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Abstract: Software product line engineering enables proactive reuse among a set of re-
lated products through explicit modeling of commonalities and differences among them.
Features are usually used to distinguish different products as a product is identified by
its supported feature set that is represented by a configuration. Dynamic product lines
enhance flexibility of a product by allowing run-time reconfiguration. In this paper, we
focus on modeling and verification of families of concurrent and distributed systems
that are reconfigurable. To this end, we introduce the notion of variability in actor
models to achieve family of reconfigurable actors. Then, we present our methodology
to model this concept using the actor-based modeling language Rebeca. The model
checking backbone of Rebeca enables us to ensure establishment of certain constraints
on reconfigurations. We show the applicability and effectiveness of our approach by
applying it on a set of case studies.
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1 Introduction

In software product line engineering we focus on developing a product family, in-

stead of developing several single products, by developing software applications

using platforms and mass customization. To this end, commonalities and differ-

ences among products should be modeled explicitly [Pohl et al.(2005)]. Feature

models are widely used for this purpose. A product is identified by its configura-

tion representing a combination of features. Product family is the set containing

all of the valid feature combinations [Kang et al.(1990)] (Section 3.1).

Actor model is a well-known model of concurrent and distributed compu-

tation [Agha(1990)] (Section 4.1). In this model, actors are primitive units of
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concurrent computation. An actor receives messages and in response, makes lo-

cal decisions and sends a number of messages to other actors. In this paper,

we introduce the notion of actor family to facilitate development and analysis

of families of related concurrent and distributed systems by employing software

product line paradigm. An actor family model consists of featured actors whose

behavior varies according to different configurations. Reconfiguring actor fami-

lies and featured actors are supported in our proposed approach which makes it

usable for modeling dynamic product lines [Hallsteinsen et al.(2008)] as well.

To this end, we elaborate the semantics of actor families where the presence

of an actor, the messages that it responds, and its local behavior vary between

different configurations (Section 4.2). To realize the notion of actor family in

practice, we present a methodology in Section 5 to model this concept using Re-

beca modeling language [Sirjani et al.(2004)]. Rebeca, is an actor-based language

with a formal foundation for modeling and verifying concurrent and distributed

systems (Section 3.2). We extend the syntax of Rebeca to make modeling varia-

tions in the behavior convenient. However, the semantics of Rebeca is preserved

as these extensions are describable using original syntax by a straightforward

transformation. Moreover, we propose two approaches to make handling mes-

sage passing among featured actors easier for the modeler (Section 5.3).

We may verify a model of actor families against properties using model

checker of Rebeca, Modere [Jaghoori et al.(2006)]. The properties are expressed

in linear temporal logic (LTL) for this purpose [Emerson(1990)]. In the context

of distributed systems, we cannot enforce global monitoring of system’s state

to decide on reconfigurations. Instead, each actor makes a decision to alter the

current configuration considering its own state. Therefore, we take benefit from

the model checker of Rebeca to ensure that reconfigurations follow the intended

rules and do not lead the system to invalid configurations. (Section 6.2).

The main contributions of this paper can be summarized as follows.

– Introducing actor families along with their semantics to facilitate modeling

and analysis of families of related concurrent and distributed systems.

– Supporting reconfiguration of actor families to make our approach applicable

for modeling dynamic product lines

– Presenting a methodology to model actor families in Rebeca modeling lan-

guage by extending the syntax while preserving its semantics.

– Supporting coarse-grained variability (inclusion/exclusion of actors) and fine-

grained variability (variability in responded messages and local behavior) in

actor families.

– Providing facilities to coordinate message passing among featured actors

elegantly.
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– Taking benefit from model checking support of Rebeca to ensure that all

obtainable configurations in an actor family conform to a set of predefined

constraints, by verifying a set of properties

We use coffee Machine family [Fantechi and Gnesi(2008)] as the running ex-

ample in the paper. A coffee machine may serve coffee, tea, or water. Adding

extra milk to coffee may be supported optionally. Coffee machine holds a certain

amount of milk and needs to be refilled when it gets empty.

2 Related Work

So far, several approaches have been developed to model product lines using tran-

sition systems [Larsen et al.(2007a), Larsen et al.(2007b), Classen et al.(2010),

Sabouri and Khosravi(2010)], process algebra [Gruler et al.(2008)], Petri-nets

[Muschevici et al.(2010)], and ABS modeling language [Clarke et al.(2010)]. In

[Muschevici et al.(2010), Damiani and Schaefer(2011)], modeling and verifica-

tion of dynamic product lines is considered. These approaches capture the be-

havior of the entire product family in a single model by including the variability

information in it. In other words, it is specified in the model how the behavior

changes when a feature is included or excluded.

Families of transition systems are modeled using modal transition systems

(MTS) in [Larsen et al.(2007a)]. An MTS consists of may and must transitions.

A may transition can be removed or can be left when refining an MTS which

leads to different products. A must transition should appear in all of the refine-

ments. Feature transition systems (FTS) are introduced in [Classen et al.(2010)]

to model families of transition systems. In FTS, annotations are allocated to

transitions to indicate which transitions of the model correspond to which fea-

tures.

In [Gruler et al.(2008)], the authors model a product family using an ex-

tension of CCS process algebra named PL-CCS. PL-CCS, extends CCS by the

variant operator which specifies alternative process. A CCS model can be de-

rived from a PL-CCS model, by selecting one process from alternative process

described by each of the variant operators.

Families of Petri-net models are modeled in [Muschevici et al.(2010)] using

feature Petri-nets (FPN) and Dynamic feature Petri-nets (DFPN). An FPN has

application conditions attached to its transitions. An application condition is a

boolean logical formula over a set of features and indicates the feature combina-

tions that enable a transition. A Petri-net model can be obtained by projecting

an FPN onto a feature selection. The feature selection can be updated in DFPN

by associating update expressions to transitions. Upon firing a transition, up-

dates affect the feature selection by adding or removing features from it.
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In [Clarke et al.(2010)], delta modeling language (DML) that is based on

the concept of delta modeling [Schaefer et al.(2010)] is used to describe code-

level variability. In delta-oriented programming, the implementation of a product

family contains a core module and a set of delta modules. The core module

consists of a set of classes that implement a possible product corresponding to

a valid feature configuration. Delta modules specify the changes that should

be applied on the core module to obtain a new product. In this approach, an

application condition is defined over the set of features and it is associated to

each delta module to determine for which feature configurations the modification

of the delta module is applied. In [Damiani and Schaefer(2011)], the authors

extend this work to support dynamic product lines as well. In this approach,

a reconfiguration automaton describes how a configuration can be changed to

other ones.

In [Sabouri and Khosravi(2011)], we add variability to Rebeca models to

model check product families. The main focus of [Sabouri and Khosravi(2011)]

is decreasing the cost of model checking product families by reducing the number

of verified products and modeling product lines is not the main concern of this

paper.

To the best of our knowledge, our work is the first formal attempt to introduce

the notion of variability to the semantics of actor models that leads to the concept

of actor families. Reconfiguration is supported in our proposed formalization.

Furthermore, we use a high-level actor based language with model checking

support to make modeling and verifying families of concurrent and distributed

systems attainable.

3 Preliminaries

3.1 Feature Models

Commonalities and differences among different products are modeled explicitly

in software product line engineering. Feature models are widely used for this

purpose. A feature model represents all possible products of a software product

line in terms of features and relationships among them. A feature is a distinctive

aspect, quality, or characteristic of a system [Kang et al.(1990)].

A basic feature model is a tree of features that allows the mandatory, optional,

or, and xor relationships among features. It also includes requires and excludes

constraints between features [Benavides et al.(2010)]. A feature model can be

represented by a corresponding propositional logic formula in terms of a set of

boolean variables [Batory(2005)]. Each boolean variable corresponds to a feature

and its value indicates if the feature is included or excluded. The ultimate formula

φF is the conjunction of implications from: (1) every child feature to its parent

feature, (2) every parent to its mandatory child features, (3) every parent to
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Figure 1: The feature model of the coffee machine example

or/xor of its children that have an or/xor relationship, (4) every feature f to

other features that f requires, (5) and every feature f to the negation of other

features that f excludes.

Using the set of features F and the propositional formula φF that represents

the constraints among features, we define a feature model as follows and use it

in the rest of the paper. An advantage of this method is that we are not limited

to a specific notation for describing feature models and we use their semantics

instead.

Definition 1 Feature Model. A feature model is a pair (F , φF ) where

– F = {f1, ..., fm} is the set of features

– φF is a propositional logic formula in terms of features that represents the

constraints among them �

A configuration vector keeps track of inclusion or exclusion of features.

Definition 2 Configuration Vector. Having a set of features F with m fea-

tures, a configuration vector is defined as θ ∈ {true, false}m where

– θi = true represents inclusion of fi

– θi = false represents exclusion of fi �

We assume that ΘF is the set of all possible configurations over F . A con-

figuration θ over feature set F satisfies a propositional logic formula φ over F

(denoted by θ � φ) if substituting boolean variables of φ with true/false accord-

ing to θ leads to a satisfiable propositional logic formula. A configuration is valid

according to a feature model (F , φF ) when θ � φF .

The Coffee Machine Example: Feature Model. The corresponding feature

model of the coffee machine is depicted in Figure 1. Coffee, tea, and water

features have an or relationship implying that the machine serves one of these
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reactiveclass Controller() {

knownrebecs {
CS cs;

}

statevars {
}

msgsrv initial() {
self.nextOrder();

}

msgsrv nextOrder() {
cs.serveCoffee();

}

}

reactiveclass CS() {

knownrebecs {
Controller ctrl;

}

statevars {
}

msgsrv initial() {
}

msgsrv serveCoffee() {
ctrl.nextOrder();

}

}

main {
CS cs(ctrl):();
Controller ctrl(cs):();

}

Figure 2: Rebeca model of a coffee machine that only serves coffee

drinks at least. Adding extra milk to coffee is optional. Formally, this feature

model can be described as (F , φF ) where:

F = {cm, c, t, w,m}

φF = (c→ cm) ∧ (t→ cm) ∧ (w → cm) ∧ (m→ c) ∧ (cm→ (c ∨ t ∨ w))

where cm, c, t, w, and m represent coffee machine, coffee, tea, water, and milk

features respectively. A configuration θ = 〈true, false, true, false, true〉 over F

is not a valid configuration according to φF as m → c would be evaluated to

false making φF = false (we assume that θ1, θ2, θ3, θ4, and θ5 represent coffee

machine, coffee, tea, water, and milk features respectively). �

3.2 Rebeca Modeling Language

Rebeca is an actor-based language for modeling concurrent and distributed sys-

tems. Rebeca models such systems as a set of reactive objects which communicate

via asynchronous message passing. A Rebeca model consists of a set of reactive

classes. Each reactive class contains a set of state variables and a set of message

servers. Message servers execute atomically, and process the receiving messages.

The initial message server is used for initialization of state variables. A Rebeca

model has a main part, where a fixed number of objects are instantiated from

the reactive classes and execute concurrently. We refer to these objects as re-

becs. The rebecs have no shared variables, and each rebec has a single thread of

execution that is triggered by reading messages from the top of an unbounded

message queue. When a message is taken from the top of queue, its correspond-

ing message server is invoked. The message server may change the value of some

212 Sabouri H., Khosravi R.: Modeling and Verification ...



of the state variables and send messages to other rebecs. In [Razavi et al.(2011)],

Rebeca has been extended with global variables to support hardware-software

co-design.

The Coffee Machine Example: Rebeca Model. Figure 2 shows the Rebeca code

of a coffee machine that only serves coffee. The controller rebec is for managing

different orders which in this model is only coffee order. Upon receiving an order,

it sends a message to the coffee server to make coffee. The coffee server rebec

informs the controller to take the next order when it handled the request. Note

that this model do not contain variability and only shows the original syntax of

the language. �

4 Introducing Variability to Actor Models

Software product line engineering enables proactive reuse by developing a family

of related products. There are two main approaches to develop software product

lines: compositional approach and annotative approach [Kästner et al.(2008)].

In the compositional approach, features are implemented as distinct code units.

These code units are reused when the corresponding units are composed to gen-

erate each product. In annotative approaches, features are implemented using

implicit or explicit annotations in the source code. In [Kästner and Apel(2008)]

these approaches are compared and their complementary strengths are stated. In

the compositional approach, feature traceability is straightforward, but variabil-

ity in the behavior is only provided in a coarse-grained manner. On the other

hand, the annotative approach supports variability in a fine-grained manner.

As a result, to be more practical, integration of compositional and annotative

approaches is recommended.

We take benefit of the compositional approach as well as the annotative ap-

proach by considering each actor as a code unit where presence of each actor, the

set of messages it responds, and its local behavior may be variable for different

configurations. In this section, we first present the semantics of actor systems.

Then, we elaborate the semantics of family of reconfigurable actors.

4.1 Actor Models

In actor model [Agha(1990)], actors are primitive units of concurrent computa-

tion. Each actor may receive messages from other actors (or itself). The received

messages are stored in the queue of the actor. A message is executed after it is

taken from the top of the queue and in response, the actor may change its local

state and/or send a number of messages. When the execution of a message is

finished, the next message is picked form the queue by the actor. We define an

actor in terms of a finite set of messages and corresponding statements.
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Definition 3 Actor. An actor is a pair a = (M,V ) where:

– M = {m0,m1, ...,mk} is the set of message servers. A message server has

statements 〈s1, ..., sl, ǫ〉 where ǫ denotes the end of message server execution.

The initial message is denoted by m0 which is the first message that will be

picked from the queue by the actor.

– V = {v1, ..., vl} is the set of state variables �

To describe the semantics of an actor model, we consider a closed system of

actor set A = {a1, ..., an} where the actors execute concurrently and communi-

cate with each other via asynchronous message passing. The state of the system

consists of the local states of its individual actors.

Definition 4 Local State of an Actor. We define the local state of actor a =

(M,V ) as a triple ς = 〈s,V , q〉:

– s is the next statement to be executed

– V is an assignment of values to variables

– q = [q1, ..., qk] is a queue containing messages �

In the initial state, the first statement of the initial message m0 is ready to

be executed, the variables are initialized to their default values, and the queue

is empty. The local actor semantics and global actor semantics are defined as

follows.

Definition 5 Local Actor Semantics. The local semantics of an actor a is

defined as a system of labeled transitions of the following forms

1. 〈si,V , q〉
τ
−→ 〈sj ,V

′, q〉 denotes execution of a non-send statement si where

si 6= ǫ, sj is the next statement that should be executed after si, and V ′

represents new values of variables after execution of a statement

2. 〈si,V , q〉
ai!m−−−→ 〈sj ,V , q〉 denotes sending message m to actor ai where si 6= ǫ

and sj is the next statement that should be executed after si

3. 〈ǫ,V , q〉
a?m
−−−→ 〈s1,V , q

′〉 denotes taking a message from top of the queue

whose first statement is s1 �

Definition 6 Global Semantics. The semantics of a closed system of actors

A = {a1, ..., an} is defined as

ςi
τ
−→ ς ′i

ς1, ..., ςi, ..., ςn
τ
−→ ς1, ..., ς

′
i, ..., ςn

ςi
ai?m−−−→ ς ′i

ς1, ..., ςi, ..., ςn
ai?m−−−→ ς1, ..., ς

′
i, ..., ςn
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ςi
aj !m
−−−→ ς ′i

ς1, ..., ςi, ..., ςj , ..., ςn
aj !m
−−−→ ς1, ..., ς

′
i, ..., ς

′
j , ..., ςn

where ς ′j results from ςj by adding the message m to its queue. �

Intuitively, each actor has a single thread of execution which is triggered by

picking a message from the top of the queue. When a message is taken from

the queue, the corresponding message server is executed which may change the

value of some variables and send a number of messages to the other actors. The

concurrency is modeled by interleaving the execution of messages.

4.2 Family of Reconfigurable Actors

In a family of reconfigurable actors, an individual actor can be (re)configured

as well as the actor model itself. At the level of actor model, each actor may

be included in some configurations and excluded in others. However, inclusion

of an actor in a configuration does not necessarily mean that it responds to all

incoming messages as at the level of individual actors each message server may

be supported only in certain configurations. Furthermore, the local behavior of

each message server may change based on different configurations itself. We refer

to such actors as featured actors as their behavior varies based on the features

selected in a configuration. An actor model family is a closed system consisting

of featured actors.

4.2.1 Application Conditions

An application condition ψ is a propositional logic formula over features and it

is used to specify the subset of products in which an actor, a message server, or

a statement is available.

Definition 7 Application Condition. An application condition over a set of

features F = {f1, ..., fm} is formed as:

ψ ::= true | false | fi | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where fi ∈ F . �

We assume that ΨF is the set of all possible application conditions over F

and Γ : A ∪ M ∪ S 7→ ΨF maps actors, message servers, and statements to

their corresponding application condition, where A, M , and S are the sets of all

actors, message servers, and statements in a closed system of actors.

Application conditions are evaluated based on configurations. A configuration

vector θ ∈ {true, false}m over feature set F = {f1, ..., fm} is used to keep track
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of availability of features in the actor model. The satisfiability of application

condition ψ given the configuration vector θ is denoted by θ � ψ. We may also

check application conditions using a SAT-solver (e.g. [Moskewicz et al.(2001)])

to ensure their conformance to feature model. An application condition ψ is

satisfiable with respect to a feature model (F , φF ) if ψ ∧ φF is satisfiable. Non-

satisfiability of ψ with respect to φF means that ψ does not hold in any product

that conforms to the given feature model. Consequently, the corresponding code

unit that is guarded by ψ is never executed. An application condition ψ is violable

with respect to the feature model if ¬(ψ ∧ φF ) is satisfiable. Similarly, when ψ

is not violable with respect to φF , we can conclude that ψ holds in all products

and the corresponding code unit is always executed.

The Coffee Machine Example: Application Conditions. Application condition

ψ = c∧m denotes the set of products that support both coffee and milk features.

Application condition ψ = ¬c ∧m is not satisfiable with respect to the feature

model as there is no valid product that includes milk while excluding coffee

feature. Finally, ψ = c ∨ t ∨ w is an example of an application condition that

is not violable according to the feature model as every valid product serves one

type of drink at least. �

4.2.2 Semantics

Each actor keeps its own copy of the configuration vector θ which is ϑ. This

copy is updated to the latest configuration when the actor takes a message from

the queue. The behavior of a message server is determined according to ϑ that

is equal to θ when it starts executing. The execution of the message server

may be interrupted by transforming control to another actor. However, when

its execution continues, the behavior is still specified based on ϑ which is the

configuration that the message server started its execution with it, even if the

current configuration of the system is θ′.

Definition 8 Local State of a Featured Actor. We define the local state of

featured actor a = (M,V ) as a four tuple ς = 〈s,V , q, ϑ〉:

– s is the next statement to be executed

– V is an assignment of values to variables

– q = [q1, ..., qk] is a queue containing messages

– ϑ is a local copy of the configuration vector �

The configuration vector θ can be altered by actors when executing their

message servers. The local semantics of a featured actor is defined using guarded

transitions
g: l
−−→ where the transition is taken when the guard g holds.
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Definition 9 Local Featured Actor Semantics. Having configuration vec-

tor θ, the local semantics of an actor a is defined as a system of guarded labeled

transitions of the form ς
g: l
−−→ ς ′ where

1. 〈si,V , q, ϑ〉
ψ: τ
−−−→ 〈sj ,V

′, q, ϑ〉 denotes execution of a non-send statement si
where si 6= ǫ, sj is the next statement that should be executed after si,

V ′ represents new values of variables after execution of the statement, and

ψ = Γ (si)

2. 〈si,V , q, ϑ〉
ψ: ρ
−−−→ 〈sj ,V , q, ϑ〉 denotes reconfiguration through non-send state-

ment si where si 6= ǫ, sj is the next statement that should be executed after

si, ψ = Γ (si), and ρ distinguishes execution of statements result in recon-

figuration from rest of non-send statements

3. 〈si,V , q, ϑ〉
ψ:ai!m
−−−−→ 〈sj ,V , q, ϑ〉 denotes sending message m to actor ai where

si 6= ǫ, sj is the next statement that should be executed after si and ψ =

Γ (si)

4. 〈si,V , q, ϑ〉
ψ: α
−−−→ 〈sj ,V , q, ϑ〉 denotes skipping statement si where si 6= ǫ, sj

is the next statement that should be executed after si, and α ∈ {τ, ρ, ai!m}

and ψ = ¬Γ (si)

5. 〈ǫ,V , q, ϑ〉
ψ: a?m
−−−−−→ 〈s1,V , q

′, ϑ′〉 denotes taking message m from top of the

queue which its first statement is s1 and where ψ = Γ (m) ∧ Γ (a)

6. 〈ǫ,V , q, ϑ〉
ψ: a?m
−−−−−→ 〈ǫ,V , q′, ϑ〉 denotes dropping message m from top of the

queue where ψ = ¬(Γ (m) ∧ Γ (a)) �

According to the above semantics, when a featured actor is executing a mes-

sage server, the statements that their application conditions do not hold are

skipped and the state variables keep their values upon moving to the next state-

ment. A featured actor responds to a message taken from its queue by putting

the first statement of the corresponding message server as the next statement

to be executed, when the application conditions of the actor and message server

hold. Otherwise, the message is dropped and ǫ remains in the local state. The

global semantics of actor families is defined as follows.

Definition 10 Global Semantics of Actors Family. The semantics of a

closed system of featured actors A = {a1, ..., an} is defined as

ςi
ψ:τ
−−→ ς ′i ϑ � ψ ςi = 〈s,V , q, ϑ〉

ς1, ..., ςi, ..., ςn, θ
τ
−→ ς1, ..., ς

′
i, ..., ςn, θ

ςi
ψ:ρ
−−→ ς ′i ϑ � ψ θ′ = Λ(s, θ) ςi = 〈s,V , q, ϑ〉

ς1, ..., ςi, ..., ςn, θ
ρ
−→ ς1, ..., ς

′
i, ..., ςn, θ

′
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ςi
ψ:ai?m
−−−−−→ ς ′i θ � ψ ς ′i = 〈s,V , q, θ〉

ς1, ..., ςi, ..., ςn, θ
ai?m−−−→ ς1, ..., ς

′
i, ..., ςn, θ

ςi
ψ:aj !m
−−−−→ ς ′i ϑ � ψ ςi = 〈s,V , q, ϑ〉

ς1, ..., ςi, ..., ςj , ..., ςn, θ
aj !m
−−−→ ς1, ..., ς

′
i, ..., ς

′
j , ..., ςn, θ

where ς ′j results from ςj by adding the message m to its queue. �

We distinguish statements that alter the configuration using action ρ to cap-

ture the notion of reconfiguration in the global semantics. The execution of such a

statement may cause changing θ which is reflected in the second rule of the global

semantics. We assume that reconfiguration effect function Λ : S×ΘF 7→ ΘF re-

turns the new configuration after reconfiguration through a statement where S is

the set of all statements and ΘF is set of all possible configurations over feature

set F . By θ′ = Λ(si, θ) we denote that statement si changes the configuration

vector from θ to θ′.

5 Methodology

In this section, we propose a methodology to model the concept of family of

reconfigurable actors using Rebeca. To this end, we extend the syntax of Rebeca

and we show that these extensions do not affect the semantics of the language

as they can be described using the original syntax as well. The reason of these

extensions is to simplify modeling dynamic product lines. Figure 3 shows the

Rebeca model of the coffee machine family.

Our approach is not limited to Rebeca as the proposed methodology can

be adapted for other actor-based languages as well. We select Rebeca as it is

an actor-based modeling language which was designed in an effort to bridge

the gap between formal verification approaches and real-world applications. It

is equipped with a direct model checker named Modere [Jaghoori et al.(2006)].

Furthermore, an approach is proposed in [Sabouri and Khosravi(2011)] to reduce

the cost of verifying product families modeled by Rebeca.

5.1 Representing Configuration Vector

To represent configuration vectors in Rebeca, we consider a global boolean vari-

able vfi
for each feature. We refer to such variables as feature variables.

Definition 11 Feature Variable. A feature variable vfi
, representing feature

fi, is a global boolean variable where:

– vfi
= false denotes exclusion of fi
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– vfi
= true denotes inclusion of fi �

The value of such variables all together form the configuration vector. Using

variables to represent features instead of annotation tags is to support reconfigu-

ration by means of changing the value of these variables. Defining these variables

globally makes the latest configuration observable for all rebecs immediately.

An alternative option would be considering a configurator rebec to manage

the configuration vector and reconfigurations. Such a rebec has feature variables

as its state variables and is responsible of initializing and changing the variables

upon receiving reconfiguration requests from other rebecs. After altering the

configuration vector, it informs other rebecs of the latest configuration. The

drawback of this approach to manage (re)configuration is its message passing

overhead that leads to significant growth in state space.

Note that because of atomic execution of message servers in Rebeca, we do

not have to keep a local copy of the configuration vector in each rebec. When

a message server starts its execution in configuration θ, its entire behavior is

determined according to this configuration. The only exception is when message

server m reconfigures θ by assigning value to feature variable vfi
, then uses the

same feature variable in an application condition of one of its statements. In

this case, a local copy of vfi
should be kept and be updated when execution of

m starts. Despite this fact, we presented our formalization based on non-atomic

execution of messages to avoid restricting the proposed approach to its current

implementation.

The Coffee Machine Example: Feature Variables. The feature variables of the

coffee machine example are defined globally as vcm, vc, vt, vw, vm. �

5.2 Modeling Featured Actors

In Rebeca, the behavior of an actor is described using a reactive class. To capture

the semantics of featured actors, we should embed the corresponding behavior of

dropping messages from the queues and variation in local behavior of actors, in

a Rebeca model. To justify the proposed methodology intuitively, we elaborate

our modeling approach for each of the rules presented in local semantics of

featured actors. For this purpose, we use application conditions defined over

feature variables.

5.2.1 Dropping Messages

Rule 6 in definition of local semantics of featured actors denotes dropping mes-

sage m by actor a when it is not supported in current configuration θ as the

application conditions of a or m do not hold. To represent application condi-

tions of rebecs and message servers, we extend the syntax of Rebeca by the

notation @ψ as follows.
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reactiveclass Controller() {

knownrebecs {
CS cs;
TS ts;
WS ws;

}

statevars { }

msgsrv initial() {
self.nextOrder();

}

msgsrv nextOrder() {
send?(cs.serveCoffee(),

ts.serveTea(),
ws.serveWater());

}

}

reactiveclass Filler() @vm {

knownrebecs {
CS cs;

}

statevars { }

msgsrv initial() { }

msgsrv fill() {
cs.filed();

}

}

main {
CS cs(ctrl):();
TS ts(ctrl):();
WS ws(ctrl):();
Controller ctrl(cs,ts,ws):();

}

reactiveclass TS() @vt {

knownrebecs {
Controller ctrl;

}

statevars {
}

msgsrv initial() {
}

msgsrv serveTea() {
ctrl.nextOrder();

}

}

reactiveclass WS() @vw {

knownrebecs {
Controller ctrl;

}

statevars {
}

msgsrv initial() {
}

msgsrv serveWater() {
ctrl.nextOrder();

}

}

reactiveclass CS() @vc {

knownrebecs {
Controller ctrl;
Filler f;

}

statevars {
int milk;

}

msgsrv initial() {
milk = 5;

}

msgsrv serveCoffee() {
if(vm)
self.addMilk();

else
ctrl.nextOrder();

}

msgsrv addMilk() @vm {
milk = milk - 1;
if(milk == 0) {
vm = false;
f.fill();

}
ctrl.nextOrder();

}

msgsrv filled() @vm {
milk = 5;
vm = true;

}

}

Figure 3: Rebeca model of the coffee machine family

reactiveclass R() @ψr {

msgsrv m() @ψm {

s1; ...; sk;

}

}

In this notation, ψr and ψm represent the application conditions of reactive

class R and message server m respectively. Informally, the above syntax denotes

that a rebec instantiated from R is included when ψr holds. In addition, message

server m is supported when ψm holds in the current configuration. An incoming
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message m would be dropped when one of these application conditions does not

hold. However, the above notation does not change the semantics of Rebeca as it

can be modeled using the original syntax by guarding the entire body of a mes-

sage server using an if statement on conjunction of corresponding application

conditions of the rebec and the message server as follows.

reactiveclass R() {

msgsrv m() {

if(ψr ∧ ψm) {

s1; ...; sk;

}

}

}

As a result, when message m is taken from the queue, its corresponding

statements are executed only when the rebec is available and the application

condition of the message server holds. Otherwise, no statement is executed and

the state variables keep their value while the message is removed from the queue.

The Coffee Machine Example: Dropping Messages. In Figure 3, the applica-

tion condition of the addMilk message server of the CS rebec is vm. Moreover,

the application condition of the rebec CS is vc. Consequently, a message to this

rebec would be dropped if ¬(vc ∧ vm). We could model these application condi-

tions by guarding the entire body of addMilk and filled message servers with

if(vc ∧ vm) and the body of other message servers with if(vc). However, this

makes modeling dropping messages a tedious and error-prone task. �

5.2.2 Skipping Statements

According to the rule 4 in the local semantics of featured actors, variability in

local behavior is represented by skipping statement s when its application condi-

tion does not hold in the current configuration. In Rebeca, we model this concept

by associating an application condition ψ to statement s through guarding it by

“if(ψ) s”. Consequently, the statement s is executed only when its application

condition holds and otherwise it is skipped.

The Coffee Machine Example: Variability in Behavior. In Figure 3, the be-

havior of serveCoffee message server of the CS rebec varies based on inclu-

sion/exclusion of the milk feature. When this feature is included milk is added

to coffee, otherwise, the coffee server sends a message to controller to take the

next order. �
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5.2.3 Intuitive Justification

To justify the proposed methodology for modeling featured actors in Rebeca

intuitively, we elaborate our modeling approach for each of the rules presented

in the definition of local semantics of featured actors.

Rule 1 describes execution of a non-send statement which may change the

value of state variables. In Rebeca, execution of each statement v = e; or if(g)

within message server m of rebec r is a representation of this rule where v is a

state variable of a, e is a mathematical expression, and g is a boolean expression

over state variables. As we described earlier, the application condition Γ (s) is

modeled using an if condition. Consequently, a statement is not executed when

its application condition does not hold. As an example, consider the statement

milk = milk - 1; of the addMilk message server in Figure 3 which changes

the value of the milk state variable after execution.

Rule 2 denotes reconfiguration of the configuration vector through a state-

ment. This rule is modeled in Rebeca by statement vfi
= e; where vfi

is a

feature variable and e is a boolean expression over feature variables and state

variables of the corresponding rebec. The application condition Γ (s) is modeled

by guarding the statement by condition if(Γ (s)). In Figure 3, the statement

vm = true in the filled message server is an example of this transition.

Rule 3 denotes sending message m to actor ai. This fact is modeled using

send statements in Rebeca in form of ai.m();. The application condition Γ (s) is

modeled by guarding the send statement by condition if(Γ (s)). In Figure 3, the

statement f.fill(); in the addMilk message server is an example of sending

message fill to the rebec f.

Rule 4 denotes skipping a statement when its application condition does not

hold. We explained modeling this rule in Section 5.2.2.

Rule 5,6 denote taking a message from the queue and executing the corre-

sponding message server when the application conditions of the message server

and corresponding actor hold and otherwise dropping the message. We described

the representations of these rules in Rebeca in Section 5.2.1. Recall that we do

not have to update the local copy of the configuration vector as in Rule 5 as the

message servers in Rebeca execute atomically.

5.3 Coordinating Featured Actors

In actor families, it is preferable to ensure that the application conditions of m

and r hold in the current configuration, before sending a message m to a rebec

r. This check can be performed by putting an if statement before each send

statement: if(ψr ∧ ψm) a.m(). Although this solution prevents sending mes-

sages that would not be served, it may cause potential deadlocks. For example,

consider the behavior of the nextOrder message server of the Controller which
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intends to send a drink request non-deterministically to the corresponding rebec.

One may model such behavior as:

msgsrv nextOrder() {

order = ?(1,2,3);

if(order == 1)

if(vc) cs.serveCoffee();

if(order == 2)

if(vt) ts.serveTea();

if(order == 3)

if(vw) ws.serveWater();

}

In the above implementation, order is an integer variable and its value spec-

ifies the requested drink. In the first glance, this seems an appropriate imple-

mentation for our desired goal. However, it has a serious flaw causing deadlock.

Assume that order = 2 and vt = false. As a result, no message is sent by the

nextOrder message server and the execution progress stops as all the queues are

empty.

In such circumstances, it is reasonable to send an alternative message when

one is not available. Especially when modeling product lines containing features

with xor relationship, we should select one behavior from a set of corresponding

alternative behaviors. If a rebec have k alternative messages to send, it should

examine all 2k possible cases of inclusion/exclusion of those messages, then select

an appropriate message to send considering the current configuration. For the

nextOrder message server the following implementation solves the problem:

msgsrv nextOrder() {

if(vc ∧ vt ∧ vw) order = ?(1,2,3);

if(¬vc ∧ vt ∧ vw) order =?(2,3);

if(vc ∧ ¬vt ∧ vw) order = ?(1,3);

if(vc ∧ vt ∧ ¬vw) order = ?(1,2);

if(¬vc ∧ ¬vt ∧ vw) order = ?(3);

if(¬vc ∧ vt ∧ ¬vw) order = ?(2);

if(vc ∧ ¬vt ∧ ¬vw) order = ?(1);

if(order == 1) cs.serveCoffee();

if(order == 2) ts.serveTea();

if(order == 3) ws.serveWater();

}

Handling such situations is a tedious work to do. To solve this issue elegantly,

we add non-deterministic send statements to Rebeca syntax.
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5.3.1 Non-deterministic Send Statements

A non-deterministic send statement, send? (ai.mj(), ..., ax.my()), is added to

Rebeca syntax to simplify modeling coordination among rebecs. This statement

evaluates the application conditions of a set of given messages and their cor-

responding actors, then non-deterministically selects an available message from

the set. The information about application conditions of rebecs and message

servers are obtainable in the model through @ψ notations. A non-deterministic

send statement send?(a1.m1(), a2.m2()) can be represented using the original

syntax of Rebeca as:

if((ΓA(a1) ∧ ΓM (m1)) ∧ (ΓA(a2) ∧ ΓM (m2))) choice = ?(1,2);

if((ΓA(a1) ∧ ΓM (m1)) ∧ ¬(ΓA(a2) ∧ ΓM (m2))) choice = ?(1);

if(¬(ΓA(a1) ∧ ΓM (m1)) ∧ (ΓA(a2) ∧ ΓM (m2))) choice = ?(2);

if(choice == 1) a1.m1();

if(choice == 2) a2.m2();

The above representation can be extended to select a message among more

than two messages as well. More complex pattern for sending messages can be

resolved using a coordinator rebec to preserve modularity of the model and

keeping their behavior simple. This approach is described next.

The Coffee Machine Example: Non-deterministic Send Statement. We use a

non-deterministic send statement in the Controller rebec to model receiving

a drink order non-deterministically and send serve request to the appropriate

rebec. �

5.3.2 Coordinator Rebecs

A coordinator rebec is responsible of managing variability in message passing

among rebecs by selecting a number of messages from message set M considering

their availability in the current configuration. Such a reactive class can be either

described by the modeler or it can be generated automatically based on a set of

predefined policies.

Definition 12 Policy. A policy is a four tuple P = (M,min,max ,≻) where

– M = {m1, ...,mk} is a set of message servers with application condition ψmi

for each mi ∈ M

– min and max (0 ≤ min ≤ max ≤ k) are the minimum and maximum number

of messages that should be sent

– ≻⊆ M×M defines priorities between messages �
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We define Fmin(ψ1, ..., ψk) that returns true when at least min formulas from

the set {ψ1, ..., ψk} hold, otherwise it returns false. A policy P = (M,min,max,≻

) where min ≤ max is feasible with respect to the feature model if φF →

Fmin(ψm1
, ..., ψmk

) is satisfiable. In other words, a policy is feasible if at least

min messages are available in all possible valid configurations.

Upon receiving a request to send messages, a coordinator rebec sends a set

of messages Ms with the following properties to the corresponding rebecs:

– Ms ⊆ M

– min ≤ |Ms| ≤ max

– mi ∈ Ms ⇒ θ � ψmi

– mi ∈ Ms ⇒ ∄mk ∈ Ms · (θ � ψmk
) ∧ (mk ≻ mi)]

In practice, for a policy defined over M = {m1, ...,mk}, the correspond-

ing code of the coordinator is composed of at most 2k if statements. Each

if statement specifies the messages that should be sent based on its condition

on available message servers. This set of if statements may be added by the

modeler or can be generated automatically.

The Coffee Machine Example: Coordinator Rebec. We do not use a coordina-

tor rebec in our model of coffee machine family. The behavior of the nextOrder

message server could be modeled using a coordinator rebec with policy

P = ({cs .serveCoffee(), ts .serveTea(),ws .serveWater()}, 1 , 1 ,−)

. This policy is feasible because of the or relationship among coffee, tea, and

water features. However, if we change the minimum number of messages to 2,

the policy P would not be feasible as it is not applicable on a valid configuration

that only includes the coffee feature. �

5.3.3 Message Losses

Even if we check the availability of rebec r and message server m before sending

messagem to rebec r, the message may be still dropped by a. A message is stored

in the queue of the receiver rebec. Meanwhile, reconfiguration may be preformed

by another rebec leading to a configuration that excludes m. Consequently, mes-

sage m would be dropped from the queue as its application condition does not

hold. An alternative solution is to allow a rebec to put an excluded message in

the end of its queue (by sending it to itself) instead of dropping it.

6 Model Checking Reconfigurable Actor Families

We may use model checker tool of Rebeca to verify actor families against prop-

erties. We may also prove that a set of constraints on (re)configurations hold in

the model.
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6.1 Properties on Behavior

We model check actor families against a set of properties expressed in linear

temporal logic (LTL) using the direct model checker of Rebeca. An LTL formula

over the set of AP of atomic propositions is formed according to the following

grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦ϕ | ©ϕ | ϕ1Uϕ2

In the above grammar, p ∈ AP , and �, ♦, ©, and U stand for globally,

eventually, next, and until operators respectively. The result of verifying a model

against property ϕ, is either satisfaction of ϕ or a counter-example describing

the behavior leading to violation of the property.

The Coffee Machine Example: Properties. One possible property of the coffee

machine family is ϕ = �(milk ≥ 0 ) which ensures that milk container is filled

after getting empty, before adding milk to another coffee order. �

6.2 Constraints on (Re)configurations

In the context of families of concurrent and distributed systems, we cannot glob-

ally monitor the state of the system and reconfigure the system using predefined

rules. Instead, changes to the configuration vector are made by individual rebecs

based on their own state variables. However, to ensure that reconfigurations

during the execution of an actor model conform to the intended constraints, we

verify the model against certain set of properties, defined over feature variables,

using model checking tool of Rebeca.

6.2.1 Feature Model Constraint

A constraint that should be always held during reconfiguration is the one im-

plied by the feature model. This constraint is represented by φF . We can prove

that reconfigurations in a model conform to feature model constraint by model

checking the invariant ϕ = �(φF ).

The Coffee Machine Example: Feature Model Constraint. To ensure that all

obtainable configurations in the model of the coffee machine family are valid ac-

cording to the feature model, we verify the model against the following property:

ϕ = �[(c→ cm) ∧ (t → cm) ∧ (w → cm) ∧ (m→ c) ∧ (cm → (c ∨ t ∨w))] �

6.2.2 Reconfiguration Rules

We may also define transformation rules among different configurations using a

reconfiguration graph [Damiani and Schaefer(2011)]. This graph indicates possi-

ble configurations that may be achieved from a specific configuration via recon-

figuration. In such a graph, each node corresponds to a valid configuration and
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each edge represents including or excluding a feature. An edge θ
+f
−−→ θ′ denotes

that configuration θ may be reconfigured to θ′ by including feature f . Similarly,

edge θ
−f
−−→ θ′ represents reconfiguring θ to θ′ by excluding feature f .

We may investigate conformance of the model to these rules using a set of

properties. Consider a reconfiguration graph in which configuration θi has k

outgoing edges to configurations θi1 , ..., θik . By verifying the following property,

we ensure that when the model of actor family has configuration θi, it will be

reconfigured to one of the configurations θi1 , ..., θik in its next state.

ϕi = �(θi → ©(θi ∨ θi1 ∨ ... ∨ θik))

Note that a message server may change more than one element of the con-

figuration vector using a sequence of statements. This may lead to invalidation

of the configuration vector before all the changes are applied. However, atomic

execution of message servers in Rebeca prevents the violation of the property

caused by transient configurations.

The Coffee Machine Example: Reconfiguration Rules. Consider a reconfigura-

tion graph for the coffee machine family with two nodes θ1 = 〈?, true, ?, ?, true〉

and θ2 = 〈?, true, ?, ?, false〉 and two edges θ1
−m
−−→ θ2 and θ2

+m
−−→ θ1. This graph

depicts that we may exclude the milk feature and include it again in reconfig-

urations. The following properties are used to check if the model conforms to

such rules:

ϕ1 = �[(vc ∧ vm) → ©((vc ∧ vm) ∨ (vc ∧ ¬vm))]

ϕ2 = �[(vc ∧ ¬vm) → ©((vc ∧ ¬vm) ∨ (vc ∧ vm))]

The first property ensures that starting from a configuration including milk and

coffee, the model may either reconfigured to a configuration that excludes milk

or keeps its current configuration. The second property, checks reconfiguring a

model with a configuration that excludes milk, to a configuration including the

milk feature. �

7 Evaluation

In this section, we discuss the overheads of our proposed methodology. To show

the applicability of our approach, we present the results of applying it to model

and verify a set of case studies. Moreover, we show the impacts of the overheads

by employing alternative approaches in modeling actor families.

7.1 Overheads of the Proposed Methodology

The main problem of model checking is its high computational and memory costs

as a result of state space explosion. This fact limits the applicability of model

checking technique for large systems.
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To support reconfiguration, we add feature variables to Rebeca models which

increases the number and size of states. An alternative approach is to omit fea-

ture variables and use a variability-aware model checker like [Classen et al.(2010)].

In [Classen et al.(2010)], the model checker uses application conditions to mark

each state by the feature combinations that a state is reachable in them. How-

ever, it does not support reconfiguring model during execution, and verification

of properties on reconfigurations. In our approach, we may verify dynamic prod-

uct lines as well as static ones with the cost of generating a larger state space.

To handle complex patterns of sending messages to different rebecs based

on their availability in the current configuration, we proposed using coordinator

rebecs. The main advantages of using coordinator rebecs are preserving modu-

larity of the model and keeping the behaviors of rebecs simple. However, they

may lead to larger state space because of their message passing overhead: in-

stead of sending messages directly to the corresponding rebecs, a rebec sends a

message to the coordinator. Then, the coordinator manages to send messages

based on the current configuration and predefined policies.

7.2 Experimental Results

We applied our approach to model and verify the following set of case studies.

– Cash desk [Dovland et al.(2005)]: A controller manages to get the total

price of a set of products. In addition, it handles payment of the purchased

products. The price of products can be read using a scanner or entered by

a keyboard. The payment can be done using card or cash. Variability in

message passing can be managed using a non-deterministic send statement

when getting prices of the purchased items and in the payment step. The

model may be reconfigured to disable payment through card. We verify the

model to ensure that always the payment is greater or equal than the total

price.

– Elevator: An elevator serves five floors. It may me equipped with a weight

sensor. It may also support a VIP floor which has higher priority than other

floors. However, when there are many requests form different floors, the VIP

feature is disabled. We verify the model against deadlock.

– Vending machine [Fantechi and Gnesi(2008)]: A vending machine receives

different requests to serve coffee, tea, or water. Moreover, it is possible to add

extra milk and sugar to coffee and tea. A request is sent to the machine based

on the available products non-deterministically using a non-deterministic

send statement. When the milk container is empty, the model is reconfigured

such that it excludes the milk feature. We verify the model against deadlock.
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Table 1: The number of states of verifying the individual products, the entire

product family, and product family with coordinator, against a behavioral prop-

erty (ϕ), the feature model constraint (φF ), and a reconfiguration rule (ϕr).

Individual Products Product Family Coordinator

Total States States States

Cash Desk: ϕ 470,280 437,560 472,496

Cash Desk: φF 470,280 437,560 472,496

Cash Desk: ϕr 971,381 898,000 978,920

Elevator: ϕ 567,604 567,580 -

Elevator: φF 567,604 567,580 -

Elevator: ϕr 1,041,341 920,530 -

Vending Machine: ϕ 12,800 2,088 2,520

Vending Machine: φF 12,800 2,088 2,520

Vending Machine: ϕr 20,520 3,960 4,680

Mine Pump: ϕ 15,629 5,992 5,261

Mine Pump: φF 8,664 3,201 3,400

Mine Pump: ϕr 21,279 7,898 8,214

– Mine pump system [Kramer(1983), Classen et al.(2010)]: A controller is

responsible to turn the pump on or off based on the data it receives form

different sensors. A sensor measures the water level. The controller should

turn the pump off when the water level is low. Two other sensors are optional

and they measure the level of CH4 and CO gases in the environment. The

controller should turn the pump off if the level of each of these gases is high.

The update message should be sent to the available sensors to get the most

recent data. The sensors for measuring CH4 and CO level may be disabled

and enabled again. We verify the model to ensure that when the water level

is low, the pump will be turned off.

To handle variability in message passing, we model each case study with and

without using a coordinator actor to show its overhead. Moreover, we verify the

models to ensure that their behavioral properties hold and the model conforms

to the feature model constraints and the reconfiguration rules. We present the

number of states of verifying individual products and the entire product family

to show the efficiency of our approach in modeling and verification of entire actor

family (instead of modeling and model checking individual products separately).

According to Table 1, verifying actor family entirely leads to fewer states com-

paring to model checking each actor model individually. The difference between

the number of generated states is considerable in the case of vending machine

and mine pump controller. The reason is that the products of these two case
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studies have more commonalities in their behavior that leads to more common

states. Handling message passing among actors using coordinator increases the

number of states because of its message passing overhead. However, the incre-

ment is not significant. Thus, we can take benefit from modular modeling using

coordinator with a low cost.

8 Conclusion

In this paper, we introduced the concept of actor family along with its semantics

as a basis to model families of concurrent and distributed systems. We proposed

a methodology to model this concept using Rebeca which is an actor-based mod-

eling language. Dynamic software product lines are supported in our proposed

approach as we provided facilities for reconfiguration. In addition, we described

two approaches to handle message passing among featured actors elegantly. We

can verify an actor family model against behavioral properties. Furthermore, we

defined a set of properties to investigate if all configurations that are obtained

when executing the model are consistent with the feature model and conform to

the set of predefined reconfiguration rules. The result of applying our approach

on a set of case studies showed the effectiveness of modeling and verifying actor

family entirely.
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