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Abstract: Finding discriminative motifs has recently received much attention in bio-
medicine as such motifs allow us to characterize in distinguishing two different classes
of sequences. It is common in biomedical applications that the quantity of labeled se-
quences is very limited while a large number of unlabeled sequences is usually available.
The current methods of discriminative motif finding are powerful and effective with
large labeled datasets, but they do not function well on small labeled datasets. In this
paper, we present a semi-supervised ensemble method for finding discriminative motifs
which is based on the SLUPC algorithm, a separate-and-conquer searching method
to discover motifs of type ‘discriminative one occurrence per sequence’. The proposed
method, named E-SLUPC (Ensemble SLUPC), uses SLUPC to search discriminative
motifs from an extended labeled dataset that contains labeled data and unlabeled data
with predicted labels. Strong discriminative and frequent motifs characterizing two out-
come classes of hepatitis C virus treatment (sustained viral response and non-sustained
viral response) were detected and analyzed. Furthermore, the experimental evaluation
shows that our method can function considerably well in the common context of med-
ical research when the labeled data is usually difficult to obtain.

Key Words: discriminative motif, separate-and-conquer search, self-training tech-
nique, ensemble learning, hepatitis C virus, NS5A region.
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1 Introduction

One of the key interests of biologists is to detect short and highly conserved mo-

tifs in a collection of DNA or protein sequences. Traditionally, motif finding has

been dominated by generative models using only sequences of one class to pro-

duce descriptive motifs of the class. Recently, discriminative motif finding using

sequences of two distinct classes to discover selective motifs that can distinguish

these two different classes has attracted much attention from the research com-

munity. Discriminative motif finding can be seen as the next step of motif finding

problem using one more dataset to help motif searching more effectively.
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It is well known that labeled data are often difficult and time consuming to

obtain, because they require human annotations, knowledge from experts and

special devices. In biomedical applications, the number of existing labeled (anno-

tated) sequences in many domains is usually small while a large number of unla-

beled sequences are available. For example, in the study of hepatitis pathogenesis

and therapy by using non structure 5A (NS5A) protein, where we are interested

in discriminating two classes of sustained viral response (SVR) sequences and

non sustained viral response (non-SVR) sequences, from the biggest resource of

LANL1 database, we can only get 134 NS5A non-SVR sequences and 93 SVR se-

quences to IFN/RBV therapy, and 13 non-SVR sequences and 12 SVR sequences

from Chiba Medical University, but from Genbank2 and HVDB3 databases, we

obtain about 5000 NS5A unlabeled sequences. In the case of our study on hep-

atitis C, the combination of interferon and ribavirin (IFN/RBV) is currently the

standard therapy for Hepatitis C virus (HCV). However, only fewer than half

of the HCV infected individuals achieve sustained viral response by this ther-

apy, and the genetic basis of resistance to antiviral therapy remains unknown,

see for example [Gao and Nettles, 2010]. Many studies report that the NS5A

in the HCV genome is known as the protein implicated in the interferon resis-

tance, and thus much effort has been made to pursue uncovering such resistance

mechanisms in NS5A [Enomoto et al., 1996,Sarrazin et al., 1999,Witherell and

Beineke, 2001,Pascu et al., 2004,ElHefnawi et al., 2010,El-Shamy et al., 2011].

The research on discriminative motif finding has several newly developed

methods using the hidden Markov model (HMM) [Lin et al., 2011], position

weight matrix (PWM) [Redhead and Bailey, 2007,Kim and Choi, 2011,Bailey

et al., 2010], association mining with domain knowledge [Vens et al., 2011]. How-

ever, due to their general purposes, these methods have shown to be ineffective

for the situation when only small labeled datasets are available.

This work aims to develop a semi-supervised ensemble method for discrimi-

native motif finding from a limited number of labeled sequences and then apply

it to detect sequence motifs in NS5A protein that characterize SVR and non-

SVR treatment result when using IFN/RBV therapy. Our method is based on

the SLUPC algorithm [Ho et al., 2011] which is a separate-and-conquer search-

ing method to discover motifs of type ‘discriminative one occurrence per se-

quence’ (DMOPS). Concretely, the proposed method, named E-SLUPC (En-

semble SLUPC), firstly searches core motifs from a small labeled dataset, then

uses these motifs to exploit unlabeled data, and continues searching discrimina-

tive motifs with the enlarged labeled dataset.

Experiments have been performed to investigate the accuracy of E-SLUPC

1 Los Alamos National Laboratory http://hcv.lanl.gov
2 Genbank http://www.ncbi.nlm.nih.gov/genbank
3 Hepatitis Virus Database http://s2as02.genes.nig.ac.jp
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compared with SLUPC, and the quality of discriminative motifs found by E-

SLUPC, MEME and DEME. The experimental results show the accuracy of the

proposed framework is improved about by 8% and DMOPS motifs with high

accuracies from 80% to 100% found by our new method are able to discriminate

better than discriminative motifs of MEME and DEME.

2 Related work

2.1 Discriminative motif learning

A sequence motif is generally understood as a pattern in nucleic or amino acid

sequences that is widespread and biologically significant [Sami and Nagatomi,

2008]. For example, in DNA sequences, motifs can be transcription factor binding

sites (TFBSs) in the promoter regions; in protein sequences, motifs can be regions

corresponding to a specific function/structure or they can be signals playing an

important role in controlling the cellular localization [Vens et al., 2011].

A motif can be represented by either (i) a string-based model or (ii) a prob-

abilistic model. A string-based model represents a motif as a sequence of let-

ters that may contain special characters to increase the variability of the motif.

Among probabilistic models, PWM (Position Weight Matrix) and HMM (Hid-

den Markov Model) are the most commonly used models to represent motifs.

PWM considers a motif as a matrix in which each element has the probability

of a given nucleotide or amino acid at a specified position with an independence

assumption among positions. HMM describes a motif as a Markov process of hid-

den states where the probability of the current state of a character only depends

on its previous state with the assumption that these states are not necessarily

independent [Wu and Xie, 2010].

Motif learning is the problem that given a set of sequences thought to contain

unknown motifs of interest, then two main tasks for inferring a model of motifs

and predicting the locations of motifs in those given sequences are performed.

Finding motifs in a class of sequences is to find motifs that share a certain

characteristic, such as motifs containing a large number of wildcard symbols

[Hsu et al., 2011], degenerate motifs [Vens et al., 2011], conserved motifs, and

so on. However, sequence motifs are usually short and can be highly variable

patterns [Redhead and Bailey, 2007], and it is difficult to distinguish them from

random patterns that are likely to occur by chance [Bailey et al., 2010]. This

has led to a new approach utilizing an additional class of sequences to guide

the motif finding process to come near to specialized motifs that we want to

seek in one class of sequences, or go far away from other motifs in the other

class of sequences. Using the second class of sequences can help to distinguish

motifs from randomly occurrences, because it provides additional information

to compare and then eliminate early motifs that are overrepresented by chance.
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Therefore, finding motifs with a set of two-class sequences has opened a new

view of discriminative motif finding.

Discriminative motif finding problem is to find motifs occurring more fre-

quently in one set of sequences and not occurring in the other set of sequences.

These motifs can help to classify effectively a sequence into a certain class or to

describe the discriminative characteristics of a class. Many methods have been

developed to search discriminative motifs so far.

MERCI (Motif EmeRging and with Classes Identification) [Vens et al., 2011]

uses a string-based model to represent motifs and adapts an Apriori algorithm,

a well-known sequential pattern finding technique, to find discriminative motifs.

MERCI introduces two parameters which are the minimal frequency threshold

for one sequence set and the maximal frequency threshold for the other sequence

set to prune early motifs which are not chosen as candidates during the search

process.

MEME (Multiple EM for Motif Elicitation) [Bailey et al., 2010] represents a

motif as a PWM and assumes that each sequence has zero or one motif. Given a

PWM, MEME calculates the likelihood of PWM by the Expectation Maximiza-

tion (EM) algorithm. To discriminate motifs, MEME calculates a “position-

specific prior” (PSP) of each position in a sequence in order to measure the

likelihood that a motif starts at each position of a sequence. PSP plays the role

of additional information to assist the search by increasing the probability of

start positions containing subsequences that are commonly found in sequences

of interest, as well as decreasing the probability of start positions characterizing

for sequences that do not contain features of interest.

DEME (Discriminatively Enhanced Motif Elicitation) [Redhead and Bailey,

2007] is an adaptation of the discriminative framework in [Segal et al., 2002].

DEME also represents a motif as a PWM and uses conjugate gradient to find

the best PWMs with the assumption that each sequence may contain no or one

motif occurrence. The difference between DEME and Segal’s work is that DEME

uses the combination of two algorithms called “substring search” and “pattern

branching” to learn the parameters of the motif model that is used to maximize

the discriminative objective function.

In the work of [Kim and Choi, 2011], a hybrid generative and discrimina-

tive model is developed to learn discriminative motifs. The generative model

plays the role to maximize the likelihood of PWM, and the discriminative model

is responsible for selecting the most discriminative feature. These models are

combined by a joint prior distribution over two parameter sets of two models.

Discriminative HMM [Lin et al., 2011] uses profile HMM to represent a motif

and this representation is more flexible for insertion or deletion than PWM’s

representation. Under the HMM, finding motifs in sequences is equivalent to

finding hidden states of sequences. The parameters of HMM are estimated by
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using the maximum mutual information estimate (MMIE) technique applied to

speech recognition to train the model and get the optimum of discriminative

criterion.

In summary, the methods typically involve building PWM or HMM from

sequences and then using techniques such as EM or Gibbs sampling to optimize

the likelihood of PWM or HMM, and thus do not guarantee to find the global

solution, whereas string-based methods can yield the global solution but have

to deal with drawbacks such as a large number of input data or discovering

lengthy motifs because they can lead to the high complexity of computation. In

addition, because PWM and HMM are normally obtained from the input data,

all the above mentioned methods require a large number of labeled data to learn

good PWMs and HMMs. If these methods work with small labeled datasets,

PWMs and HMMs may not return good results as expected.

2.2 Semi-supervised ensemble learning

The combination between semi-supervised learning (SSL) and ensemble learning

(EL) is discussed in [Zhou, 2009] for improving generalization, where the com-

bination of learners can be helpful to SSL and unlabeled data can be helpful to

EL. So far, many studies have proposed hybrid methods working both in SSL

and EL. It could say that semi-supervised ensemble methods are gradually in-

terested in and have been applied to many tasks, for example natural language

processing, image processing, document retrieval, and so on.

To improve the task of word alignment, [Huang et al., 2010] uses a semi-

supervised learning method, namely Tri-training [Zhou and Li, 2005], to itera-

tively train three classifiers and assign labels to the unlabeled data. Then it uses

some data among the unlabeled one to expand the labeled training set of each

individual classifier.

In the work of [Vajda et al., 2011], a semi-automatic labeling procedure is

proposed to recognize handwritten characters. This procedure considers a data

representation as a component of EL. A voting strategy is used to label for

unlabeled data. However, the main distinction between other SSL strategy and

this method lies in the fact that the label assignment does not based on the

votes. The final classifier is built on top of the inferred labels.

[Dong and Schafer, 2011] applies three classifiers in order to select the new

labeled data in the process of self-training for the problem of citation classifica-

tion. To make the final prediction for a given instance, an adopt majority voting

is used.

The combination of label propagation and ensemble learning are applied in

semi-supervised learning [Woo and Park, 2012]. A subset of unlabeled data is

randomly selected, and it composes a training set together with original labeled

data. For the label prediction of the selected unlabeled data, a graph-based
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label propagation method is used. Then, a classifier is trained on the composed

training set.

In stream mining, as data streams are infinite, arrive continuously and there

should be online classification, labeling all of the arrived data is impossible. [Ad-

madi and Beigy, 2012] proposed a semi-supervised ensemble learning method to

label data in a window. For each learner, a set of labeled instances is determined

from unlabeled data by using the majority vote.

3 The method

Because the number of labeled sequences is small, the predictive power of learned

motifs is often low. This motivated us to develop a semi-supervised learning

method using unlabeled dataset to seek DMOPS with higher predictive power.

In order to obtain a higher degree of accuracy of label assignment, we also have

develop an ensemble learning method by combining appropriately multiple label

assignment approaches. These semi-supervised and ensemble learning methods

work together to boost the ability to learn discriminative motifs when labels are

assigned more precisely.

In general, our semi-supervised ensemble learning method works under the

cluster assumption: if sequences are in the same cluster, they are likely to be

of the same class [Chapelle et al., 2006]. Concretely we use two assumptions for

clusters in our label assignment approaches, one is based on motif matching and

the other is based on the gene distance of sequences. The former uses discrimi-

native motifs to assign unlabeled sequences to different clusters, while the later

uses the gene distance between sequences to make clusters.

The framework of E-SLUPC in Figure 1 is described below with input se-

quences from a small labeled dataset and a large unlabeled dataset.

1. Applying SLUPC to labeled sequences to find a set of DMOPS motifs con-

sidered as core motifs.

2. Using the core motifs to enlarge the labeled dataset by adding to it unlabeled

sequences that well match with the core motifs determining by the following

ensemble procedure: each unlabeled sequence that matches well the core

motifs by three ensemble components (described in Subsection 3.3) will be

finally assigned a label by the majority voting. Then, the pseudo labeled

dataset is determined.

3. Applying SLUPC to the enlarged labeled dataset, which consists of the la-

beled and pseudo labeled data, to learn the final set of DMOPS motifs.

4. The steps 1-3 are repeated until either (i) the core motif set is stable, or (ii)

the maximum number of iterations is achieved.
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5. To recognize a new unlabeled sequence, applying the ensemble procedure to

the unlabeled dataset.

Figure 1: The framework of E-SLUPC.

3.1 SLUPC algorithm

Discriminative multiple occurrence per sequence (DMOPS) is one of the motif

types categorized by [Kim and Choi, 2011] based on counting the number of

total occurrences of motifs in sequences. It shows a structural assumption that

is used to generate motifs from the motif model. In this section, we describe the

DMOPS motif discovery method that uses the SLUPC algorithm in [Ho et al.,

2011] to learn a set of descriptive subsequences for the two-class problem. The

algorithm SLUPC is an extended version of LUPC (Learning the Unbalanced

Positive Class) [Ho and Nguyen, 2002] for sequential data.

Denote S = {(S1, C1), (S2, C2) . . . , (Sn, Cn)}, where Si is a sequence of length

|Si| over the alphabet Σ = {A,U,G, T} or Σ = {amino acid} and Ci ∈
{C1, C2, ..., Cc} of the class labels. When there are only two classes we call one

as positive denoted by Pos and the other as negative denoted by Neg, and thus

the labeled set S = Pos∪Neg. The problem is to find a minimal set of DMOPS

motifs satisfying two conditions: (1) Complete: each sequence contains at least

one found motif, (2) Consistent: motifs found for Pos do not match any negative

sequences in Neg and vice versa.

Given parameters α (0 < α < 1) and β (0 < β < 1), a subsequence P is an

α-coverage for Pos if
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|coverPos(P )|
|Pos| ≥ α,

and is a β-discriminant for Pos if

|coverPos(P )|
|coverS(P )| ≥ β,

where coverPos(P ) is the set of sequences in Pos that contains P and coverS(P ) =

coverPos(P ) ∪ coverNeg(P ). If P is both α-coverage and β-discriminant for Pos,

we will say P is αβ-strong for Pos. Similar concepts can be defined for Neg.

A subsequence will be a DMOPS motif when it satisfies both α-coverage and

β-discriminant thresholds.

Note that if sequence P1 is a subsequence of a sequence P2, then we have

cover(P2) ⊆ cover(P1), i.e., the coverage of P1 is larger and the discrimination

ability of P1 is smaller than that of P2. Given an α-coverage pattern P , the most

informative pattern related to P in terms of coverage is the longest α-coverage

pattern containing P . Alternatively, given a β-discriminant pattern P , the most

informative pattern related to P in terms of discrimination is the shortest β-

discriminant pattern contained in P .

Algorithm 1 SLUPC algorithm

Given: Labeled sequences in Pos and Neg, and parameters minalpha, minbeta.

Find: αβ-strong DMOPS motifs for Pos

DMOPS Motif (Pos,Neg,minalpha,minbeta)

1: MotifSet = φ

2: α, β ← Initialize(Pos,minalpha,minbeta)

3: while Pos �= φ & (α, β) �= (minalpha,minbeta) do

4: NewMotif ← Motif(Pos,Neg, α, β)

5: if NewMotif �= φ then

6: Pos← Pos \ Cover+(NewMotif)

7: MotifSet←MotifSet ∪NewMotif

8: else

9: Reduce(α, β)

10: end if

11: MotifSet← PostProcess(MotifSet)

12: end while

13: return(MotifSet)

The DMOPS motif finding of SLUPC algorithm is described in Algorithm 1.

Given two sets of positive sequences Pos and negative sequences Neg, Algorithm
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1 will find a minimal set of DMOPS motifs satisfying Complete and Consistent

requirements. In this algorithm, Motif(Pos,Neg, α, β) is an exhaustive search

procedure that expands a subsequence one position to the left or to the right,

starting with length’s subsequence is 1.

Procedure Finding an αβ-strong motif

Motif (Pos,Neg, α, β)

1: CandMotifSet = φ

2: Adjacentaa(Pos,Neg, α, β)

3: while StopCond(Pos,Neg, α, β) do

4: CandMotifs(Pos,Neg, α, β)

5: end while

6: Motif ← FirstCandMotifinCandMotifSet

7: return(Motif)

In the procedure finding an αβ-strong motif, the subroutine Adjacentaa

searches for letters that can be added to S(i) if making S(i + 1) satisfies α

and β. The subroutine StopCond checks if Adjacentaa is successful. If ‘not’, it

returns an empty new motif. If ‘yes’, the subroutine CandMotifs ranks S(i+1)

by the number of occurrences in Pos if there is more than one amino acid that

make S(i+ 1) satisfy both α and β.

The subroutine CandMotifs may require a lot of checks on Neg to see if a

generated motif candidate is αβ-strong. However, thanks to the property “given

a threshold α, a pattern P is not αβ-strong for any arbitrary β if coverNeg(P ) ≥
((1−α)/α)× coverPos(P )” [Ho et al., 2011], many motif candidates are quickly

rejected if they are found to match the condition coverNeg(P ) ≥ ((1− α)/α)×
coverPos(P ) during the scan of Neg. It is easy to count coverPos(P ) for each

motif candidate P as Pos is small, and we need only to accumulate the count of

coverNeg(R) when scanning Neg until either we can reject the motif candidate

as the constraint holds or we completely go throughout Neg and find the motif

has satisfied accuracy.

3.2 Self-training technique for semi-supervised learning

We develop the semi-supervised method based on the idea of self-training tech-

nique to enlarge the labeled dataset. Self-training is one of the most common

techniques used in semi-supervised learning [Zhu, 2008]. In this technique, a

learner is first trained with the small amount of available labeled data. The

learner is then used to learn the unlabeled data. Only unlabeled data with
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their predicted labels having the most confident score are added to the training

dataset. After that, the learner is re-trained and this procedure is repeated until

convergence is reached.

Self-training is a wrapper method that requires a predetermined learning

method and uses its results to teach itself. In our practical point of view, self-

training technique is appropriate in a case that the existing learning method

is complicated and difficult to modify for doing semi-supervised learning. Our

SLUPC algorithm is an example of this case. In addition, evidence shows that

doing semi-supervised learning with the cluster assumption, self-training is an

effective approach [Rosenberg et al., 2005].

3.3 Majority voting strategy for ensemble learning

In ensemble learning, strategies that combine outputs of learning methods are

categorized in three groups, linear combination, product combination and vot-

ing combination [Brown, 2010]. The linear and product combinations are used

when learning methods output real-valued numbers, while voting combination

is applicable to results of class labels. The idea of majority voting strategy is

that each learning method votes for a certain class, and the class with the most

votes will be chosen as the ensemble output.

Based on majority voting strategy, we develop three ensemble components

to explore the unlabeled dataset. Each ensemble component is an approach to

assign labels for unlabeled sequences under the cluster assumption. After these

three components assign labels for an unlabeled sequence, the plurality label can

be the final label for that unlabeled sequence.

Label assignment 1. In this ensemble component, the more an unlabeled se-

quence contains core motifs of a class, the more it belongs to this class. To apply

this rule, each unlabeled sequence will be matched to core motifs by counting

how many times this sequence contains core motifs of a class, and then these

number of times are used to assess how much an unlabeled sequence can be

considered as a sequence of a class. In order to decide which unlabeled sequence

will belong to which class, we choose unlabeled sequences that contain the most

core motifs and just contain motifs in one class.

Label assignment 2. We use the same label assignment rule of the first compo-

nent (the more an unlabeled sequence contains core motifs of a class, the more it

belongs to this class), however we make a different decision of choosing labels for

unlabeled sequences. We choose unlabeled sequences that contain more motifs

of a class than those of the remaining class, with the ratio between two classes

being larger than a threshold γ (for example 80%), to assign labels.

Label assignment 3. The gene distance between two sequences is used to as-

sign labels for unlabeled sequences. The gene distance shows the similarity or

dissimilarity among sequences and is represented by the optimal local gapped
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alignment score between two sequences [Altschul et al., 1990,Smith and Water-

man, 1981]. According to BLAST4, the higher the score is, the more similar two

sequences are. Therefore, the assignment is that if two sequences have a high

score, they are likely to be of the same class. To apply this assignment rule, the

score of an unlabeled sequence and a representative of each class is calculated

and we choose the larger score to decide to label for that unlabeled sequence. We

obtain the representative of a class by choosing a sequence having the minimum

deviation between scores of sequences and the average of these scores.

4 Application to study HCV

We are given a set of sequences of the NS5A region that are hypothesized to

contain several instances of SVR and non-SVR signals. The problem is to find

SVR and non-SVR motifs in the NS5A regions. Solving this problem provides

a biomarker or additional knowledge to the relation between NS5A region and

IFN/RBV therapy. This hypothesis, when verified, leads to a better understand-

ing of the resistance or response to IFN/RBV therapy of HCV.

4.1 The dataset

In this study, all sequences, each containing 447 amini acids, are in NS5A region

of HCV genotype 1b. We used two kinds of datasets as follows:

– Labeled dataset: including 28 sequences SVR, 49 sequences non-SVR from

LANL database, and 13 sequences SVR, 12 sequences non-SVR from Chiba

University database.

– Unlabeled dataset: including 1424 sequences from HVDB and 168 sequences

from GenBank.

4.2 Finding DMOPS motifs charactering SVR and non-SVR to

therapy

The experiments aim to evaluate the performance of discovered motifs in terms

of discrimination. A 3-fold cross validation on labeled data was done with the

algorithms parameters as follows: minalpha = 0.1,minbeta = 0.5. We obtained

these values by performing the SLUPC algorithm many times to pick out the

best parameters that are suitable to the training dataset. In this experiment,

the initial value of α and β are with high values of 0.7 and 0.95, respectively

and alternatively reduced them, α = α − Δα, β = β − Δβ with Δα = 0.05

and Δβ = 0.02, in order to firstly find the strongest αβ-motifs, then step by

4 Basic Local Alignment Search Tool http://blast.ncbi.nlm.nih.gov
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step reduce α and β to find as strong as possible αβ-motifs that each training

sequence contains at least one motifs found.

Because of the small labeled dataset, the widespread of DMOPS motifs is

not ensured in the whole dataset and the accuracy of prediction is not stable.

To get the good quality motifs as well as the stable prediction accuracy, we

perform 3-fold cross validation 5 times. Following the idea of ensemble learning,

we add up DMOPS motifs of each run time to create a set of integrated motifs,

assess the widespread and effect on the prediction accuracy of each motifs in 3

testing sets, and then eliminate motifs which are infrequent and make prediction

accuracy low. The average accuracy of the SLUPC algorithm is represented in

Table 2. Though the average accuracy on testing data is low (about 66%), it is

very encouraging in the biomedical field.

Table 1 presents DMOPS motifs that are found in 15 times of experimental

running (5 times of 3-fold cross validation). Each four columns stands for DM-

OPS motifs found in SVR and non-SVR sequences, together with the number

of SVR sequences and non-SVR sequences containing a motif and the number

of occurrences of that motif in 15 times, respectively. The number of SVR se-

quences and non-SVR sequences containing a motif are calculated on the whole

dataset. These motifs are selected from the set of integrated motifs after filtering

motifs that have the low accuracy and coverage. However, some DMOPS motifs

that have the low number of occurrences still exist in this table. That is because

if they are removed out of the integrated motif set, the prediction accuracy will

be decreased.

Table 1: DMOPS motifs characterizing SVR and non-SVR to IFN/RBV therapy

SVR SVR Non-SVR No. of Non-SVR SVR Non-SVR No. of
motifs sequences sequences occurrences motifs sequences sequences occurrences
LAI 7 0 13 NM 0 7 14
AF 4 1 12 ND 1 10 13
AI 10 0 12 DK 0 3 9

VEA 5 2 10 RS 1 5 8
FN 2 0 8 VDLIEA 1 4 7
TAA 2 0 6 AKA 1 6 6
HN 1 0 5 NR 0 4 6
VN 1 0 4 MA 0 3 3
KAA 2 0 3 PAS 0 4 3
AAC 2 0 3 WC 0 4 2

It can be observed from Table 1: the SVR motif “LAI” occurs in 7 SVR

sequences and does not occur in non-SVR sequences. Its coverage is 17% (7/41 =

0, 17) and its accuracy is 100% (7/(7 + 0) = 1). In addition, this motif occurs

13 times in the cross validation experiment. Another SVR motif “AI” also has

the high coverage (24%) and accuracy (100%). Similar observations can be done
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for non-SVR motifs “NM”, “DK”, or “NR”. It could say that these DMOPS

motifs can be viewed as the good biological signals for charactering SVR and

non-SVR to IFN/RBV therapy. The group of SVR motifs, such as “AF”, “VEA”,

“FN”, “TAA”, “HN”, “KAA”, and “ACC”, and non-SVR motifs, such as “ND”,

“VDLIEA”, and “AKA”, have high accuracies from 80% to 100% that show

the high ability of discrimination. However, their occurrences in 15 times of

conducting the experiments are insufficiently large to conclude that they are

good DMOPS motifs.

4.3 Evaluating the accuracy of E-SLUPC and SLUPC

In this part, we present the experiment that focuses on validating and comparing

the accuracy assessment of SLUPC algorithm before and after enlarging labeled

dataset. Therefore we perform 3-fold cross validation 5 times with parameters

minalpha,Δα,minbeta,Δβ are set to 0.05, 0.05, 0.4, and 0.05 respectively which

are different from values of parameters in SLUPC algorithm. This adjustment

is essential because the number of sequences in the training dataset will be

increased, the old values of parameters are not the most appropriate values in

the case of the new training dataset. However, these parameters are fixed during

the iteration process of semi-supervised ensemble learning because the number

of sequences added to training dataset after one iteration is not significant.

In this experiment, 1424 unlabeled sequences are used and repeated for each

iteration to pick out sequence candidates. The maximum number of iterations is

set to 5 and the highest rank of a sequence is 1. Because the number of sequences

in the training set is small, we consider one match between a DMOPS motif and

an unlabeled sequence is enough for the first and second ensemble components

to assign a label for that unlabeled sequence.

Table 2 shows the experiment results of comparing the accuracy of SLUPC

and E-SLUPC (about 8% increase in accuracy). Accuracies in Table 2 are average

accuracies of folds in each time of doing 3-fold cross validation. These accura-

cies are computed on our testing dataset. In 5 times of 3-fold cross validation,

accuracies of E-SLUPC are increased from 2% to 10%. This can be explained by

the quality of DMOPS motifs found during semi-supervised ensemble learning

process. When the label assignment is more effective and precise, DMOPS motifs

are better and more qualified.

4.4 Comparing the output of E-SLUPC to MEME and DEME

4.4.1 MEME

We choose MEME to compare the output of E-SLUPC because MEME is cur-

rently one of the most well-known and powerful types of software for motif
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Table 2: Accuracy of SLUPC adn E-SLUPC

No. of 3-fold SLUPC E-SLUPC

cross validation

The 1st 3-fold 0.83 0.85

The 2nd 3-fold 0.65 0.76

The 3rd 3-fold 0.63 0.73

The 4th 3-fold 0.58 0.68

The 5th 3-fold 0.63 0.70

The average accuracy 0.66 0.74

finding. Using the web version of the MEME5, we perform a 5 times 3-fold cross

validation experiment with the following parameters: the occurrence of a single

motif among the sequences is set to the multiple occurrence per sequence, the

length of each motif is between 2 and 6, and the maximum number of motifs

is 30. The first two parameters, the multiple occurrence per sequence and the

length of a motif, are chosen in a similar way to our previous experiment for

E-SLUPC. It allows us to do a comparative assessment of results between E-

SLUPC and MEME when setting the same values for two sets of parameters.

Because MEME yields only a motif at each runtime, and we also want to get

as many motifs as possible, we let MEME repeat 30 times. After 15 times of

MEME running, we collect about 163 SVR motifs and 170 non-SVR motifs. In

this result, we compare between the set of SVR motifs and non-SVR motifs, and

we find about 57 motifs appeared in both SVR and non-SVR motif sets. Table

3 shows the top 12 motifs found by MEME which have the highest frequency in

a total of 15 times of MEME running.

Table 3: The top twelve motifs found by MEME

SVR SVR Non-SVR No. of Non-SVR SVR Non-SVR No. of
motifs sequences sequences occurrences motifs sequences sequences occurrences

WRQEMG 39 60 15 TFQVGL 18 49 15
RKSRKF 21 32 14 GDFHYV 21 49 14
WKDPDY 27 47 12 WKDPDY 27 47 14
EEDERE 30 54 11 QITGHV 17 40 12
CTTHHD 11 22 10 DLIEAN 35 60 11
GDFHYV 21 49 9 RLHRYA 27 47 10
SHITAE 41 54 8 KNGSMR 25 47 8
DPSHIT 41 56 7 LLREEV 11 37 7
EPDV 40 59 6 SQLASAP 34 61 5

PVVHGC 37 57 5 TSMLTD 39 61 4
LKAT 35 59 3 PEFF 28 49 3
SPDA 32 55 2 EEYV 27 48 2

5 MEME http://meme.sdsc.edu/meme/cgi-bin/meme.cgi
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Observing Table 3, we see that although MEME allows us to search dis-

criminative motifs with two sets of positive and negative sequences, the dis-

criminative ability of these motifs is not high. The motifs such as “WKDPDY”,

or “GDFHYV” have the high frequency in 15 times of MEME running, but

their appearances in both SVR and non-SVR motif sets make them difficult to

be reliable discriminators when distinguishing two classes. In addition, MEME

does not return motifs that have the high accuracy such as “LAI”, “VEA”, or

“VDLIEA” found by E-SLUPC. Therefore, MEME has just worked effectively

in the case of finding motifs that describe characteristics of a sequence dataset.

4.4.2 DEME

DEME is one of the efficient discriminative motif finding methods. DEME com-

bines two times of search, global and local search, to learn the parameters of

the PWM motif model that maximize the discriminative objective function.

Moreover, DEME uses an informative Bayesian prior to incorporate the prior

knowledge of reside characteristics of protein sequences. Using the free program

DEME6, we also perform a 5 times 3-fold cross validation experiment in order to

compare discriminative motifs of the proposed method and DEME. Parameters

are chosen as follows, the length of each motif is from 2 to 6 amino acids, the

occurrence of a single motif is set to one occurrence per sequence and the input

sequences are protein sequences. Other parameters use default values of DEME.

After 15 times of DEME running, we obtain 248 SVR motifs and 387 non-SVR

motifs, where 11 motifs appear in both SVR and non-SVR motif sets. Table 4

shows the top 12 motifs found by DEME which have the highest frequency in a

total of 15 times of DEME running.

Table 4: The top twelve motifs found by DEME

SVR SVR Non-SVR No. of Non-SVR SVR Non-SVR No. of
motifs sequences sequences occurrences motifs sequences sequences occurrences
KK 15 9 13 FQ 23 56 11
RK 41 61 12 TFQ 19 50 10

LAIKT 7 0 12 DQASD 1 7 8
KSKK 6 5 11 DQDSD 12 20 7
LAIK 7 0 10 EMGGN 36 61 6

LVGLNW 10 0 9 DQPSND 0 4 6
LATKT 19 45 9 SFD 25 48 5
LSALSL 3 0 8 ASQ 41 61 4
PSLK 32 59 8 YN 40 60 4
VSLK 1 0 6 NMWH 0 5 4
RKT 10 11 6 MWHGT 0 5 3
KSRK 22 34 5 ATCTT 32 54 3

In Table 4, the SVR motifs “LAIKT”, “LAIK”, “LVGLNW”, “LSALSL”

6 DEME http://bioinformatics.org.au/deme/
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and “”VSLK” occur in SVR sequences and do not occur in non-SVR sequences.

The similar observation is concluded for non-SVR motifs, such as “DQPSND”,

“NMWH”, and “MWHGT”, that occur in non-SVR sequences and do not occur

in SVR sequences. The frequency of these motifs in a total of 15 times cross

validation experiment are high. Two SVR motifs, “LAIKT” and “LAIK”, and

the non-SVR motif “NMWH” contain the SVR motif “LAI” and non-SVR mo-

tif“NM” respectively that are found by E-SLUPC. This shows that the ability

of searching longer length motifs of DEME is better than the one of E-SLUPC.

However, DEME cannot limit the search to the discriminative motifs only. Be-

sides finding discriminative motifs, DEME finds motifs in both SVR and non-

SVR sequences. For example, “KK”, “LATKT”, “”PSLK”, “RKT” and “KSRK”

are SVR motifs, but they appear in several non-SVR sequences. The same re-

mark is also made for the group of non-SVR motifs, the motifs “FQ”, “TFQ”,

“EMGGN”, “ASQ”, “YN”, and “ATCTT” are found in many SVR sequences.

The searching results of DEME do not completely discriminate SVR and non-

SVR properties of sequences. Therefore, a step of the comparative assessment is

necessary to pick out discriminative motifs after using DEME.

5 Conclusions

We have presented the algorithm for discovering discriminative motifs which

can function well when the labeled dataset is small, but the unlabeled dataset is

large. Our algorithm is applied to detect the relationship between HCV NS5A

protein and IFN/RBV therapy effect. The results are promising as they present

many patterns that were not known previously. However, the SLUPC algorithm

quickly eliminates the cases that do not satisfy two thresholds coverage and

discriminant during recursively expand a subsequence. This can lead to ignoring

some potential motifs neglected one or more positions if we want to find gap

motifs.

We have also explored the use of self-training-based semi-supervised ensemble

learning to enlarge the training set of the discriminative motif finding problem

in case the number of labeled data is small. This method works in an iterative

procedure to choose the best match sequences among the unlabeled sequences.

The experiment results show that with more data for the training dataset, the

SLUPC algorithm can obtain higher accuracy.
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