Go home now Header Background Image
Search
Submission Procedure
share: |
 
Follow us
 
 
 
 
Volume 19 / Issue 3

available in:   PDF (362 kB) PS (995 kB)
 
get:  
Similar Docs BibTeX   Read comments Write a comment
 Number of Comments:1
get:  
Links into Future
 
DOI:   10.3217/jucs-019-03-0406

 

A Decoupled Architecture for Scalability in Text Mining Applications

Jorge Villalon

Rafael A. Calvo (University of Sydney, Australia)

Abstract: Sophisticated Text Mining features such as visualization, summarization, and clustering are becoming increasingly common in software applications. In Text Mining, documents are processed using techniques from different areas which can be very expensive in computation cost. This poses a scalability challenge for real-life applications in which users behavior can not be entirely predicted. This paper proposes a decoupled architecture for document processing in Text Mining applications, that allows applications to be scalable for large corpora and real-time processing. It contributes a software architecture designed around these requirements and presents TML, a Text Mining Library that implements the architecture. An experimental evaluation on its scalability using a standard corpus is also presented, and empirical evidence on its performance as part of an automated feedback system for writing tasks used by real students.

Keywords: automatic feedback, software architecture, text mining

Categories: D.2.11, I.7, L.3, M.1