSD
Component by dragging concepts and dropping them in the right position, however it
is only possible to do it manually, so it is not possible to randomize automatically
their position; finally it has a set of rules to identify conflicting relations (R7.7) (e.g.
each arrow will have at least two concepts) and to maintain consensus building when
moving from text (e.g. Outliner component) to model (CLSD Component) based.

878 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

2.4 Technical Requirements

There were some issues to implement the CLSD Component since the GSS system –
ActionCenters has some technical requirements that need to be followed to have a
successful implementation and workability of the CLSD. These requirements start
with concurrency control because of the locking mechanisms used to prevent data
conflicts between users and it proceeds with the structure and features of the
components, where it is mandatory for all components to be a XML wrapper
implemented in JavaScript.

Locking mechanisms have different levels of optimism, such as Non-optimistic,
Semi-optimistic, and Fully-optimistic (Table 1) [Greenberg, 94]. Therefore in our
approach the level of optimism that has been used and implemented has been a Non-
optimistic level because users cannot manipulate contributions while waiting for its
lock whereas the lock must be triggered and then the user who triggered it can
manipulate the contribution [Azevedo, 11]. It is mandatory to wait for the lock in
order to manipulate the contribution and users cannot release the changed
contributions while waiting for its lock because the lock must be previously triggered.
This level of optimism was used because it fits better with the implementation
requirements of the ActionCenters, which does not allow developers to manage the
access to contributions without using locking mechanisms, so that it has been defined
that the manipulation of contributions can only be done after they have been locked
and by who locked it. The changes made at contributions are first released to all users
and then the contribution is unlocked [Azevedo, 11].

Level of optimism
Can manipulate the

object while waiting for its
lock

Can release the
changed object while
waiting for its lock

Non-optimistic No No
Semi-optimistic Yes No
Fully-optimistic Yes Yes

Table 1: Optimism level of locking mechanisms

XML was created so that richly structured documents could be used over the
web; furthermore a XML wrapper is a mechanism to identify structures (markup
language) where the XML specification defines a standard way of adding markup to
documents [Walsh, 97]. These structured documents contain content and some
indication of what role that content plays. Moreover, since the name of the attribute,
its value and the corresponding data type has to be defined a XML Schema was used
to describe them [W3C, 11][Buttler, 11]. This decision is based on the large adoption
of XML and XML Schema as standards to describe XML-based generic structures
[Buttler, 11].

The CLSD Component handles users’ contributions based on the XML Schema,
so each contribution may have different attributes identified by an id, its semantic
type (key), data type and its value (value). Besides, the attribute also has a reference
back to the contribution that contains it [Buttler, 11]. Furthermore, a tag <js><code>
</code></js> is defined where all JavaScript code is written including the JavaScript

879Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

libraries that are going to be used. In the CLSD Component the JointJS library and
our implementation development in this tag were included. The other tag categories
define the layout of the component and are used by the ActionCenters to implement
and define the attributes that each component will have. These attributes can be
manipulated directly in the CACE editor (after uploading the XML wrapper into
ActionCenters), instead of making changes in the XML wrapper, users just need to
access the properties of a component to display the attributes defined in the XML
wrapper.

The ActionCenters and the CLSD Component summary requirements are
addressed at Table 2:

ActionCenters CLSD

R1: Design collaborative processes R7: Collaborative diagramming

R2: Design support on collaborative
applications

R7.1: Insert and import text-based
ideas, e.g. generate concepts based on
text

R3: Plug-in and re-use of components
(CACE Platform)

R7.2: Converge on key concepts:
diagram-based organized (cluster and
colour management)

R4: Share and exchange data
efficiently (interoperability between of
components)

R7.3: Connected arrows (connection
between concepts)

R5: Extensible components R7.4: Context awareness

R6: API to support the component
development

R7.5: Locking mechanisms

-
R7.6: Consensus building (from text to
model based)

- R7.7: Identify conflicting relations

Table 2: Summary requirements of the ActionCenters and of the CLSD
Component

3 CLSD Approach

This section presents a collaborative diagramming tool – CLSD developed allowing
users to participate simultaneously in a brainstorming session in different computers
through the network. Therefore, in the following section the architecture of the CLSD
Component is explained in detail. In the next section the features of the CLSD
Component are presented, and finally, a scope overview of the CLSD Component is
addressed.

880 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

3.1 CLSD Architecture

The CLSD Component is a web-based application that supports the cooperation of
group participants towards group work [Azevedo, 11]. For example, it might support
the group in a text-based or a diagram-based brainstorming, or even support the
transition between text-based to diagram-based brainstorming, and vice-versa. Figure
1 shows the overall architecture of our approach.

Figure 1: The CLSD Component Architecture coupled to ActionCenters
[Azevedo, 11]

The CLSD Component architecture is divided in two environments:
1. Diagram editor: XML file with JavaScript code;
2. ActionCenters: web-based platform with the following technical attributes:
MySQL database server, Jetty web container, Back-end Technologies – Java
programming language, spring framework, and hibernate for database-Java object
mapping, and Front-end Technologies – JavaScript programming language, CometD
for messaging from client to server and ExtJS 3 (now sencha.com) for the UI library.

The Diagram Manager is the core manager of our CLSD Component and it is
responsible for all processes of input and output, their distribution through the overall
system, and for all connections inside the Diagram and between the ActionCenters
and the Diagram [Azevedo, 11]. Additionally, it connects with the Canvas Manager
that is the bridge between the core manager of our system and the user. The User
Interface (UI) influences its degree of acceptance since it allows communication,
collaboration and coordination activities among several users interacting with the
system. The Canvas Manager manages the CLSD Component design, the concepts
and their connectors, and the collaborative tools / awareness mechanisms required,
such as the list of users in the session, telepointers – support actions, intentions and
location awareness, and remote field of vision – actions of a particular user can be

881Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

shown to other users that collaborate in some task [Dix, 98][Gutwin, 04b][Penichet,
08].

The Contribution Manager can also be called of Diagram Database Manager
since it is responsible for adding, fetching and updating contributions to the
ActionCenters Database. These contributions can include concepts, arrows, JSON7
messages or objects and are triggered through notification mechanisms [Azevedo,
11]. To manage the information of users that are working in the diagram, such as
listening online users, giving personalized information of each of them, and the scope
of their activities - group awareness becomes a critical component in successful
coordination [Gutwin, 04a] - the entity User Information Manager was implemented.
Finally, another feature developed was the XML Serialization Manager, which is an
output file that allows users to visualize their diagrams out of the ActionCenters.

3.2 CLSD Features

The CE is responsible for uploading the component to the ActionCenters in order to
make it (CLSD component) available at ActionCenters and then use it to create new
diagrams. After that he chooses specific users to participate in the session and defines
rules, both features through the ActionCenters. When the component is ready for the
session it loads information about the users that will be in the session so that specific
data can be collaboratively displayed. On one hand, features like Edit Concept, Delete
Concept, Delete Arrow and Colour Manager trigger the Locking Mechanism to avoid
conflicts, since many users often manipulate the same data objects at the same time
[Mametjanov, 11]. Additionally, the remote field of vision is also triggered to help
users to identify the scope of other users. Awareness mechanisms were used, allowing
the creation of a collaborative environment where users can interact with each other.
So multiuser editors make use of awareness widgets that show the working area of
other users to avoid conflicting changes in a shared artefact [Schümmer and Lukosch,
07]. Consequently, it is at this point that the need to couple collaborative components
with awareness was meet and understand, without them even an expert will have
difficulties to implement a diagram in a group, as well as successfully interact with it,
or even in helping the rest of the group participants. When a user inserts a new
Concept (idea), telepointer or an Arrow he is creating it for the first time, so there is
no concurrent access to data and consequentially there is no need to have locking
mechanisms at this point, neither the user scope. To call user’s attention the CLSD
Component allows users to use telepointers, 1 per user, each time they want to inform
another user about a particular or independent situation. Finally, at any point of the
session users can manually save the diagram, otherwise the contributions that were
previously added and automatically saved to the database already contain the full
representation of the diagram session.

3.3 CLSD Component

ActionCenters in combination with CLSD Component (Figure 2) allows us to support
various different processes that require different forms of collaboration, such as a
strategy building process where data is gathered from a text-based brainstorming and

7 JSON (JavaScript Object Notation) is a lightweight data-interchange format.

882 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

then fetched and organized in a diagram-based brainstorming (CLSD Component).
The union of the text-based with the CLSD Component creates an ActionCenter,
where the data, which is selected (identified) based on their relationship types and
attributes by the ActionCenters, is forward fetched (import) from the UDM –
Universal Data Model and loaded (insert) to the CLSD Component. CLSD
Component transforms it into a diagram-based format where group members can
manage and organize data as collaborative processes. Each single user controls the
selection and manipulation of data and until he or she has finished nobody else can
have access to manipulate that specific data. For this purpose, at each moment when
concepts are being changed it shows a locking icon and a scope of action (remote
field of vision) of the user who is manipulating it. One possible approach for our
CLSD Component was to send notifications to inform the users about the conflicts,
but instead locking mechanisms when updating contributions to the database was
decided to use, which stops possible conflicts between users and unnecessary
notifications. Users don’t have advantages for knowing that a conflict has occurred,
such unnecessary notifications could disturb their work and focus.

Figure 2: Collaborative Line-and-Symbol Diagramming Component

CLSD interface (Figure 2) has a Menu in the left side of the screen with six
buttons, which functions are:
 1st button () to create Concepts (they have a title and a description);
 2nd button (>>) to create Arrows;
 3rd buttons (>>Telepointer) creates Telepointers;
 Save button to save the current diagram (Canvas);
 SetPaper button to change the size of the canvas area (Canvas);
 SetColour button to change the default colour upon the creation of Concepts.
To use the first three buttons (creation of concepts, arrows and telepointers), the user
needs to drag and drop it into the Canvas area, which is the place where the model-
based concepts and the brainstorming are created and organized. All concepts, arrows

883Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

and telepointers dragged to areas outside the limits of the canvas cannot be seen, so
they cannot be used to represent the diagram.

Figure 3: Context Menu properties of concepts

Users can have access to the features of concepts by double-clicking or right
clicking the desired concept. This action triggers the context menu (Figure 3) for the
current user, awareness widgets to the other users and locking mechanisms to the
current concept. The context menu provides a tool to users so that they can change the
title of the concept (1-Edit), their description (2-Description) and set them has main
concepts (3-Set as Main Concept). The latter property will change the description of
the concept to “Main Concept” so that it can be identified as the principal concept or
main idea, and to prevent having multiple main concepts. If the main concept was
already defined, a warning message will inform the user about this and asks to change
it. Furthermore, the concepts that are linked to other concepts by arrows can be
highlighted (4-Highlight and 5-Unhighlight) to focus their path and consecutively
improve visibility. The only common tool of concepts, arrows and telepointers after
their creation is the option to delete them (6-Delete), which erases the contribution
and attributes created for concepts, arrows, telepointers and canvas. It is possible to
change the fill (7-Change Fill Colour) and stroke (8-Change Stroke Colour) colour of
concepts, or also by selecting a colour for default from the boxes or by tipping the
colour code into the text area. Finally, in case that the user did not like the size of the
concept compared to the text inside of it he can always change it manually (9-Change
Element Size).

Considering a two activities scenario, the first activity is the use of the Outliner
for the gathering of text-based ideas and the second activity the conversion to model-
based ideas with CLSD Component. In case of the first activity – Outliner it has three
main features: the text-based area where the ideas are presented, a text area to input
ideas and a navigation bar to change between activities. Tools to manipulate text, such
as edit, insert, and remove of ideas, are part of the set of features presented in the
outliner. All these attributes are different and made for different proposes when

884 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

compared to the CLSD Component, so to use these two components (CLSD and
outliner) and make them work with interoperability and in parallel it is needed to have
communication and sharing of data between them, which will allow users to be
working on a text-based (Outliner Component), and other users at the same time
manipulating and organizing the same ideas in a model-based approach (CLSD
Component). For both components it is mandatory to have the same population rule
and data set, and to manipulate the attributes of the contributions used; for the CLSD
Component the attributes were defined and for the outliner the developer provided the
attributes: id, fromdate, thumbprints, type and name. These attributes were not
changed in the outliner instead the developer manipulated the CLSD attributes
making possible to have interoperability between components. Therefore it is possible
to create a project at ActionCenters with these two components, invite users to make
an exercise and see their progress independently of the component that is being used,
since they are both collaborative and the ideas introduced are automatically
synchronized between the CLSD and the Outliner. Furthermore, it is possible to see
the activity that was more productive and that had more positive feedback from users,
allowing to improve even more the interaction and integration of users with the
collaborative widget.

4 Case Study

A case study to validate the usability of the CLSD Component and to assess the
student performance gains when using the CLSD Component was conducted, with 41
students of three distinct subjects and courses from the University of Trás-os-Montes
e Alto Douro: BSc in Communication and Multimedia, BSc in Humans Rehabilitation
and Accessibility Engineering, and PhD in Informatics. The aim of this study was to
analyse the CLSD usability. Therefore a quantitative questionnaire named Computer
System Usability based on [Lewis, 95], extended with a set of qualitative questions,
was given to the students after they performed their tasks on the CLSD. The CLSD
was used in 3 different collaborative learning scenarios, to help the student groups to
perform their current tasks, and to find solutions to current daily problems at their
university.
1. The first scenario in which CLSD was used was within the Social and Cooperative
Platforms course from the BSc in Communication and Multimedia. The course
focuses on the use of social networks, multiuser 3D spaces and Web 2.0 developing
platforms for communication and cooperation strategies. Here 7 groups of 4 students
and 1 group of 3 students have used CLSD to record the general ideas (Figure 4) and
then used these ideas as a guide in the developing process of their work.
2. The second scenario using the CLSD was within the Telematics Applications for
Inclusion course from the Humans Rehabilitation and Accessibility Engineering
Degree to help solving accessibility gaps at UTAD (Figure 5). In this case, a group of
8 students have made a brainstorming session, in which they first have identified and
discussed the existing accessibility problems (Figure 5). After gathering all the
current problems, they have made other discussions at the same brainstorming session
but now with the purpose of gathering solutions and linking them with problems.
3. In the third scenario, PhD students of Informatics conducted a brainstorming
session to identify the problems of a specific PhD research. The CLSD was used after

885Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

a brief presentation of the research topic and the group of students have presented
their perspectives and scientific approaches for the current problem. In this case, 4
PhD students held the brainstorming but only 2 questionnaires were collected.

Figure 4: Brainstorming made by a group of students upon the realization of a
task

Figure 5: Brainstorming made by a group of students that focus on the problem
solving of the accessibility gaps at UTAD

In terms of achievements of the current tasks 80,48% of the students have agreed
that they could effectively complete their work using CLSD, where 78,0% were able
to complete their work quickly, and 65,9% could efficiently complete the current
work. Though 73,2% of the students believe that they became productive quickly

886 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

using the CLSD. Such achievements and productivity may be related to the simplicity
of CLSD because 90,2% of the students claims that it was easy to learn how to use
CLSD. This information can be found in more detail in Table 3.

Computer System Usability
Overall, I am satisfied with how easy it is to use CLSD 75,6%
It was simple to use CLSD 63,4%
I can effectively complete my work using CLSD 80,5%
I am able to complete my work quickly using CLSD 78,0%
I am able to efficiently complete my work using CLSD 65,9%
I feel comfortable using CLSD 78,0%
It was easy to learn to use CLSD 90,2%
I believe I became productive quickly using CLSD 73,2%
The CLSD gives error messages that clearly tell me how to fix

problems
29,3%

Whenever I make a mistake using the CLSD, I recover easily and
quickly

41,5%

The information provided with CLSD is clear 65,9%
It is easy to find the information I needed 82,9%
The information provided for CLSD is easy to understand 80,5%
The information is effective in helping me complete the tasks and

scenarios
75,6%

The organization of information on CLSD screens is clear 82,9%
The interface of CLSD is pleasant 82,9%
I like using the interface of CLSD 61,0%
CLSD has all the functions and capabilities I expect it to have 43,9%
Overall, I am satisfied with CLSD 78,0%

Table 3: Computer system usability questionnaire [Lewis, 95] results

The students from the first subject were able to efficiently complete the proposed
work and moved to the next activity. The second subject has gathered the accessibility
problems at UTAD and then related it with proven solutions to their current problems.
The PhD students have done one brainstorming session were all their feedback,
related to a mobile applications PhD topic, was given to help improving the research
objectives and issues of the current research.

5 Results

The quantitative and qualitative questionnaire delivered to students during the case
study has generated several results about the usability of the CLSD and the related
features, such as: ease of use, interface and organization of CLSD, the effectiveness
and efficiency to complete the proposed work, the productivity gained, usability
issues and so on. The results of the quantitative questionnaire based on [Lewis, 95]
are described and presented by percentage of the most relevant results. These results
can be found at Table 3. Furthermore, a more specific analysis to the quantitative
questionnaire was done by crossing qualitative data, such as the degree, experience
using collaborative tools, age of the users, and so on.

887Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

In terms of qualitative analysis the most used collaborative tools were Facebook
with 51% and Twitter with 44% and the daily intention of the students upon the use of
collaborative tools is related with entertainment, work and research especially for the
younger students, which ages converge between 20 and 22. This last result goes
beyond the extreme growth of social networks in the business, teaching and learning
fields. However, the majority of the students have answered that the purpose of using
collaboration tools was for work and research, but when asked which collaboration
technologies they most used they have answered Facebook and Twitter, so the lack of
information and knowledge of the existing collaboration technologies for work is
notorious. They are not yet fully integrated with the collaborative technics and
technologies that are extremely helpful in the daily life in terms of work, mobility,
problem solving, and decision-making. The fact that they were using the power of
social network in their subject with the goal of expansion, divulgation, propagation
and so on, it might have influenced the majority of the students to answer that the
most used collaboration tools were Facebook and Twitter. There are collaboration
technologies that could be integrated into social networks in order to call students
attention and extend the use of such tools. This could be a good approach to be put in
practice and at the same time have a bigger impact in the collaboration field.
However, for now the CLSD will just be supported by ActionCenters. At first view
and with the first set of analysis from the questionnaires, it had revealed that the
CLSD is on the right path to fulfil the demands of the users. However some issues
still need to be taken care to allow a better interaction and solving problems for users.
Furthermore, the features that the CLSD embrace will be extended with the feedback
provided by the students.

90,22% of the group of students claimed that it was easy to learn how to use the
CLSD Component, which may be related to the fact that they effectively completed
their work using CLSD (80,5%). However, the experience using collaborative
technologies is an important role to understand how they are used to work with such
collaborative tools and ascertain their performance when using CLSD. So, both data
was crossed (easy to use and experience with collaborative technologies) at Figure 6,
and it was concluded that CLSD is in right path, since the most experience students
are happy and had agreed that the CLSD is in fact easy to use. Finally it was
concluded that the CLSD is effective in complete the tasks and scenarios (75,6%).
Such results analysis makes the CLSD a powerful tool in the achievements of the
students current work goals, which allows them to be more productive upon the use of
the CLSD (73,1%).

888 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

Figure 6: Learning of students using CLSD compared to their collaborative
experience

6 Conclusions

In this paper, is presented a Collaborative Line-and-Symbol Diagramming
Component – CLSD Component assembled in a CACE editor and supported by
ActionCenters.
The requirements that the GSS system ActionCenters address are:
 (R1) Design collaborative processes;
 (R2) Design support on collaborative applications;
 (R3) Plug-in and re-use of components (CACE Platform);
 (R4) Share and exchange data efficiently (interoperability between components);
 (R5) Extensible components;
 (R6) API to support the component development.
CLSD is a collaboration support tool that consists of a XML wrapper and an
implementation for creating diagrams that can be fully interactive for both
implementing a diagram-based brainstorming session to manage collaborative
processes as well as simply for publishing diagrams. The purposed requirements that
CLSD Component address are:
 (R7) CLSD Component allows the creation and elaboration of a brainstorming
session (collaborative modeling);

889Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

 (R7.1) Group members can generate concepts based on: insert, import and fetch
data from other components, into a diagram-based format through a collaborative
environment provided by the CLSD Component;
 (R7.2) Converge on key concepts: merge sub-categories from main categories, by
highlighting their path; Organization of the resulting diagram: the concepts and
linking arrows can be dragged and dropped around the canvas area, which provides
the necessary feedback to help users organizing/structuring the resulting diagram.
Other feature implemented that also allows the structuring of the resulting diagram is
the colour manager;
 (R7.3) Connection between concepts (arrows): users can connect concepts through
arrows allowing the creation of a hierarchical diagram;
 (R7.4) Context awareness: the CLSD Component provides the necessary
awareness, in order to make users aware of the scope area that other users are working
on, therefore he supports remote field of vision, telepointers and so on;
 (R7.5) Locking mechanisms: using the provided API from ActionCenters the
CLSD Component locks concepts upon the manipulation of them preventing therefore
data conflicts;
 (R7.6) Consensus building: transition from text to model based has different levels
because they can be: text inserted at runtime, text inserted in other component that
must be fetched by the CLSD Component, and text that is already in the database. The
CLSD Component has been implemented taken into consideration these transitions
levels, which provides a transparent environment to users (they do not need to know
from what source the text comes from, they just need know who create it, and for that
the awareness tools have been implemented);
 (R7.7) Identifying conflicting relations: set of rules that forbid the wrong use of
the provided tools, such as arrows that must have at least two concepts connected, and
so on;

The conduced case study revealed not only the most important issues of usability
of the CLSD, but it also revealed how students can become productive in their work
using this system. So, the conducted case study was not only productive for testing
the usability of the CLSD, but instead it was also used to test the system in different
learning scenarios. The result questionnaires obtain have allowed the crossing of all
these data and is clear that the CLSD has provided the necessary environment and
features to make users more productive and effective in different learning scenarios.
Some of the issues revealed by this analysis and that must be passed by in a new
version of the system is the information that must be clear, and a way to contradict
problems, by giving more information messages or even accurate tutorials to make
users aware of the existing features and the better way to use them. Concluding, the
students have learned fast how to use the CLSD, so they can become productive very
quickly, which allows them to conclude their work and have height percentage of
success upon the realization of their works and tasks.

7 Future Work

In future, the effect of exchanging data between components will be investigated, e.g.
when changing from a text-based brainstorming to a diagram-based brainstorming. In

890 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

this line, the plan is to compare traditional text-based approaches with diagram-based
approaches. To easily support different diagram types, such as Fishbone Diagrams,
the CLSD component will be extended. This will allow users to choose the diagram
type that fits best their current needs. Moreover, the awareness support within CLSD
and add features will be extended, e.g. list of online users, chat, and so on that
influenced the usability of CLSD within the recent case study. Based on the resulting
CLSD component, new case studies will be conducted to assess the new or updated
features, and actually ascertain if users have become even more productive using
CLSD. Here, the plan is a more extensive analyses including the analyses of videos
showing the users interaction with each other and CLSD.

Acknowledgements

This work is funded (or part-funded) by the ERDF – European Regional Development
Fund through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT – Fundação para a Ciência e
a Tecnologia (Portuguese Foundation for Science and Technology) within project
<<FCOMP – 01-0124-FEDER-022701>>.

References

[Azevedo, 11] Azevedo, Diogo, Janeiro, Jordan, Lukosch, Stephan, Briggs R. O. and Fonseca,
Benjamim (2011): An integrative approach to diagram-based collaborative brainstorming,
Proceedings of the ECSCW 2011 Workshop on Collaborative usage and development of models
and visualizations, scientific publication.

[Biel, 91] Biel, V. (1991): V. Groupware Grows Up. MacUser, June 1991, 207-211.

[Briggs, 10] Briggs, R. O., Kolfschoten, Gwendolyn L., Vreede, Gert-jan, Albrecht, C., and
Lukosch, S. (2010). Facilitator in a Box: Computer Assisted Collaboration Engineering and
Process Support Systems for Rapid Development of Collaborative Applications for High-Value
Tasks, Information Systems, pp. 1-10.

[Buttler, 11] Buttler, T., Jordan Janeiro, Stephan Lukosch, and Briggs R. O. (2011): Beyond
GSS: Fitting Collaboration Technology to a Given Work Practice, Collaboration and
Technology – 17th International Conference, CRIWG’11, Paraty, Brazil, October 2011.

[Davison, 01] Davison R. M. (2001) A Survey of Group Support Systems: Technology and
Operation, City University of Hong Kong, China. Sprouts: Working Papers on Information
Systems, 1(12). http://sprouts.aisnet.org/1-12

[Dix, 93] Dix, A., Finlay J., Abowd G., and Beale R. (1993): Human-Computer Interaction,
Prentice Hall.

[Dix, 98] Dix, A., Finlay J., Abowd G., and Beale R. (1998): ‘Human-Computer Interaction’,
Prentice Hall.

[Duque, 09] Duque R., Manuel Noguera, Crescencio Bravo, José Luis Garrido and Maria Luisa
Rodríguez (2009): Construction of interaction observation systems for collaboration analysis in
groupware applications, Advances in Engineering Software 40(12): pp. 1242-1250.

891Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

[Dourish, 92] Dourish, P. and Bellotti, V. (1992): Awareness and coordination in shared
workspaces, Conference proceedings on Computer-supported cooperative work, volume 0, pp.
107-114.

[Greenberg, 92] Greenberg, S., Roseman, M., Webster, D. and Bohnet, R. (1992): Issues and
experiences designing and implementing two group drawing tools. Proceedings of the 25th
Annual Hawaii Intl. Conference on the System Science, Kuwaii, Hawaii, January 1992, 138-
150.

[Greenberg, 92] Greenberg, S. & Marwood D. (1994): Real Time Groupware as a Distributed
System: Concurrency Control and its Effect on the Interface, Proceedings of the ACM 1994
Conference on Computer Supported Cooperative Work, 1994, 207-217.

[Grudin, 94] Grudin J. (1994): Computer-supported cooperative work: history and focus, IEEE
Comput, pp. 19-26.

[Grudin, 88] Grudin J., (1988): Why applications fail: problems in design and evaluation of
organization or organizational interfaces, Proceedings of the ACM conference on computer-
supported cooperative work, pp. 85-93.

[Gutwin, 04a] Gutwin, C., Reagan Penner, Kevin A. Schneider (2004a): ‘Group Awareness in
Distributed Software Development’, CSCW, pp. 72-81.

[Gutwin, 04b] Gutwin, C., Schneider, K., Paquette, D., Penner, R. (2004b): Supporting Group
Awareness in Distributed Software Development, Engineering Human Computer Interaction
and Interactive System, vol. 3425, pp. 383-397.

[Hofte, 95] Hofte, H., ter, Maurice A. W. Houtsma, Hermen J. van der Lugt, (1995): CSCW
Infrastructure Research at TRC, ACM SIGOIS Bulletin, vol. 15.

[Holzinger, 05] Holzinger, A. (2005): Usability engineering methods for software developers,
(C. Stephanidis Ed.) Communication of the ACM vol. 48(1), pp. 71-74 ACM. Retrieved from
http://portal.acm.org/citation.cfm?id=1039539.1039541

[Ignat, 06] Ignat, C., and Moira C. Norrie (2006): Draw-Together: Graphical Editor for
Collaborative Drawing, CSCW 06 Proceedings of the 2006 20th anniversary conference on
computer supported cooperative work, ACM, pp. 269-278, ISBN: 1595932496.

[Kyriakou, 10] Kyriakou, P. Hatzilygeroudis, I, Garofalakis, J. (2010): A Tool for Managing
Domain Knowledge and Helping Tutors in Intelligent Tutoring Systems, Journal of Universal
Computer Science, vol. 16, no. 19 (2010), 2841-2861 submitted: 1/3/10, accepted: 29/9/10,
appeared: 1/10/10 J.UCS.

[Lewis, 95] Lewis, J., R. (1995): Computer Usability Satisfaction Questionnaire IBM
Psychometric Evaluation and Instructions for Use, International Journal of Human-Computer
Interaction, 7:1, pp. 57-58.

[Mametjanov, 11] Mametjanov, A., Kjeldgaard, D., Pettepier, T., Albrecht, C., Lukosch, S.,
and Briggs, R. O. (2011): ARCADE: Action-centered Rapid Collaborative Application
Development and Execution, Hawaii International Conference on Systems Sciences, volume 0,
pp. 1-10.

[Newman-Wolfe, 92] Newman-Wolfe, R. E., Webb M., and Montes, M. (1992): Implicit
locking in the Ensemble concurrent object-oriented graphics editor. Proceedings of CSCW,
Toronto, Canada, pp. 265-272.

[Pelegrina, 10] Pelegrina, Ana B., Rodríguez-Dominguez, C., Rodríguez, María Luisa,
Benghazi, Kawtar, and Garrido, José Luis (2010): Integrating Groupware Applications into
Shared Workspaces, RCIS, pp. 557-568.

892 Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

[Penichet, 08] Penichet, V. M. R., Maria Dolores Lozano, José A. Gallud, Ricardo T., Maria L.
Rodríguez, José L. Garrido, Manuel Noguera, Maria V. Hurtado (2008): Extending and
Supporting Featured User Interface Models for the Development of Groupware Applications, J.
UCS 14(19), pp. 3053-3070.

[Peter, 11] Peter Dolog, Frederico Araujo Durão, Karsten Jahn, Yujian Lin, Dennis Kjaersgaard
Peitersen (2011): Recommending Open Linked Data in Creativity Sessions using Web Portals
with Collaborative Real Time Environment. J. UCS – Journal of Universal Computer Science
17(12): 1690-1709 (2011) submitted: 15/10/10, accepted: 28/1/11, appeared: 1/8/11 © J. UCS.

[Riehle, 00] Riehle D., (2000): Framework Design: a Role Modeling Approach Dissertation,
ETH Zurich.

[Schümmer and Lukosch, 07] Schümmer, T. and Lukosch, S. (2007): Patterns for Computer-
Mediated Interaction, John Wiley & Sons, Ltd.

[Segal, 95] Segal L., (1995): Designing Team Workstations: The Choreography of Teamwork,
Local Applications of the Ecological Approach to Human-Machine Systems, pp. 392-415.

[Simone, 99] Simone, C., Mark, G. and Giubbilei, D., (1999): Interoperability as a means of
articulation work, WACC ’99: Proceedings of the international joint conference on Work
activities coordination and collaboration, pp. 39-48.

[Venable, 05] Venable, J. (2005): Using Coloured Cognitive Mapping to Support IS
Development, in Fisher, Julie and Kautz, Karl-Heinz and Linger, Henry (ed), Workshop on IS
Research: A North-South Dialogue, Nov 09 2005. Melbourne, Australia: Monash University.

[Walsh, 97] Walsh, N. (1997): A technical Introduction to XML, Journal,
http://nwalsh.dom/docs/articles/xml/.

[W3C, 11] W3C. Xml Schema (2011), http://backpack.blackboard.com/

893Azevedo D., Fonseca B., Paredes H., Lukosch S., Janeiro J., Briggs R.O. ...

