
A Comparison of Five Programming Languages in a Graph

Clustering Scenario

Martin Stein

(Karlsruhe Institute of Technology, Germany
mail@martinstein.net)

Andreas Geyer-Schulz

(Karlsruhe Institute of Technology, Germany
andreas.geyer-schulz@kit.edu)

Abstract The recent rise of social networks fuels the demand for efficient social web services,
whose performance strongly benefits from the availability of fast graph clustering algorithms.
Choosing a programming language heavily affects multiple aspects in this domain, such as run-
time performance, code size, maintainability and tool support. Thus, an impartial comparison can
provide valuable insights that are also useful for software development in general. This article in-
vestigates the languages C++, Java, C#, F# and Python (as well as its close variant Cython) in a
controlled scenario: In each language, a graph clustering task is implemented and executed. The
paper introduces the problem to be solved and gives an overview over the different characteris-
tics of the languages. After a detailed description of the testing environment, we report runtime,
memory and code size results and discuss them with respect to the characteristics mentioned be-
fore. The findings indicate C++ as the fastest language for the challenge at hand, but they also
show that Java, C# and F# come close under some circumstances. Furthermore, it becomes clear
that the amount of code can be significantly reduced with modern languages like Python or F#.
Key Words: Benchmark, Programming Languages, Language Performance, Graph Clustering,
Modularity
Category: D.3, G.2.2, C.4

1 Introduction

The discussion of different programming languages often leads to heavy arguments
based on strong opinions. Objective comparisons are hard to find and individual views
are shaped by past experiences and personal investment in languages. An impartial
evaluation of languages implies that each one should be investigated under conditions
as similar as possible. Managing such a setup requires serious effort. Not surprisingly,
recent studies are rare.

With the rise of the internet, the ongoing introduction of information technology
in more areas of life and increasing amounts of data, processing on larger scales gains
more and more importance. In the last decade numerous social networking sites have
appeared and experienced considerable growth of usage. Hence, the analysis of social
graph data gets more relevant and graph clustering plays a central role in this regard.
Moreover, the internet as a fast-paced environment encourages the quick development
and rollout of new methods.

Journal of Universal Computer Science, vol. 19, no. 3 (2013), 428-456
submitted: 31/3/12, accepted: 28/1/13, appeared: 1/2/13 J.UCS

In light of this, the choice of programming language has a significant impact. It
affects the runtime performance and memory consumption of computations and thus
indirectly the energy consumption in operations. It sets the frame for how much code
needs to be written and shapes the level of complexity and abstraction. Consequently,
it influences programmer productivity and development costs. Maintainability, a major
aspect in the software industry, depends on the language used. The work flow before
rollout also needs to be adapted: Can the code be executed directly in an interpreter?
Or is a potentially time-consuming compile-and-link step necessary? The tool support
and ecosystem vary between languages, for instance the availability and usefulness of
integrated development environments (IDEs), debuggers or profilers. A language with a
strong open source culture usually offers more freely usable libraries, whereas another
one might allow for better business support and integration.

The goal of this article is to examine five programming languages (C++, Java, C#,
F#, Python and its variant Cython) in a computationally intensive scenario and deter-
mine runtime performance, memory consumption and code size. Therefore, we spec-
ified a task that the first author implemented in each of the languages. The concrete
development effort is intentionally not included in the investigation to allow the pro-
grammer to make up for differing levels of proficiency in the given languages. How-
ever, in software econometrics code size is seen as the variable with the largest impact
on development effort [Boehm 1981]. The challenge centers around graph clustering
algorithms, but in order to have a broader comparison, it also includes frequently en-
countered programming aspects like input parsing, a strategy pattern and the use of
resizable lists and hash tables. The chosen languages differ in several ways: statically
or dynamically typed, compiled or interpreted, object-oriented or functional. The article
is not intended as an absolute statement about the languages above, but it provides an
informative data point in a domain where recent, objective publications are scarce.

2 Related Work

There are few contemporary scientific publications dealing with programming language
comparisons. A study by Lutz Prechelt in 2000 compared seven languages (C, C++,
Java, Perl, Python, Rexx, Tcl) in various aspects [Prechelt 2000]. The author investi-
gated runtime performance, memory requirements, code length, programming effort
and reliability of 80 versions of the same program, written by 74 different authors.

Cesarini et al. compared implementations of IMAP client libraries in five languages
(Erlang, C#, Java, Python, Ruby) [Cesarini et al. 2008]. The libraries differ in func-
tionality, so the comparison includes functionality of primitives as a metric besides
lines of code, memory requirements and execution time. In [Nyström et al. 2008], a
C++/CORBA telecom application was re-engineered in Erlang and the two implemen-
tations were subsequently analyzed comparatively. The rewrite in Erlang led to a re-
duction in code size to less than a third of the original 15K lines of C++ code, while

429Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

improving the system’s robustness. Both publications focus on Erlang and support its
validity in a telecommunications scenario.

A comparison of different software platforms for web development is presented by
Prechelt [Prechelt 2011]. In the course of a publicly held 30 hour contest, 9 profes-
sional developer teams were given the task of implementing a web application based on
the same specification. The languages Java, Perl and PHP were each used by three of
the participating teams. The resulting programs were evaluated both on external, user-
relevant and internal, developer-related criteria. Notably among the study’s findings, the
solution quality varied most between the Java teams and least within the PHP group. In
2011, a follow-up competition was held with 16 participating teams using five different
languages (Java, Perl, PHP, Ruby, JavaScript). Again, the contestants implemented a
web application and several characteristics of the delivered solutions were evaluated.
The findings in [Stärk et al. 2012] show a high productivity of the Ruby teams, whereas
the productivity within the Java and PHP groups was less uniform.

Simula Research Laboratory performed a private, controlled experiment
[Anda et al. 2009]. After receiving bids from 35 companies, four of them were con-
tracted to develop the same system. However, the study focuses on variability and
reproducibility of software engineering in general. Java was a core requirement, so
this study does not compare different languages. Though not a peer-reviewed publi-
cation, the website The Computer Language Benchmarks Game [ben 2011] presents
implementations of 12 mini-benchmarks in roughly 24 programming languages, mea-
suring runtime, memory requirements and code size for each. The SciViews Benchmark

[sci 2012] evaluates the runtime of scientific computing software (Matlab, R, Octave
etc.) for a set of standard problems. Its last update was in 2003.

Steve McConnell’s Code Complete [McConnell 2004] shows the ratio of source
code statements in higher-level languages to the equivalent number of statements in C.
Relative execution times for some of the code samples in the book are presented, too.
However, the statement ratio data is partly adapted from the above-mentioned work
in [Prechelt 2000]. On the subject of controlled experiments in software engineering,
which this paper can be considered part of, there is a general survey by Sjøberg et al.
[Sjoeberg et al. 2005]. Their work investigates 103 experiments and provides a numer-
ical summary of involved categories, participants and tasks performed. Their results
confirm that comparisons of programming languages are only tackled by a small per-
centage of publications.

3 Programming Languages and Concepts

Besides obvious syntactical differences, programming languages can be distinguished
based on several properties. Each one is relevant for the comparison at hand and de-
scribed below.

430 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

3.1 Execution Strategy

From a machine point of view, source code can be executed in two manners: com-

piled or interpreted. A compiler translates the original code into machine code which is
subsequently executed by the processor. The procedure usually starts with a front end
which parses the written code, checks for syntax correctness, and generates an inter-
mediate representation. The back end then translates that representation into assembly
or machine code. In between, compilers often carry out optimizations, for instance in-
lining of functions, omitting unreachable code or pre-calculating constant values. C++,
developed by Bjarne Stroustrup as an extension to the C language [Stroustrup 1993],
belongs to this category.

An interpreter, on the other hand, executes code step-by-step. Each statement is
parsed and translated into machine code on the fly which negatively impacts the run-
time. This also holds when the original source code is transformed into an intermediate
bytecode representation first. In that case, instead of operating on the source code di-
rectly, it is the bytecode that has to be interpreted. This is what happens in the Python
reference implementation, referred to as CPython, which features a bytecode interpreter
written in C.

C#, F# and Java also translate source code into an intermediate bytecode repre-
sentation. However, their runtime environments additionally perform Just-in-time (JIT)
compilation which means bytecode is compiled into specialized machine code at load
time or during execution. In the latter case, the environment usually identifies frequent
(“hot”) code paths and generates optimized machine code for those parts. Thus, exe-
cution speed improves while the program is running. Java’s reference virtual machine,
the HotSpot JVM provided by Oracle Corporation, offers JIT-compilation of this kind
[Paleczny et al. 2001]. C# and F#, running under Microsoft’s Common Language Run-

time (CLR), employ a similar procedure [Meijer and Gough 2000].
Cython is a Python extension which allows adding C-like type annotations and call-

ing C functions. These code parts are then compiled to C code which in turn can be pro-
cessed with a standard C-compiler. Thus, it is possible to speed up critical, slow Python
code paths by replacing them with compiled Cython modules [Wilbers et al. 2009].

3.2 Type System

Cardelli distinguishes between typed and untyped languages [Cardelli 2004]. Typed
languages perform static type checking whereas untyped languages can only use dy-

namic type checking. Another aspect of typing is the necessity or absence of explicit
type declarations: We distinguish between explicitly and implicitly typed languages.

Static typing is used in C++, Java, F# and C# [Ecma International 2001]. However,
in version 4.0 C# introduces a dynami keyword that can be used to bypass static
checks on variables. Python is dynamically checked. Cython is of a hybrid nature:
Code sections can be enhanced with C-like type declarations and thus become stati-
cally typed. In dynamically checked languages, the safety of operations is verified at

431Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

runtime which usually increases execution time. Static typing can be exploited for effi-
cient machine code generation which improves runtime performance. Dynamic check-
ing allows more flexibility, but on the downside, some errors are only caught during
program execution.

Of the languages considered in this paper, explicit type declarations are required
for C++, Java and C#. F# is partially implicitly typed. For instance, the statement
let value = 5 enables the compiler to infer that value is of type integer. Python
is dynamically checked without explicit type declarations and Cython is, again, in be-
tween. The absence of explicit type declarations leads to shorter code.

3.3 Programming Paradigm

Programming languages provide different concepts for the programmer to structure the
code. Currently, the most widely used paradigm is object-oriented programming (OOP).
It emphasizes the aspects of encapsulation, inheritance and polymorphism. An object
encapsulates state as private data and the means to transform it via a public interface. It
inherits behavior from parent definitions and polymorphism enables the interchangeable
usage of different types, as long as they conform to the same interface. C++, Java and
C# are considered as OOP languages.

Functional programming has its origin in mathematics. The basic building block
for defining behavior is the concept of mathematical functions. They can be assigned
to variables (first-class functions) and have the role of input or return parameters of
other functions (higher-order functions). In pure functional languages, a function call is
without side effects and its result only depends on its input. Mutable state is completely
disallowed and recursion replaces traditional looping constructs. In practice, however,
the term “functional programming” is loosely defined and the extent to which languages
cover the aspects above varies greatly.

None of the languages in the comparison are regarded as pure functional languages
(like Haskell). Still, F# is generally seen as a functional language, even though it also
offers support for OOP and allows mutable state. Python and Cython cannot clearly be
placed in either the object-oriented or the functional category, since they contain several
aspects from both.

3.4 Generics

In statically typed languages, there is often the need to write code that can deal with
multiple types and is nonetheless type-safe. This applies especially to container classes
like linked lists, resizable lists or hash tables. It should be possible to use one linked
list for int and another for double values without duplicating the code for the list im-
plementation. Programming languages with generic types offer the possibility to write
functions or classes with general type parameters, like a hash table mapping keys K

432 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

to values V. These code parts can then be used with concrete type specializations, for
example a hash table mapping strings to integer values.

In the case of C++ and its templates, the type-specialized version is generated at
compile-time. Furthermore, templates enable the powerful but also challenging tech-
nique of template metaprogramming which allows code specializations that are consid-
ered Turing complete [Veldhuizen 2003]. C# and F# both run in the CLR (Common
Language Runtime) environment, where the specialized code is generated at runtime.
Since generics in the CLR are restricted to type parameters, metaprogramming as in
C++ is not possible. Java, on the other hand, does not generate specialized code ver-
sions and performs type erasure instead: The compiler replaces generic types with raw
types that wrap primitive types like integers or doubles in an object. Consequently,
Java’s generics offer type-safety at compile-time but incur additional boxing and space
overhead for primitives at runtime. Python is dynamically typed, hence the concept of
statically type-safe generics does not apply. Table 1 sums up the above characteriza-
tions.

Execution
strategy (3.1)

Type
system (3.2)

Main
paradigm (3.3)

Generics
(3.4)

C++ compiled static OOP compile-time

Java JIT-compiled static OOP type-erasure

C# JIT-compiled static OOP runtime

F# JIT-compiled static functional runtime

Python interpreted dynamic both n/a

Cython hybrid hybrid both compile-time

Table 1: Overview of programming language characteristics

4 The Setup of the Comparison

The goal of this paper is to deliver a comparison of programming languages for the task
of graph clustering, which is highly relevant for real-world social networking services.
This leads to several decisions which are outlined below.

4.1 Scope and Complexity

Micro-benchmarks like the calculation of Fibonacci numbers are often used for quick
language comparisons, but they are not indicative of real-world usage: First, they eval-
uate only a single or very few aspects of each language. Second, the code in these

433Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

benchmarks is often heavily tuned towards runtime performance without considering
common language idioms and best practices from software engineering. Third, due to
their small problem scope, they completely ignore a fundamental challenge of software
development: dealing with complexity in growing code bases.

The closer the benchmark scope is to a given scale, the more indicative it is for
applications of that size. Ideally, we would have chosen a task that demands at least
several thousand lines of code. However, it is a major undertaking to deliver solutions
of that extent for five programming languages and, therefore, out of the scope of this
paper. Instead, we investigate a problem that is manageable and yet representative for
larger applications.

4.2 The Programming Domain

The comparison task is defined in the field of graph clustering. A graph (in some disci-
plines also referred to as network) can represent a multitude of models. Social networks
are a prime example: Each person is a vertex (or node) and the friendship between two
persons corresponds to a connecting edge. Sales data on online shopping sites also lends
itself well to a network representation: The articles are nodes and the copresence of two
items in the same purchase forms an edge. The Web with its documents and links is
represented by a graph, but also more unusual data like the interaction between proteins
in a chemical reaction.

A frequent challenge is to identify clusters: groups of nodes that are more densely
connected within than to the rest of the graph. Finding such a partition is also referred
to as community detection. The results can help to identify circles of friends in social
networks or groups of complementary products to recommend to a customer. Fig. 1
shows an example of a graph with 15 nodes partitioned into 3 groups.

Figure 1: A graph containing three clusters

434 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

4.3 Modularity

Intuitively, a good clustering contains a high number of intra-cluster edges while keep-
ing the weight of connections between clusters low. However, simply assigning all ver-
tices to the same partition satisfies this requirement without providing any information.
The modularity measure Q proposed by Newman et al. [Newman and Girvan 2004] im-
proves upon this idea. Let ζ = {C1,C2, . . . ,Ck} be a a non-overlapping clustering of a
graph into a set of k nonempty communities, ei j the fraction of edges between nodes
in partition Ci and C j and ai the fraction of edges that are connected to vertices of Ci.
Then, Q is defined as follows:

Q = ∑
i

(eii− a2
i) (1)

The measure compares the fraction of edge weights within clusters ∑i eii to the
expected fraction of edge weights ∑i a2

i . The higher the difference, the more the chosen
partitioning positively differs from what would be expected in a random graph with
the same edge distribution. The trivial clustering mentioned above – all nodes in one
partition – yields a value of Q = 0.0, whereas the theoretical maximum is Q = 1.0. In
practice, values of Q > 0.3 indicate significant community structure.

4.4 Task Description

Algorithm 1: High-level specification of the clustering task
Input: Undirected graph in Pajek format
Output: List of clusters

graph← new Graph /* adjaeny list */

for line in section *edges do

graph.add_edges_from(line)

algorithm← select_algo(command-line) /* strategy pattern */

joinpath← algorithm(graph) /* runtime measured */

maxQ, index← get_max_join(joinpath)
clusters← join_up_to(joinpath,maxQ, index)
for cluster in clusters do

print(cluster)

Based on this scenario, the task is to read a graph stored in a textual file in
the Pajek-format [Nooy et al. 2004] and represent it in memory. An adjacency ma-
trix would require O(n2) space for n nodes and is, therefore, unsuitable for large and

435Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

sparse graphs (relevant datasets usually have a density far below 0.01, see Table 2).
Hence, weighted adjacency lists were chosen as a more efficient memory representation
[Cormen et al. 2009]. Then, depending on the choice of command-line arguments, one
of two clustering algorithms (a greedy and a randomized greedy algorithm explained
in the next paragraph) must be executed. Finally, the generated partitions and the cor-
responding cluster quality will be stored in a result file. The procedure is described in
Alg. 1.

The core of the comparison are two clustering algorithms: Newman’s greedy proce-
dure [Newman 2004] and a randomized greedy approach [Ovelgönne et al. 2010]. Both
methods are agglomerative: At first, each node is assigned to its own cluster. Then, the
clusters are joined iteratively, which results in a join path. For each step, the value of
Q is calculated. Along this path, the clustering with the highest modularity is chosen
as the result. In the pure greedy version, in each step the change of modularity ∆Q

is determined for all possible joins and the one with the highest ∆Q is selected. On
sparse graphs, the algorithm’s running time is O(n2) for n nodes. In the randomized
greedy method, instead of analyzing all potential joins, a small number of clusters k

is randomly selected in each step. Only the joins between those communities and their
neighbors are calculated and the best one is chosen. For constant values of k (k ≤ 2
is recommended in [Ovelgönne et al. 2010] and has been used in the DIMACS com-
petition [Ovelgönne and Geyer-Schulz 2013]) the runtime decreases to O(n logn) on
average in sparse networks. Since each run is significantly faster, several runs l are
performed in order to select the one with the highest Q. The randomized selection usu-
ally leads to a more balanced growth of clusters [Ovelgönne and Geyer-Schulz 2012].
Therefore, it is not as susceptible to local maxima as the greedy algorithm and gives
considerably better results in most cases. Alg. 2 shows the algorithm in more detail.
For a more extensive description of the pure greedy version we refer to its original
publication ([Newman 2004]).

The data structure for representing the clusters and merging them plays a crucial
role in the procedure. It needs to store sparse edge weights between all clusters and must
support efficient joins between partitions. A normal matrix cannot be used because of its
O(n2) space requirements. An adjacency list is inadequate since the summation of edge
weigths during the merges would require iterating over all neighboring entries for the
column-wise join. Therefore, the clusters will be represented as an array of hash tables
that map integer keys to double values. Each hash table in the array corresponds to one
cluster. The integer keys specify the neighboring cluster indexes and the double values
hold the cumulative edge weight between these communities. Sparsity is achieved by
storing only key-value pairs for connected clusters, where ei j > 0 and omitting key-
value pairs where ei j = 0. The clustering will be performed on multiple graphs, the
largest of which consists of more than 300.000 nodes and 1.000.000 edges. Hence, the
given problem covers several aspects:

1. Deal with file I/O and parse a custom data format.

436 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

Algorithm 2: Randomized greedy modularity clustering
Input: graph - in adjacency list representation
Output: joinpath

e← new Matrix(graph) /* array of hash tables */

a← new Array(graph.size)
for row i in e do

ai← row_sum(ei)
for i in 1 to size(e) do

max∆Q←−∞

selected← k_random_clusters(e)
for cluster c in selected do

for neighbors n of c do

∆Q← 2(ecn− acan)

if ∆Q > max∆Q then

max∆Q← ∆Q

best join← (c,n)

perform_join(best join)
joinpath← joinpath+ best join

return joinpath

2. Handle potentially large datasets.

3. Implement a strategy pattern (the clustering method is chosen at runtime).

4. Use a collection/container library (resizable lists for the adjacency list representa-
tion and hash tables for the clustering).

5 Evaluation

In order to compare the different languages in the setup described above, the task needed
to be implemented and then measured on several datasets using clearly defined metrics.
This section covers the relevant aspects and discusses the results gathered from the
experiments.

5.1 Comparability

Before the evaluation, the actual code needs to be written in a way that ensures high
comparability of the results. Software metrics like program size and runtime per-
formance are influenced by several factors, for instance domain experience, avail-
ability of software tools or time constraints during development [Boehm et al. 2000,

437Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

Kennedy et al. 2004]. Individual programmer capability affects these measures in par-
ticular [Boehm et al. 2000], resulting in differences of up to an order of magnitude
[Sackman et al. 1968]. Hence, assigning the task in the different languages to differ-
ent persons would be problematic. Instead, the first author, who co-authored the orig-
inal randomized greedy algorithm, wrote the code for all versions. He had previous
knowledge in all of the languages and two years of industry experience each in both
Java and Python. He had the least amount of experience in C++. This was compen-
sated by the implementation history of the original randomized Greedy algorithm which
required a Java implementation for the WeKnowIt European Union research project
(done by the first author) and a competitive C++ implementation for scientific publi-
cation [Ovelgönne and Geyer-Schulz 2010] (ported from the Java version by Michael
Ovelgönne). For this paper, the C++ version was rewritten from scratch based on one
year’s experience with both previous implementations. That same experience was ap-
plied in the writing of all other implementations.

Since the task is algorithm-centric, this is especially important: Without deep do-
main knowledge of the underlying steps and the algorithmic complexity it would be
difficult to produce comparable code. With all implementations done by the first author,
we ensure the same level of algorithmic background knowledge across all languages.

Another aspect that positively impacts comparability is the strict specification of
the task itself: The input format of the data is clearly defined, the two algorithms are
described in detail in their corresponding publications and the output format has to be
identical. Furthermore, the agglomerative clustering approach in combination with the
size of the test networks dictated the exact memory representation with arrays of hash
tables (see section 4.4).

Finally, data structures like resizable arrays and hash tables are central to the com-
parison. Each of the languages already offers the required container libraries, for in-
stance the STL (Standard Template Library) in C++ or the System.Collections names-
pace in C#. These libraries are heavily in use in real life scenarios, so using them in
the comparison increases the relevance of the setup. Furthermore, their usage further
reduces variation between the implementations because it shifts functionality into the
language libraries.

The programming author spent extra-time on researching common idioms and best
practices to ensure a high code quality and comparability of the implementations in
all languages. Consequently, we did not place any time constraints on the coding task
and did not evaluate the time to write the code, since that would penalize research and
improvements in code quality. The development time for the implementations in the
various languages was about four months in total. Design variants were constrained by
the decision to use standard libraries for data structures and the precise specification of
the algorithm. However, improvements in one language were transferred to the other
implementations when possible.

438 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

5.2 Metrics

Programming languages significantly differ in their expressiveness. Whereas one
language might solve a problem with a terse one-liner, another might require a
large amount of code. Program size is and has been widely considered as the
main cost driver of software engineering projects [Boehm 1981, Boehm et al. 2000,
Albrecht and Gaffney 1983]. Furthermore, a strong correlation between program size
and program complexity has been established [Jay et al. 2009]. Source lines of code
(SLOC) is often used in this regard, but its meaning must be stated exactly in order to
deliver meaningful numbers. SLOC can be given as physical lines of code, which usu-
ally refers to a count of all lines in a program. However, the definitions vary in whether
comment lines should be included or ignored. Logical lines of code specify the number
of statements in the code, but there is no consensus on what counts as a statement. A
general framework for a more detailed definition is available from the Software Engi-
neering Institute [Park 1992], but an exact specification for all of the languages in the
comparison is not available.

We will use a metric which is often named effective lines of code (eLOC). It mea-
sures the number of lines excluding blank lines, comment lines and lines with braces,
brackets or parentheses only. Hence, eLOC is language independent and does not un-
necessarily penalize good coding style involving comments or blank lines. It is espe-
cially suitable for this comparison since differences in brace placement (K&R style
preferred in Java, Allmann style in C#) or the absence of braces as block delimiters
(Python, F#) do not affect the results.

Type inference as in F# or dynamic typing in Python lead to shorter code, but the
size reduction is not automatically reflected in smaller eLOC numbers. Both the Java
statement

Map<String, Integer> wordCount = new HashMap<String, Integer>();

and the corresponding Python statement

word_ount = {}

result in 1 eLOC in spite of the strong differences. Therefore, we also define the measure
effective bytes (eBytes) as the size of the source code in bytes after excluding comments
and collapsing consecutive white spaces to a single one. Like eLOC, the eBytes metric
is robust with respect to commenting and different brace or indentation styles. It is,
however, affected by length differences in function, class or variable names which is
why equally descriptive names were used in the code of every language.

Besides code size, the performance of the solutions is of interest. In a real-world
scenario, the graph data might be stored in a database, as textual file or the network
might already be present in memory. Measuring the time to read and build up the graph,
therefore, makes little sense. The critical part of the task is the core clustering algorithm,

439Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

so we determine its running time as wall clock time and total CPU time. Since the
clustering is CPU-bound, it is to be expected that both measures give similar results.

The memory consumption is also highly relevant for the comparison, especially
given the differences in generics between the languages. Thus, we measure the peak
memory usage for the complete task. The value was determined by spawning a separate
process for the execution and querying the process API of the operating system for the
required memory.

5.3 Datasets

In order to get results across a wide range of data, we have employed 6 real-world
datasets of increasing order of magnitude. While the Pajek file format used in the
comparison handles both directed and undirected networks, the applied clustering al-
gorithms are targeted towards simple, undirected graphs. Therefore, directed networks
were symmetrized and multiple edges and loops were removed where necessary.

The smallest dataset is the Karate graph: It consists of 34 nodes, the members of a
karate club, whose friendship ties are represented as 78 edges [Zachary 1977]. The net-
work has often been used as a basic indicator for the quality of clustering algorithms.
The second dataset models 115 US college football teams as vertices and the games be-
tween them as edges [Girvan and Newman 2002]. Multiple connections between teams
were collapsed to single ones, resulting in 613 edges total.

The next dataset depicts the email interchanges between 1133 persons at the Uni-
versity Rovira i Virgili and has 5451 undirected edges [Guimerà et al. 2003]. Boguñá
et al. analyzed the web of trust of users of the PGP algorithm in its state of July 2001
[Boguñá et al. 2004]. An undirected link between two users is formed when they have
mutually signed their keys. The released dataset is the largest connected component of
this graph. After clearing multiple connections between vertices, it comprises 10680
nodes and 24316 edges.

Newman published a dataset based on the collaboration of authors that posted
preprints to the Condensed Matter-archive at arXiv.org [Newman 2001]. Scientists co-
authoring a publication are represented as nodes linked by an undirected edge. The
largest component of this graph (from now on referred to as condmat) encompasses
27519 vertices and 116181 edges. The final dataset consists of a set of web pages
within the domain nd.edu and the links between them, which corresponds to a di-
rected network [Albert et al. 1999]. Loops and multiple connections were removed be-
fore transforming the remaining edges to undirected ones, which leaves 325729 vertices
and 1090108 edges (referred to as www below). Table 2 shows the summarized infor-
mation for the datasets.

5.4 Testing Environment

The experiments were performed on an Intel CoreTM2 Duo P8600 with 2.40 GHz and 4
GB RAM running Windows 7 with service pack 1. The power settings for the processor

440 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

Vertices Edges Density Reference

karate 34 78 0.13904 [Zachary 1977]

football 115 613 0.09352 [Girvan and Newman 2002]

email 1133 5451 0.00850 [Guimerà et al. 2003]

pgp 10680 24316 0.00043 [Boguñá et al. 2004]

condmat 27519 116181 0.00031 [Newman 2001]

www 325729 1090108 0.00002 [Albert et al. 1999]

Table 2: Dataset overview

were set to highest performance mode. Non-essential background tasks were terminated
and the machine was disconnected from LAN/WLAN. All language executables were
targeted at 32-bit mode with optimizations turned on.

The C++ code was compiled with GCC 4.5.2 based on MinGW, using the compiler
options -O3 and -fomit-frame-pointer. The Java code ran on Oracle’s HotSpot
JVM with version number 1.6.0_25. Command line options were -server (because
of more advanced optimization techniques in the server VM) and -Xmx1550m. The
C# code, based on language version 4.0, was compiled under the .NET environment
4.0.30319.225 with /optimize+. The F# executable was generated with the Microsoft
F# 2.0 compiler at version 4.0.30319.1, using the same .NET environment as C#. Tail
recursion elimination was enabled (on) and /optimize+ was turned on. The Python
interpreter for the comparison was the standard CPython release 2.7.1. For Cython 0.13,
the same compiler as C++ (GCC 4.5.2) was used.

In the .NET environment, the garbage collection (GC) can operate concurrently
on another thread or it can be set to run single-threadedly. The official documen-
tation from Microsoft states that multi-threaded mode improves latency in user in-
teractions but decreases performance [con 2013]. Our tests with both options indi-
cate that this does not hold for small graphs. However, on larger datasets single-
threaded operation is mostly superior regarding runtime and memory requirements
as shown in Tables A.5 and A.6. Since the comparison concentrates on performance
and not UI latency, the C# and F# code was configured for single-threaded mode with
<gConurrent enabled="false"/>.

The Java virtual machine offers multiple GC options [hot 2013]. We are
interested in those focused on performance, which leaves -XX:+UseSerialGC,
-XX:+UseParallelGC and -XX:+UseParallelOldGC. The first one specifies single-
threaded operation whereas the latter two enable parallel collection. The execution of
the clustering task for all options made clear that there is no single best choice. The
runtime results in Table A.7 and Table A.8 show that the fastest option depends on
the network size and the algorithm. However, single-threaded operation requires sig-
nificantly less memory on the larger datasets (see the measurements in Table A.9 and

441Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

Table A.10). Hence, the further discussion refers to the option -XX:+UseSerialGC.
This also improves the comparability of the results, since it means that all languages
were tested in single-threaded mode.

5.5 Runtime Results

The randomized greedy clustering was executed and measured 100 times for every lan-
guage and dataset. The pure greedy algorithm is deterministic as long as the hashing
scheme for the sparse representation is deterministic. It is also orders of magnitude
slower on larger networks due to its O(n2) growth. Therefore, this algorithm was exe-
cuted 50 times for the five smaller graphs and 3 times for the large www network. For
Python and Cython, the greedy experiments on the largest graph were omitted due to
time constraints (a single run can be expected to take about 20 hours).

Generally, wall clock and CPU times were very close to each other, which was to
be expected given the low background load of the system. However, the resolution for
measuring CPU times for a given process in Windows 7 is only 15.6ms [tim 2010].
The wall clock measurements feature a higher resolution of 1ms or better. Hence, we
report wall clock times for the two smallest datasets (karate and football), where timings
below 15.6ms occurred. For the other networks (email, pgp, condmat and www) the
results refer to CPU times. The arithmetic means for the randomized greedy runtimes
are shown in Table A.1, the pure greedy ones in Table A.2.

The C++ implementation emerges as the fastest one for both algorithms and on all
datasets. Figure 2 displays its runtimes on a logarithmic scale over the size of the six
clustered networks. On the small karate and football graphs, the pure greedy algorithm
finishes more quickly. With increasing graph size, it gets clear that the randomized
greedy version grows more slowly, as we would expect from its O(n logn) asymptotic
growth rate. The difference reaches a factor of 103 on the www network (10.6s for
randomized greedy versus 11.6× 103s for greedy).

The runtimes of the other languages in relation to C++ as baseline are presented in
Figure 3 and Figure 4, over an x-axis with the number of edges of the corresponding
graph. A closer look reveals several facts: First, it takes time before the JIT-compilation
for Java, C# and F# pays off. On very small datasets which only require short compu-
tations, the overhead for the virtual machines surpasses the benefits gained from JIT-
compilation. Python and Cython outperform Java, C# and F# on the karate and football
networks. The larger the graphs and the longer the calculations, the more significant the
speed-ups from JIT-compilation: For the randomized clustering on the www dataset,
both C# and Java catch up to C++ to within a factor of 2.

Second, the ratio between Python, Cython and C++ stays in a relatively narrow in-
terval within one algorithm. For randomized greedy, Python is 6.4–10.0 times slower
than C++ on all networks; Cython 5.4–8.8 times. The hybrid code of the Cython im-
plementation takes 7%–21% less time than the Python approach. There are reports of
Cython coming close to C++ performance under certain conditions, usually involving

442 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

102 103 104 105 106

number of edges

100

101

102

103

104

105

106

107

C
+
+
 r
u
n
ti
m
e
s[
m
s]

greedy

random

Figure 2: Runtimes[ms] for C++, arithmetic means

mostly numerical computations. However, the tested clustering algorithms heavily deal
with hash data structures, which explains why Cython only yields a small benefit over
Python here.

Third, in the randomized version F# is consistently 1.6–2.1 times slower than C#.
In the pure greedy method, F# gets closer to the numbers of C# and even outperforms
it on the pgp and www dataset. On all but the smallest graphs, Java lags behind C#,
but the gap narrows towards larger networks. Interestingly, both .NET implementations
perform remarkably well on the condmat dataset and even on par with C++ in the pure
greedy test.

Fourth, the differences between the randomized and the pure greedy results indicate
where JIT-compilation and Cython’s hybrid approach are especially effective. The ran-
domized algorithm only evaluates few joins in each iteration and then executes the best
one. The two central parts of the algorithm – calculating possible merges and perform-
ing them – are alternated quickly. The greedy procedure, on the other hand, determines
the modularity change ∆Q for all possible joins and only then executes the merge.
Hence, the core of the algorithm is dominated by the repeated calculation of ∆Q values.
JIT-compilation usually focuses particularly on optimizing hot, frequently taken code
paths. It is therefore well suited to the dominating inner loop of the greedy algorithm.
Consequently, C#, F# and Java come closer to C++ performance. Cython’s improve-
ment over Python is also more significant: 25%–33% runtime reduction compared to
the 7%–21% in the randomized greedy method.

443Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

102 103 104 105 106

number of edges

100

101

102

ru
n
ti
m
e
 r
a
ti
o
s
to
 C
+
+
 r
u
n
ti
m
e C++

Java

C#

F#

Python

Cython

Figure 3: Runtime ratios to C++ times for Randomized Greedy

5.6 Memory Results

For both clustering algorithms, the peak memory consumption for the task was mea-
sured. The resulting arithmetic mean values after 100 randomized greedy runs are
shown in Table A.3, those after 50 greedy runs in Table A.4. The standard deviations
in the pure greedy approach are lower due to its deterministic behavior but otherwise
it yields similar findings, so it is omitted in the discussion below. The ratios of the
randomized greedy memory requirements in relation to the C++ values are displayed in
Figure 5, with x denoting the graph size. The results for the www network are of special
interest, since they demonstrate how well each language copes with large datasets.

With 203.9MB (208842KB), C++ takes the least amount of RAM on the www
network. Python requires 1.80 times as much, followed by C# with a factor of 2.00. F#
uses slightly more memory than C# and notably, Cython requires 1.24 times as much
as Python. The latter can be explained with Cython’s hybrid nature: Some data needs
to be present both in Python and in compiled space, which evidently raises the RAM
consumption.

Java is least memory efficient and uses 3.33 times as much as C++ on the www
dataset. Its type-erasure generics play a role in this regard: Primitive values like in-
tegers or doubles are internally stored as objects in its generic classes. The memory
consumption rises accordingly. In order to further investigate this aspect, we imple-
mented a version of the randomized greedy algorithm that uses specialized hash tables
from the high performance Colt library (developed at CERN, version 1.2.0) instead
of the standard generic HashMap. Colt’s OpenIntDoubleHashMap explicitely stores

444 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

102 103 104 105 106

number of edges

100

101

102

ru
n
ti
m
e
 r
a
ti
o
s
to
 C
+
+
 r
u
n
ti
m
e C++

Java

C#

F#

Python

Cython

Figure 4: Runtime ratios to C++ times for Newman’s Greedy

primitive integer and double values instead of objects. After 100 test runs, there was
no noteworthy difference in the memory consumption on the five smaller datasets com-
pared to the generic Java version. However, on the large www graph, the memory usage
fell from 695.92MB in the generic approach down to 528.40MB in the Colt version,
which clearly demonstrates the higher requirements of Java’s generic data structure.

Furthermore, the requirements of the other languages are low for small datasets and
only increase with growing network sizes. Java’s virtual machine, on the other hand,
occupies 90.69MB for the karate graph and more than 104MB for the football, email,
pgp and condmat datasets. Thus, for small problem sizes, the memory consumption of
the JVM itself far exceeds that of the data representation. This is consistent with the
results of the Colt version, where improvements were only noticeable on the largest
dataset. The trivial “Hello World!” program can be used as further evidence: It used
24.67MB of RAM on the test machine in -server mode, even when configured for
low memory with -Xms2m -Xmx2m.

5.7 Code Size Results

For all implementations, the code size metrics were determined for the complete source
code written by the programmer. Unit tests and linked code from libraries like the C++
Standard Template Library (STL) were not included. The results are presented in Ta-
ble 3 and visualized in Figure 6. The order between the languages is almost the exact
opposite of the runtime performance order: The faster the implementation, the bigger
its code base. Python has the smallest code size of 237 eLOC. C++ at the other end

445Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

102 103 104 105 106

number of edges

100

101

102

m
e
m
o
ry
 r
e
q
.
ra
ti
o
s
to
 C
+
+
 m

e
m
o
ry C++

Java

C#

F#

Python

Cython

Figure 5: Memory requirement ratios to C++ memory for Randomized Greedy

uses 2.5 times as many lines. Cython speeds up Python, but requires marginally more
code. F# and its functional paradigm enable a code size of 275 eLOC – 27% less than
C# – at the cost of some performance. However, there is one exception: Among the
JIT-compiled languages, C# and F# are on average faster than Java even though their
code size is smaller.

C++ Java C# F# Python Cython

eLOC 587 453 376 275 237 243

eBytes 21964 15732 14230 10655 8426 8655
eBytes
eLOC

37.4 34.7 37.8 38.7 35.6 35.6

Table 3: Code sizes for each implementation

The ratio of bytes per line of code is relatively similar for all compared languages.
The Java implementation stands out with only 34.7 bytes per line. F# has the dens-
est code base with 38.7 characters for every line. Python and Cython are at the lower
end with 35.6 eBytes per eLOC, which can be explained with the general lack of type
declarations due to dynamic typing.

446 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

0

100

200

300

400

500

600

e
LO

C

e
B
y
te
s

C++ Java C# F# Python Cython
0

5000

10000

15000

20000

25000

Figure 6: Code sizes in eLOC(left) and eBytes(right)

5.8 Threats to Validity

Having all the code written by the same person does not guarantee identical quality
in all the implementations. Inevitably, the level of experience in the investigated lan-
guages varies. However, the implementations are centered around a computationally
intensive task where a deep understanding of the underlying algorithms is paramount.
With the implementations all done by the first author – who co-authored one of the two
algorithms – we reduce the risk of variations in the core algorithms compared to imple-
mentations by different authors. Furthermore, extensive studies by Boehm et al. show
that programming productivity is influenced far more by programmer capability than
language experience [Boehm et al. 2000]. Hence, the single developer approach can be
assumed to yield better comparability than assigning the task to different persons.

Another point of criticism might be raised against the general programming
capability of the first author. The randomized greedy algorithm (in a C++ im-
plementation of Michael Ovelgönne) was part of the winning submission of
the 10th DIMACS implementation challenge for the modularity clustering task
[Ovelgönne and Geyer-Schulz 2013] (compared against the solvers of eight other in-
ternational research groups). In an internal benchmark of our research group the C++
implementation used in this paper compared favorably with the award-winning imple-
mentation. With this version as baseline, Fig. 4 shows that the performance of the ver-
sions in Java, C#, and F# converges towards the performance of the C++ implemen-
tation, which suggests that their implementation is of comparable quality. The Python
and Cython performance relative to C++ is almost constant over the range of the tested
networks. The slower runtime of both versions is consistent with what one would ex-

447Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

pect given their interpreted/hybrid execution strategy and with other reports both online
and in literature (see section 2).

5.9 Other Observations

The section above reports the numerical results of the comparison. Two other aspects
not reflected in the previous data should also be mentioned: First, the code size for
Cython is hardly larger than for Python, but the increase in project complexity is con-
siderable: The implementation additionally depends on a C-compiler and instead of
executing code directly, an intermediate build-/compile-step is required. Second, both
algorithms heavily use hash tables in order to deal with sparse cluster data. C++, Java,
C# and F# allow fine tuning of the hash tables by specifying the initial capacity. Ad-
justing this value significantly improved runtimes and memory consumption for C++
and particularly for Java, where runtimes increased by a factor of 1.4 for badly chosen
initial capacities. The final versions measured in the experiments use initial capacities
of 4 both for C++ and Java. These values were obtained via bisection search on the
www dataset with the randomized greedy algorithm.

Computationally, the comparison task is characterized by its handling of large,
sparsely represented data. The use of hash tables and resizable lists plays a crucial
role and their contents are subject to frequent changes due to the repeated joins be-
tween clusters. Especially on large datasets like the www network the time spent in
garbage collection is significant. Accordingly, we can expect results along the same
lines for programs with matching characteristics: heavy computation related to large,
sparse datasets respresented in similar data structures. Purely numerical calculations
like the computation of π will likely yield different results whereas algorithms that op-
erate on graph structures, trees or linked lists are probably closer to the comparison at
hand.

6 Future Work and Conclusion

This article presents a comparison of five programming languages, based on the sce-
nario of graph clustering. The task involves input parsing, a strategy pattern, algorith-
mic computation and the use of container classes like resizable lists and hash tables.
The code in each language was written by the first author, thus eliminating side-effects
caused by differences in programmer aptitude. The goal was to provide results of inter-
est for the IT-industry, where maintainability plays an important role. Hence, the code
was written according to best practices, conventions for each language and readability
aspects.

After tests on several datasets of different size, C++ proved to be the fastest and most
memory efficient language. However, its implementation had the largest code size, too.
Python, an interpreted language, enabled the shortest implementation, but it was almost
an order of magnitude slower than C++. Statically typed, JIT-compiled languages like

448 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

Java, C# and F# came closer to matching the speed of C++ with smaller code sizes. C#
and F# stand out positively since their runtimes were on par with C++ on one of the
larger datasets. Future comparisons of programming languages lend themselves well to
extensions in multiple directions, which are not part of this paper:

1. Programming productivity is highly relevant for the domain of software engineer-
ing. How long does it take a programmer to implement a given task in a language?
How much can a software engineer achieve in a given time frame and language?
Unfortunately, investigating these questions in a valid setting is hard. Differences
in programmer capability severely impact the results. Varying levels of proficiency
in multiple languages also distort the outcome. Involving a larger number of pro-
grammers, like the article by Prechelt [Prechelt 2000], can alleviate some of the
concerns.

2. With increasing proliferation of multi-core CPUs, concurrent processing gains
more and more importance. While some languages might be well suited to high-
performance single-threaded programming, other languages might provide better
facilities for multi-core operation. Future comparisons should extend the focus to-
wards concurrent and parallel computation.

3. The World Wide Web or current social networking sites with tens of millions of
users correspond to ultra large graphs that are beyond the memory capacity of a
single machine. Problems of these dimensions can be tackled with distributed com-
puting. An analysis of the usability and performance of languages in such a context
could give valuable insights.

References

[tim 2010] “Timers, Timer Resolution, and Development of Effi-
cient Code”, Technical Report, Microsoft Corporation (2010),
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Timer-Resolution.mspx
[accessed 10 June 2011].

[ben 2011] “Computer Language Benchmarks Game”, http://shootout.alioth.debian.org/ (2011),
[accessed 31 May 2011].

[sci 2012] “SciViews Benchmark”, http://www.sciviews.org/benchmark/ (2012), [accessed 30
Dec 2012].

[con 2013] “How to: Disable Concurrent Garbage Collection”, http://msdn.microsoft.com/en-
us/library/at1stbec[accessed 19 Feb 2013].

[hot 2013] “Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning”,
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html (2013), [ac-
cessed 19 Feb 2013].

[Albert et al. 1999] Albert, R., Jeong, H. and Barabási, A.-L., “Internet: Diameter of the World-
Wide Web”, Nature, 401, 6749, (1999), 130–131.

[Albrecht and Gaffney 1983] Albrecht, A. and Gaffney, J., J.E., “Software Function, Source
Lines of Code, and Development Effort Prediction: A Software Science Validation”, IEEE
Transactions on Software Engineering, SE-9, 6, (1983), 639 – 648, ISSN 0098-5589, doi:
10.1109/TSE.1983.235271.

449Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

[Anda et al. 2009] Anda, B., Sjoberg, D. and Mockus, A., “Variability and Reproducibility in
Software Engineering: A Study of Four Companies that Developed the Same System”, Soft-
ware Engineering, IEEE Transactions on, 35, 3, (2009), 407 –429, ISSN 0098-5589, doi:
10.1109/TSE.2008.89.

[Boehm 1981] Boehm, B. W., Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ (1981).

[Boehm et al. 2000] Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R. and
Steece, B., Software Cost Estimation with Cocomo II, Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition (2000), ISBN 0130266922.

[Boguñá et al. 2004] Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A. and Arenas, A., “Models
of social networks based on social distance attachment”, Phys. Rev. E, 70, 5, (2004), 056122,
doi:10.1103/PhysRevE.70.056122.

[Cardelli 2004] Cardelli, L., “Type Systems”, in A. B. Tucker (editor), The Computer Science
and Engineering Handbook, chapter 97, CRC Press (2004).

[Cesarini et al. 2008] Cesarini, F., Pappalardo, V. and Santoro, C., “A comparative evaluation of
imperative and functional implementations of the imap protocol”, in Proceedings of the 7th
ACM SIGPLAN workshop on ERLANG, ERLANG ’08, ACM, New York, NY, USA (2008),
ISBN 978-1-60558-065-4, 29–40, doi:10.1145/1411273.1411279.

[Cormen et al. 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C., Introduction
to Algorithms, The MIT Press, Cambridge, Massachusetts, 3 edition (2009), 589–593.

[Ecma International 2001] Ecma International, ECMA-334: C# Language Specification, Ecma
(European Association for Standardizing Information and Communication Systems), 1 edi-
tion (2001).

[Girvan and Newman 2002] Girvan, M. and Newman, M. E. J., “Community structure in social
and biological networks”, Proceedings of the National Academy of Sciences, 99, 12, (2002),
7821–7826, doi:10.1073/pnas.122653799.

[Guimerà et al. 2003] Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F. and Arenas, A., “Self-
similar community structure in a network of human interactions”, Phys. Rev. E, 68, 6, (2003),
065103, doi:10.1103/PhysRevE.68.065103.

[Jay et al. 2009] Jay, G., Hale, J. E., Smith, R. K., Hale, D. P., Kraft, N. A. and Ward, C., “Cyclo-
matic Complexity and Lines of Code: Empirical Evidence of a Stable Linear Relationship”,
JSEA, 2, 3, (2009), 137–143.

[Kennedy et al. 2004] Kennedy, K., Koelbel, C. and Schreiber, R., “Defining and Mea-
suring the Productivity of Programming Languages”, International Journal of High
Performance Computing Applications, 18, (2004), 441–448, ISSN 1094-3420, doi:
10.1177/1094342004048537.

[McConnell 2004] McConnell, S., Code Complete: A Practical Handbook of Software Construc-
tion, Microsoft Press, Redmond, WA, USA, 2nd edition (2004), ISBN 0735619670.

[Meijer and Gough 2000] Meijer, E. and Gough, J., “Technical Overview of the Com-
mon Language Runtime”, Technical Report (2000), http://research.microsoft.com/en-
us/um/people/emeijer/Papers/CLR.pdf [accessed 25 March 2012].

[Newman 2001] Newman, M. E. J., “The structure of scientific collaboration networks”,
Proceedings of the National Academy of Sciences, 98, 2, (2001), 404–409, doi:
10.1073/pnas.98.2.404.

[Newman 2004] Newman, M. E. J., “Fast algorithm for detecting community structure in net-
works”, Phys. Rev. E, 69, 6, (2004), 066133, doi:10.1103/PhysRevE.69.066133.

[Newman and Girvan 2004] Newman, M. E. J. and Girvan, M., “Finding and evaluat-
ing community structure in networks”, Phys. Rev. E, 69, 2, (2004), 026113, doi:
10.1103/PhysRevE.69.026113.

[Nooy et al. 2004] Nooy, W. d., Mrvar, A. and Batagelj, V., Exploratory Social Network Analysis
with Pajek, Cambridge University Press, New York, NY, USA (2004), ISBN 0521602629.

[Nyström et al. 2008] Nyström, J. H., Trinder, P. W. and King, D. J., “High-level distribution for
the rapid production of robust telecoms software: comparing C++ and ERLANG”, Concur-
rency and Computation: Practice and Experience, 20, 8, (2008), 941–968, ISSN 1532-0634,
doi:10.1002/cpe.1223.

450 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

[Ovelgönne and Geyer-Schulz 2010] Ovelgönne, M. and Geyer-Schulz, A., “Cluster Cores and
Modularity Maximization”, in W. Fan, W. Hsu, G. I. Webb, B. Liu, C. Zhang, D. Gunop-
ulos and X. Wu (editors), ICDMW ’10. 10th IEEE International Conference on Data Min-
ing Workshops (Sydney, Australia), IEEE Computer Society, IEEE Computer Society, Los
Alamitos (2010), 1204 – 1213.

[Ovelgönne and Geyer-Schulz 2012] Ovelgönne, M. and Geyer-Schulz, A., “A Comparison of
Agglomerative Hierarchical Algorithms for Modularity Clustering”, in Proceedings of the
34th Conference of the German Classification Society, Studies in Classification, Data Anal-
ysis, and Knowledge Organization, Springer, Heidelberg (2012), 225 – 232.

[Ovelgönne and Geyer-Schulz 2013] Ovelgönne, M. and Geyer-Schulz, A., “An Ensemble
Learning Strategy for Graph Clustering”, in D. A. Bader, H. Meyerhenke, P. Sanders and
D. Wagner (editors), Graph Partitioning and Graph Clustering, Contemporary Mathematics,
volume 588, American Mathematical Society, Providence (2013), 187–205.

[Ovelgönne et al. 2010] Ovelgönne, M., Geyer-Schulz, A. and Stein, M., “Randomized Greedy
Modularity Optimization for Group Detection in Huge Social Networks”, in SNA-
KDD’2010: Proceedings of the 4th Workshop on Social Network Mining and Analysis,
ACM, New York, NY, USA (2010).

[Paleczny et al. 2001] Paleczny, M., Vick, C. and Click, C., “The Java HotspotTMServer Com-
piler”, in Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research and
Technology Symposium - Volume 1, JVM’01, USENIX Association, Berkeley, CA, USA
(2001), 1–1.

[Park 1992] Park, R. E., “Software Size Measurement: A Framework for Counting Source State-
ments”, Technical Report CMU/SEI-92-TR-020, ESC-TR-92-020, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (1992).

[Prechelt 2000] Prechelt, L., “An empirical comparison of seven programming languages”,
Computer, 33, 10, (2000), 23 –29, ISSN 0018-9162, doi:10.1109/2.876288.

[Prechelt 2011] Prechelt, L., “Plat_Forms: A Web Development Platform Comparison by an Ex-
ploratory Experiment Searching for Emergent Platform Properties”, IEEE Transactions on
Software Engineering, 37, 1, (2011), 95–108, ISSN 0098-5589, doi:10.1109/TSE.2010.22.

[Sackman et al. 1968] Sackman, H., Erikson, W. J. and Grant, E. E., “Exploratory experimen-
tal studies comparing online and offline programming performance”, Commun. ACM, 11,
(1968), 3–11, ISSN 0001-0782, doi:10.1145/362851.362858.

[Sjoeberg et al. 2005] Sjoeberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Kara-
hasanovic, A., Liborg, N.-K. and Rekdal, A. C., “A Survey of Controlled Experiments in
Software Engineering”, IEEE Transactions on Software Engineering, 31, 9, (2005), 733–
753, ISSN 0098-5589, doi:10.1109/TSE.2005.97.

[Stärk et al. 2012] Stärk, U., Prechelt, L. and Jolevski, I., “Plat_Forms 2011: finding emer-
gent properties of web application development platforms”, in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and measurement,
ESEM ’12, ACM, New York, NY, USA (2012), ISBN 978-1-4503-1056-7, 119–128, doi:
10.1145/2372251.2372273.

[Stroustrup 1993] Stroustrup, B., “A History of C++: 1979-1991”, in The second ACM SIG-
PLAN conference on History of programming languages, HOPL-II, ACM, New York, NY,
USA (1993), ISBN 0-89791-570-4, 271–297, doi:10.1145/154766.155375.

[Veldhuizen 2003] Veldhuizen, T. L., “C++ Templates are Turing Complete”, Technical Report
(2003), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.3670 [accessed 10 June
2011].

[Wilbers et al. 2009] Wilbers, I., Langtangen, H. P. and Ødegård, Å., “Using Cython to Speed
up Numerical Python Programs”, in B. Skallerud and H. I. Andersson (editors), Proceedings
of MekIT’09, NTNU, Tapir (2009), ISBN 978-82-519-2421-4, 495–512.

[Zachary 1977] Zachary, W., “An information flow model for conflict and fission in small
groups”, Journal of Anthropological Research, 33, (1977), 452–473.

451Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

A Appendix

The tables in the appendix are listed in the following order:

– Runtime results in all languages: Table A.1 and A.2

– Memory results in all languages: Table A.3 and Table A.4

– .NET results for different garbage collection options: A.5 and A.6

– Java runtime results for different garbage collection options: A.7 and A.8

– Java memory results for different garbage collection options: A.9 and A.10

karate football email pgp condmat www

[ms] [ms] [ms] [ms] [s] [s]

C++ � 0.49 3.62 31.60 169.36 1.13 10.61

s 0.01 0.07 2.95 5.21 0.02 0.04

Java � 11.00 43.65 542.98 752.37 2.55 21.81

s 5.24 4.41 101.40 65.08 0.10 0.47

C# � 43.65 46.47 70.20 296.71 1.48 19.60

s 1.05 1.06 8.15 11.08 0.03 0.27

F# � 70.27 76.76 131.51 611.99 2.49 31.64

s 1.44 1.73 9.47 10.37 0.04 0.44

Python � 4.67 23.96 238.37 1,694.01 7.27 74.42

s 0.10 0.53 8.02 13.32 0.04 0.36

Cython � 3.75 19.56 203.42 1,496.21 6.76 64.51

s 0.07 0.39 5.39 38.79 0.11 0.98

Table A.1: Runtime arithmetic means � and sample standard deviations s for Random-
ized Greedy; 100 runs each

452 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

karate football email pgp condmat www

[ms] [ms] [ms] [s] [s] [103s]

C++ � 0.12 1.85 118.00 6.79 114.79 11.61

s 0.00 0.02 7.42 0.03 0.83 0.17

Java � 5.80 39.14 553.08 14.94 197.83 18.25

s 0.16 0.55 98.29 0.13 1.80 0.18

C# � 40.58 42.88 184.08 11.01 115.96 15.71

s 0.89 1.13 10.45 0.57 14.55 2.70

F# � 65.28 68.30 228.07 10.30 116.77 15.17

s 1.10 1.32 9.91 0.07 0.97 0.03

Python � 1.87 27.98 1,904.77 115.26 1,251.68 n/a

s 0.03 0.57 13.09 0.25 4.97

Cython � 1.41 19.06 1,276.40 86.01 944.08 n/a

s 0.03 0.55 9.29 0.40 2.64

Table A.2: Runtime arithmetic means � and sample standard deviations s for Newman’s
Greedy; 50 runs each except www dataset (3 runs). Values shown as 0.00 are too small
to display with two decimal places.

karate football email pgp condmat www

C++ � 0.91 1.02 1.99 6.79 22.26 208.84

s 0.00 0.00 0.02 0.06 0.17 0.50

Java � 90.69 117.19 104.45 105.03 105.14 695.92

s 0.00 11.17 2.96 2.40 2.86 30.23

C# � 8.09 8.98 16.55 24.60 42.97 417.14

s 0.04 0.04 0.06 0.06 0.10 27.36

F# � 8.46 9.55 18.19 28.86 63.27 492.01

s 0.04 0.06 0.04 0.05 3.68 50.91

Python � 4.26 4.38 6.14 14.77 42.96 376.25

s 0.00 0.00 0.03 0.11 0.14 0.50

Cython � 4.35 4.44 6.49 17.94 50.84 467.86

s 0.00 0.00 0.03 0.09 0.17 0.77

Table A.3: Arithmetic means � and sample standard deviations s of peak memory re-
quirements[MB] for Randomized Greedy; 100 runs each. Values shown as 0.00 are too
small to display with two decimal places.

453Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

karate football email pgp condmat www

C++ � 0.92 1.01 1.75 5.43 18.14 166.88

s 0.00 0.00 0.00 0.00 0.00 0.00

Java � 90.70 92.00 100.79 101.04 100.37 671.67

s 0.00 0.01 1.78 1.12 1.44 5.65

C# � 8.02 8.32 10.00 20.10 38.87 273.99

s 0.07 0.04 0.06 0.04 0.04 0.12

F# � 8.42 8.85 13.94 21.32 51.56 417.40

s 0.06 0.05 0.07 0.05 0.06 0.15

Python � 4.24 4.37 6.06 14.52 41.91 n/a

s 0.01 0.00 0.00 0.00 0.07

Cython � 4.32 4.44 6.12 14.44 40.72 n/a

s 0.00 0.00 0.00 0.00 0.00

Table A.4: Arithmetic means � and sample standard deviations s of peak memory re-
quirements[MB] for Newman’s Greedy; 50 runs each except www dataset (3 runs).
Values shown as 0.00 are too small to display with two decimal places.

karate football email pgp condmat www

[ms] [ms] [ms] [ms] [s] [s]

C#single � 43.65 46.47 70.20 296.71 1.48 19.60

s 1.05 1.06 8.15 11.08 0.03 0.27

C#conc. � 42.41 45.22 71.92 299.99 1.66 19.84

s 0.73 0.50 8.56 9.88 0.05 0.26

F#single � 70.27 76.76 131.51 611.99 2.49 31.64

s 1.44 1.73 9.47 10.37 0.04 0.44

F#conc. � 69.74 75.53 125.58 624.00 2.68 31.47

s 1.55 1.63 8.11 15.68 0.05 0.45

Table A.5: Runtime arithmetic means � and sample standard deviations s for .NET
Randomized Greedy with different GC settings; 100 runs each. The best performance
for C# and F# each is highlighted in bold.

454 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

karate football email pgp condmat www

C#single � 8.09 8.98 16.55 24.60 42.97 417.14

s 0.04 0.04 0.06 0.06 0.10 27.36

C#conc. � 8.06 8.95 15.74 22.55 57.68 472.34

s 0.06 0.05 0.05 0.06 1.72 30.80

F#single � 8.46 9.55 18.19 28.86 63.27 492.01

s 0.04 0.06 0.04 0.05 3.68 50.91

F#conc. � 8.44 9.53 16.14 35.16 69.01 549.23

s 0.03 0.04 0.06 0.06 5.48 36.48

Table A.6: Arithmetic means � and sample standard deviations s of peak memory re-
quirements[MB] for .NET Randomized Greedy; 100 runs each. The lowest requirement
for C# and F# each is highlighted in bold.

karate football email pgp condmat www

[ms] [ms] [ms] [ms] [s] [s]

Serial � 11.00 43.65 542.98 752.37 2.55 21.81

s 5.24 4.41 101.40 65.08 0.10 0.47

Parallel � 9.71 39.04 582.58 753.06 1.87 21.85

s 0.30 0.68 122.75 59.84 0.09 2.11

ParallelOld � 10.14 39.44 574.17 752.01 1.90 28.45

s 0.30 1.41 112.15 66.05 0.11 2.11

Table A.7: Runtime arithmetic means � and sample standard deviations s for Java Ran-
domized Greedy with different GC settings; 100 runs each. The best performance is
highlighted in bold.

455Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

karate football email pgp condmat www

[ms] [ms] [ms] [s] [s] [103 s]

Serial � 5.80 39.14 553.08 14.94 197.83 18.25

s 0.16 0.55 98.29 0.13 1.80 0.18

Parallel � 5.28 36.84 536.52 17.28 193.62 19.02

s 0.13 0.31 92.37 0.30 3.30 0.20

ParallelOld � 5.33 36.83 509.42 17.44 194.17 19.44

s 0.14 0.29 92.04 0.17 1.68 0.59

Table A.8: Runtime arithmetic means � and sample standard deviations s for Java New-
man’s Greedy with different GC settings; 100 runs each. The best performance is high-
lighted in bold.

karate football email pgp condmat www

Serial � 90.69 117.19 104.45 105.03 105.14 695.92

s 0.00 11.17 2.96 2.40 2.86 30.23

Parallel � 90.72 118.24 114.28 152.60 368.64 989.89

s 0.00 8.66 8.46 1.92 1.43 39.37

ParallelOld � 158.91 189.38 180.39 220.67 437.22 992.79

s 0.02 8.43 8.31 2.00 1.31 62.95

Table A.9: Arithmetic means � and sample standard deviations s of peak memory re-
quirements[MB] for Java Randomized Greedy; 100 runs each. The lowest requirement
is highlighted in bold.

karate football email pgp condmat www

Serial � 90.70 92.00 100.79 101.04 100.37 671.67

s 0.00 0.01 1.78 1.12 1.44 5.65

Parallel � 90.71 92.06 100.63 549.02 603.39 929.69

s 0.00 0.02 1.78 52.33 0.19 1.49

ParallelOld � 158.90 160.54 169.83 625.06 672.14 992.81

s 0.01 0.02 1.19 48.95 0.20 14.35

Table A.10: Arithmetic means � and sample standard deviations s of peak memory
requirements[MB] for Java Newman’s Greedy; 50 runs each. The lowest requirement
is highlighted in bold.

456 Stein M., Geyer-Schulz A.: A Comparison of Five Programming Languages ...

