
Toward a Module-centralized and Aspect-oriented

Monitoring Framework in Clouds

Kun Ma

(Shandong Provincial Key Laboratory of Network Based Intelligent

Computing, University of Jinan, Jinan, China

ise mak@ujn.edu.cn)

Runyuan Sun

(Shandong Provincial Key Laboratory of Network Based Intelligent

Computing, University of Jinan, Jinan, China

sunry@ujn.edu.cn)

Ajith Abraham

(Machine Intelligence Research Labs, Scientific Network for Innovation and

Research Excellence, Auburn, USA

ajith.abraham@ieee.org)

Abstract: Currently, monitoring plays an important role in managing the Cloud com-
puting environment. However, the Cloud computing owners and tenants often lack the
management and monitoring tools to ensure the performance, robustness, dependabil-
ity, and security. To address this limitation, this paper describes the development of a
lightweight module-centralized and aspect-oriented monitoring framework. This frame-
work performs end-to-end measurements at virtual and physical machine instances,
software and Web service in the Cloud. It monitors the quality of service (QoS) pa-
rameters of the IaaS and SaaS layer in the forms of plug-in bundles. In addition, we
discuss the manager-agent monitoring of entity objects and aspect-oriented Cloud ser-
vice monitoring in detail. All the modules constitute the entire proposed framework to
improve the performance in hybrid Clouds.

Key Words: Cloud monitoring, aspect-oriented programming, performance evalua-
tion, Cloud computing

Category: K.6, K.6.3, K.6.4, K.6.5

1 Introduction

Along with the Cloud’s increasingly central role of the services in the industry,

monitoring Cloud applications and services as well as the applications deployed

on them is becoming a priority [Dastjerdi et al. 2012]. Cloud monitoring may

be viewed as a specialization of distributed computing monitoring and there-

fore inherits many techniques from traditional computer and network monitor-

ing. However, as Cloud computing environments are considerably more complex

than those of legacy distributed computing, they demand the development of

new monitoring methods and tools [Van et al. 2009]. Overall, the integration

Journal of Universal Computer Science, vol. 19, no. 15 (2013), 2241-2265
submitted: 13/11/12, accepted: 30/8/13, appeared: 1/9/13 J.UCS

of Cloud monitoring with related techniques to effect an end-to-end automat-

ed monitoring and provisioning process over Cloud environments is a hitherto

neglected research area.

In order to solve this problem, this paper describes our experience with a hy-

brid Cloud, and discusses the architecture of a lightweight hybrid Cloud monitor-

ing framework. The monitoring framework is composed of two layers in order to

reduce the complexity: manager-agent monitoring of entity objects, and aspect-

oriented Cloud service monitoring. The first part of our monitoring framework

is manager-agent monitoring. The manager is a separate entity that is respon-

sible to communicate with the agent. Enabling the agent allows it to collect the

monitoring data from the device locally. However, this approach applies even

more to monitor the entity objects. For the monitoring of Cloud Web services,

this approach is inferior. Therefore, we propose another aspect-oriented Cloud

service monitoring approach as a supplementary item. Aspect-oriented monitor-

ing approach is scattered by virtue of the functions of Web services, which can

measure the QoS parameters of Cloud Web service. Manager-agent and aspect-

oriented monitoring approaches works in parallel, which constitute the whole

monitoring framework.

Currently, third-party Cloud Web services have spread among tenants and

end users, providing a number of advantages over infrastructures. Although

Cloud providers claim a higher resilience, assessments of their actual availability

are missing [Naldi 2013]. Despite the advantages of cloud computing, small and

medium enterprises in particular remain cautious while implementing Cloud ser-

vice solutions. The main reasons for the companies to adopt cloud computing

as follows [Sunyaev and Schneider. 2013]. First, companies lack qualified and

trustworthy benchmarks to assess and monitor Cloud services. Furthermore,

companies lack approaches and metrics to adequately evaluate the quality of

Cloud services. The motivation of our framework is just the requirement of such

monitoring system for a hybrid Cloud.

We argue that there is no generic Cloud monitoring solution that may be

applied to cover the three major cloud service models: infrastructure as a ser-

vice (IaaS), software as a service (SaaS), and platform as a service (PaaS). We

choose to address the usage of Cloud resources described by a set of quantitative

parameters. These parameters are divided into three categories: IaaS parame-

ters, SaaS parameters, and user experiences. As the PaaS models are emulated

over an IaaS and SaaS base, we do not discuss it in this paper. IaaS parameters

include the performance of physical hypervisor, the performance of virtual ma-

chines, and the availability. While SaaS parameters include the performance of

applications in the Cloud, and the performance of Web services. We take user

experience as an instructional factor, since it can help the tenants of the Clouds

to learn the user habits of end users. This is one of the effective ways to improve

2242 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

the quality of Cloud service.

The contributions of this paper are several folds. First, it presents the design

and implementation of the hybrid Cloud monitoring framework with open source

solutions and extra significant development work. Second, the extension fine-

grained mechanism of manager-agent monitoring is based on plug-ins bundles,

which is an effective way for the monitoring module to load custom plug-ins

dynamically. Through a simple method built quickly from freely available parts,

it is partially successful, suggesting this monitoring framework is used both in

public and private Clouds. Besides, aspect-oriented Cloud service monitoring

allows the developer to dynamically write references to aspects at join points to

calculate the performance of Cloud services. Aspects thus eliminate many lines

of scattered code that the developers would otherwise have to spend considerable

time in writing the monitoring codes.

This study is the follow-up work of [Ma et al. 2011], [Ma et al. 2012a], and

[Ma et al. 2012b]. This paper further develops the work on the lightweight frame-

work for monitoring public Clouds [Ma et al. 2012c]. First, we have reorganized

the structure of the paper, which would help the readers to gain insight into our

motivations. Second, this extended framework supports both public and private

Clouds. The extended entity objects support more types of monitoring, such

as hypervisors and over-commit monitoring. Third, the monitoring framework

in our previous work has some limitations. It does not support the monitoring

of Cloud service. In the extended paper, we have extended the framework to

support the Cloud Web service monitoring by aspect-oriented programming. Fi-

nally, some implementation details are described in the extended paper, such

as the manager-agent architecture, aspect-oriented monitoring architecture, and

database monitoring. It is important to note that our proposed monitoring sys-

tem is intended as a system running by not only the third-party Cloud service

providers, but also the Cloud tenants who provides Cloud service to the end

users. With this mechanism, the monitoring system is also a Cloud software as

a service.

The remainder of the paper is organized as follows. The related work and

its limitations concerning the requirements for Cloud monitoring methods are

discussed in Section 2 In Section 3, the monitoring models are introduced. Section

4 discusses the module-centralized and aspect-oriented monitoring framework.

The implementation details of this framework is proposed in Section 5 and 6.

Conclusions and future work are provided in the last section.

2243Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

2 Related Work

2.1 Cloud monitoring categories

Different Cloud deployment models [Mell and Grance 2011] have different re-

quirements. The differences are most distinct between private and public Cloud-

s [Jamsa 2012]. Private Clouds, even if scalable, are limited to the resources

owned by the operating organization. Regarding security, in private Clouds, the

data is under the organization’s control, whereas public Clouds require contin-

ual surveillance across multiple cyber attack vectors. Public Clouds often have

geographically diffuse, large resource pools, which require more investment in

monitoring traffic and ensuring scalability. Service metrics such as link avail-

ability and connection speed are essential information in public Clouds but are

of little value in private Clouds. In public Clouds, firewall settings may limit

what can be monitored between Cloud providers. Finally, public Clouds need to

provide monitoring information for clients, which requires more flexibility, cus-

tomizability, and security. Hybrid Cloud mixes the techniques from public and

private Clouds [Peng et al. 2009]. The benefits and challenges are a combination

of the items above. As a consequence, the topic of this paper relates to hybrid

Cloud monitoring. In our paper, we attempt to design and implement a mass of

modules to support further monitoring of hybrid Cloud.

2.2 Cloud monitoring methods

Monitoring of computing resources has been a hot topic of research interest

and development for many years. However, monitoring in Clouds faces many

new challenges. First, due to the heterogeneity of components in the Clouds,

individual computer and network monitoring solutions and mechanisms need to

be designed and implemented respectively, which is very costly [Shao et al. 2010].

Second, much more monitoring concerns need to be covered in Clouds than

traditional monitoring software, such as multi-tenancy and hypervisors. Third,

the large number of services, tenants, and end users in Clouds lead to the demand

for a more intuitive and flexible way to implement monitoring in Cloud.

By exploring the recent literature, we discovered several monitoring systems,

each one with its particular characteristics and abilities. Well-known Clouds

in the industry have their particular monitoring utilities. We will classify the

available mechanisms and point out the drawbacks and inefficiencies.

The first taxonomy is Cloud monitoring level. A typical cloud architec-

ture would include the levels: server, infrastructure, platform and application

[Aceto et al. 2013]. On the one hand, the lowest level is server, which contain-

s physical machines and network [Ciuffoletti et al. 2010]. On the other hand,

the remaining three levels contain the virtual resources provided by the tenants

2244 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

and end users [Dhingra et al. 2012]. Current open-source monitoring tools are

designed for the former. There are plenty of tools for this taxonomy. Nagios

[Issariyapat et al. 2012] is the industry standard in the infrastructure monitor-

ing, offering complete monitoring and alerting for servers, switches, software,

and services about the status of resources. It is designed to run checks on hosts

and services using several external plug-ins and return the status information

to administrative contacts [Imamagic and Dobrenic 2007]. Although it includes

valuable features and abilities, it does not provide a generic API and perform

under small-time interval. Eucalyptus [Nurmi et al. 2009] is open source com-

puter software for building Cloud computing environments. Systems that give

users the ability to run and control entire virtual machines deployed across a

variety physical resources. However, this tool is commonly referred to for IaaS

only. Ganglia [Massiea et al. 2004] is a scalable distributed monitoring system for

high-performance clusters and grid computing. It leverages widely used technolo-

gies and is at the base of a hierarchical design targeted at federations of clusters.

The disadvantage of the method is not good for bulk data transfer (no win-

dowed flow control, congestion avoidance, etc.). CloudSense [Kung et al. 2011]

provided a new switch design that performs continuous fine-grain monitoring via

compressive sensing. This framework used MapReduce straggler monitoring to

report conventional status via the analysis and emulation. Messina et al. pro-

posed a trust-based approach to make a node capable of finding the most reliable

interlocutors [Messina et al. 2012]. This approach avoids the exploration of the

whole node space.

The second taxonomy is Cloud monitoring vision. From a general perspec-

tive, client-side and Cloud-service-provider-side monitoring can be distinguished

[Montes et al. 2013]. These two complementary visions address different Cloud

monitoring requirements, creating differentiated views of the system behavior

and evolution. There are plenty of approaches for this taxonomy. Clayman et

al. find a monitoring framework for Clouds service side, which succeeds in the

scalability of the monitoring [Tselentis et al. 2010]. This framework is spread

in different layers (service, virtual environment, physical resources, etc.). The

proposed framework offers the libraries and tools to build its own monitoring

system. However, they do not present performance metrics and point out the

boundaries. Besides, there are commercial Cloud solutions, which often make use

of their own monitoring systems. However, in general these systems have limit-

ed functionality, providing only a fraction of the available information. Amazon

CloudWatch [CloudWatch 2013] and OpenNebula [OpenNebula 2013] monitor-

ing systems are the examples. For the private Cloud, it is easy to monitor the

client-side and Cloud-service-provider-side [Chaves et al. 2011], since we have

total control of it. For the public Cloud, we provide only client-oriented moni-

toring. Those Cloud monitoring levels and visions motivated us to implement a

2245Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

lightweight framework that monitors hybrid Clouds. To this end, the design of

a monitoring system should keep up with the expansion of the flexible ability,

when an application or infrastructure scales up or down dynamically.

Dixon envisioned monitoring systems with interchangeable components fo-

cused on a single responsibility [Dixon 2012]. According to his advice, such a sys-

tem architecture should show the following characteristics: resilient, self-service,

automated, correlative and craftsmanship. As a result, the support of the mon-

itoring entity objects in our framework depends on the plug-ins.

2.3 Open source monitoring tools

There are several famous monitoring tools. Round Robin Database Tool (R-

RDtool) [Russell and Cohn 2012] is the open-source industry standard, high-

performance data logging and graphing system for time-series data. The data

analysis part of RRDtool owns the ability to create graphic representations of

the data values collected over a definable time period. However, the current plug-

ins of RRDtool can not support the Cloud monitoring, such as the hypervisors.

Collectd [Forster and Harl 2013] gathers statistics about the system it is running

on and stores this information. Those statistics can then be used to find current

performance bottlenecks and predict future system load. With these monitoring

tools, it is possible to deploy a hybrid Cloud monitoring solution using extra

significant development work. Although these tools are not designed for Cloud

monitoring, the refactor of them may adapt to the Cloud.

2.4 Cloud Web service monitoring in the Cloud

For the service in the Cloud, the above-mentioned monitoring methods are not

applicable because of the heterogeneous content. Shao et al. [Shao et al. 2010]

propose a runtime model for Cloud monitoring (RMCM), which denotes an

intuitive representation of a running Cloud by focusing on common monitoring

concerns. Raw monitoring data gathered by multiple monitoring techniques are

organized by RMCM to present a more intuitive profile of a running Cloud. In the

SaaS layer, it monitors the applications with respect to their design models and

required constraints. For this issue, it converts the constraints to a corresponding

instrumented code and deploys the resulting code at the appropriate location of

the monitored applications. This makes RMCM an invasive approach, since it

modifies the source code of the applications. Cao et al. [Cao et al. 2009] propose

a monitoring architecture for Cloud computing. It describes a Quality of Service

(QoS) model that collects QoS parameter values such as response time, cost,

availability, reliability and reputation. Although their architecture is interesting,

the implementation of this architecture is not clear.

2246 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

2.5 Aspect-oriented programming

Aspect-oriented programming (AOP) is based on the idea that computer systems

are better programmed by separately specifying the various concerns (properties

or areas of interest) of a system and some description of their relationships, and

then relying on the mechanisms in the underlying AOP environment to weave

or compose them together into a coherent program [Elrad et al. 2001]. The key

difference between AOP and other approaches is that AOP provides component

and aspect languages with different abstraction and composition mechanisms. A

special language processor called an aspect weaver is used to coordinate the co-

composition of the aspects and components. Modularized crosscutting concerns

are called aspects. An aspect, if it can not be cleanly encapsulated in a general-

ized procedure. AOP distinguishes between two approaches. Static crosscutting

affects the static type signature of a program, whereas dynamic crosscutting al-

lows to intercept a program at well-defined points in its execution trace. After

evaluating the flexibility of the monitoring system, we decided to pursue dynamic

crosscutting option over ease of implementation.

In dynamic crosscutting, join points are well-defined points within an ex-

ecution trace of a program. Pointcuts are sets of join points and advice are

method-like constructs that define the behavior of these join points. The point-

cut language defines abundant join points where the advice is integrated into

the code. In this manner, aspect-oriented programming eases the development

of reusable and maintainable code.

We adopt aspect-oriented programming techniques to implement the Web

service monitoring in the Cloud. The capabilities of AOP in terms of isolating

the aspect code from the source code of the used server make it a non-invasive

monitoring approach. This framework can be fully integrated with the Cloud

client and Cloud server. It should be pointed out that this framework is a generic

approach that can be implemented in several heterogeneous distributed moni-

toring contexts.

3 Monitoring Framework

3.1 Cloud monitoring architecture

This section presents a generic layered cloud monitoring architecture adapted

to the requirements of any cloud infrastructure, presented in Figure 1. The ar-

chitecture is divided into four main components: the first one, regarding the

IaaS monitored object, the second one, regarding the SaaS monitored object,

the third one, regarding the monitoring access, and the last one, regarding the

data gathering. Since the monitoring of Platform as a service (PaaS) depends

on the specific platform, we do not discuss it in our paper.

2247Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 1: Cloud monitoring architecture

At the bottom is the physical resources, such as the hardware resource uti-

lization (CPU, memory, disk, networking et al.).

The second layer from the bottom is the IaaS monitored object, including

the physical machines, the hypervisors that manage the guest operating system-

s, and the virtual machines. They are all the monitored objects in IaaS level.

This performance metrics, which stays the same regardless of distinguished in-

frastructures, are extracted to model the runtime infrastructure in the Cloud.

The third layer from the bottom is the SaaS monitored object, including the

applications, the Web servers and the Web services. They are all the monitored

objects in SaaS level. These applications provide a wide set of services that assist

developers in delivering a professional and commercial service to end users. Com-

monly, the software in the SaaS layer will expose their own interface or API for

monitoring and management, and this metric is gathered and organized to form

the runtime monitoring model of this layer. Besides, the user experience is also

an important entity to monitor. This point is generally omitted by the tradition-

al monitoring tools. We put the user experience of Cloud tenants as a reference

to discover the relationship between users’ habits and Cloud performances. Also

it is the guidance on the future management of the Cloud. Interactive informa-

tion and action between end users and Clouds are monitored. It mainly contains

the frequency of access, IP distribution, time of staying and so on. The service

developers may adapt their software to attract more users of hybrid Clouds.

2248 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 2: Hierarchy of entity models

The second layer from the top is monitor access, which provides an inde-

pendent way to access the monitored information from the bottom. It is an

abstraction layer that provides a unique view of both physical and virtual Cloud

monitored objects, regardless of its different objective, composition and struc-

ture. This layer accesses both the virtual and physical systems.

At the top is data gathering, which provides the storage for the monitoring

information obtained in the previous layer. It includes an historical archive of

the evolution of the different cloud objects. Since each user has its own Cloud

vision and monitoring level, this layer does not only store monitoring data but

it coordinates the user queries. In this way, each user can access the monitoring

level and vision required.

3.2 Hierarchy of resource entity models

Concrete resource entities in a running hybrid Cloud are organized in a hierarchy,

as depicted in Figure 2. This hierarchy can be extended by adding new entities

emerging in different Cloud layers. Such an organization makes an extension to

the model more feasible. New entities can be added in directly by inheriting one

of the existing entities. Each entity consists of a set of key/value pairs. Children

entities can inherit attributes from their parents. And values are obtained from

real-time Cloud monitoring statistics. Based on the entities, we design the mon-

2249Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Network

resources

Guest

agent

Hypervisor

agent

Other

agent

Manager

Admin

Web UI

Tenant

Web UI

Plugin

modules

collect

send

listen

Figure 3: Manager-agent architecture and its plug-ins

itoring system. For further monitoring, we can extend the hierarchy of resource

models.

4 Monitoring framework architecture

4.1 Manager-agent architecture

In a Cloud, multiple entities need to be monitored simultaneously to coordi-

nate their resource utilization to achieve a balance. Therefore, the framework

is required to monitor the resources individually and take decisions centralized.

This paper achieves a manager-agent styled monitoring framework, as shown

in Figure 3. The manager provides the interface between the human network

manager and the management system. While the monitoring agent is a small

daemon which collects system information periodically. In order to analyze the

collected data, we provide the mechanisms to store and monitor the values in a

variety of ways. These agents are responsible for collecting runtime information

and sending the UDP packet to the manager. By default, we provide the basic

monitoring of common metrics: IaaS monitoring plug-ins, and SaaS monitoring

2250 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 4: QoS parameters and the sequence diagram

plug-ins. Other plug-ins are written to allow the developer to further extend

the default monitoring system. All the personalized plug-ins conforming to our

interface specification can be remotely deployed and installed without requiring

a reboot in the forms of bundles. We provide the user interface with the admin-

istrators and tenants of hybrid Clouds. This will help them view the operating

condition of hybrid Clouds.

4.2 Aspect-oriented cloud service architecture

An overview of aspect-oriented Cloud service architecture is given in this section.

As depicted from Figure 4, there are two objects. The first object is the Cloud

service client, which is located at client side. From this point of view, monitoring

2251Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

information of this type helps the tenant client to understand the QoS received

and optimize their use. The second object is the Cloud service server, which

is located in Cloud-service-provider side. From this point of view, monitoring

information of this type provides the knowledge about the internal functioning of

the different Cloud objects with the Cloud administrators in order to guarantee

QoS. It can be also used as usage and performance log to optimize the service

provided.

This framework measures five QoS parameters: the execution time, the re-

sponse time, the communication time, the throughput and the availability. They

are explained below. All the terminology is shown in Figure 4.

– The communication time Tcomm is the time needed to transfer the request

from the client to the server plus the time needed to transfer the response

from the server to the client. It is the sum of the two parts. Thus, the response

time shown in Equation 1 is the sum of the time necessary for executing the

request and the communication time.

– The execution time Texec measures the time needed to execute a request on

the server.

– The response time Tresp defines the time needed to serve a request. It starts

when the client sends its request and finishes when the client receives the

corresponding response. As a result, it is the temporal difference between the

instant (t1) when the client invokes the request and the instant (t4) when

the client receives the corresponding response.

Tresp = Tcomm + Texec (1)

– The throughput measures the number of successful requests (SuccRequests)

during a period of time T . In other word, the throughput is measuring the

success number of requests per second.

Throughput =
SuccRequests

T
(2)

where SuccRequests represents the number of successful requests during a

period T . T is a parameter that is set when this framework is configured.

We mean that the successful request is with a successful response reached

the server.

– The availability measures the accessibility of a service. It is calculated using

the formula shown in Equation 3.

Availability =
SuccRequests

AllRequests
(3)

2252 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

where AllRequests is the number of all requests sent during the period T .

Our framework is based on the aspect-oriented programming code that inter-

cepts the methods of the client and server at well defined join points to collect

data and measure these parameters at important instants of time. These instants

are t1 - t4, where

– t1 is the instant when the client invokes the request,

– t2 is the instant when the server receives the request,

– t3 is the instant when the server sends the response,

– t4 is the instant when the client receives the response.

The proposed aspect code computes the number of request invocations by

advice 1. At the mean time, the unique identity is also recorded. Generally, the

unique identity is composed of the IP address of the client and the client session.

In addition, the execution time is calculated by advice 3. Moreover, the number

of successful sent requests and response time is evaluated by advice 4.

Recorded timestamps help us to calculate QoS parameters. The procedure

is as follows: First, our framework creates four specific join points. Each one

corresponds to an instant (t1, t2, t3 and t4) intercepting method calls. Sec-

ond, it executes the corresponding advice (for each join point) which consists

of recording the timestamp and calculating the number of invocations at the

client (advices 1 and 4). When all instants have been processed, it computes

the difference between t4 and t1 to deduce the response time. It also subtracts

t2 from t3 to calculate the execution time. The difference between the response

time and the execution time represents the communication time. It assesses the

throughput by calculating the number of successful invocations at the client side

and dividing this number by a period of time T as described in Equation 2.

Moreover, it calculates the availability as described in Equation 3.

5 Implementation of Monitoring Modules

As depicted in Figure 1, this section discusses the implementation of the archi-

tecture. For the IaaS monitored objects, we implement the monitoring of the

physical machine, the hypervisor, and the virtual machine. The monitoring of

the physical machine presents an overall of metrics for the whole cloud; the

monitoring of the hypervisor presents an overall of metrics for the guest virtu-

al machines without the access to the internal machines; the monitoring of the

guest virtual machine presents an overall of metrics for the internal machines

separately. For the SaaS monitored objects, we implement the monitoring of the

software, the Web service, and the user experience.

2253Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 5: Infrastructure libvirt monitoring architecture

The proposed monitoring framework provides the comprehensive monitoring

in the forms of different plug-ins. These plug-ins include virtualization, availabili-

ty, performance via SNMP, user experience tracker, and over-commit monitoring.

It provides many kinds of alert and information statistics to help the adminis-

trator find the problems in real time. Each module is a daemon, which collects

the data from the monitored object.

5.1 Virtualization monitoring module

This monitoring module uses the libvirt API to gather the statistics of the guests

on a system shown in Figure 5. The libvirt public APIs support many commonly

hypervisor drivers, such as KVM, XEN, Hyper-V, VMware ESX and VirtualBox

[Han et al. 2011]. With libvirt plug-in, CPU, memory, networking and device

usage for each guest could be collected without installing any software on the

guest. As the module receives statistics from the hypervisor directly, it is suitable

for the physical and virtualized machines. The system load collected from the

last one week is shown in Figure 6. Due to the delegation to one or more internal

driver, the libvirt public API reveals the ability to support the new hypervisor.

2254 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 6: The system load collected from the last one week

Figure 7: The availability curve graph of a virtual machine in hybrid Clouds

5.2 Service availability monitoring module

We suppose the Cloud service’s availability events have a sequence of life times

T0, T1, T2, ..., and the Cloud service’s unavailability events have a sequence of

down times D0, D1, D2, We refer to the probability that a lifetime t is shorter

than units of time, F (t) = P (Ti ≤ t) as the time to failure distribution function;

we also refer to F (t) as the availability duration distribution. Then, the mean

time to failure is MTTF =
∫
∞

0
(1 − F (t))dt from the start of an availability

event. Under similar assumptions, the time to repair distribution function is

R(t) = P (Di ≤ t), and the mean time to repair is MTTR =
∫
∞

0
(1−R(t))dt. We

also refer to R(t) as the unavailability duration distribution. A service’s average

availability A, (or average unavailability U) is the fraction of time when a service

is available (or unavailable) to an average Cloud client.

2255Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Availability monitoring module can refer to the process of collecting data

and reporting on the status of the critical website. In other words, it means the

availability for the WWW service in the Cloud. In order to get the accurate

availability, the probe points are distributed around the world. First, we deploy

some probe points in the backbone network of the popular Chinese Internet

Service Providers (ISPs): China Unicom (CNC), China Telecom (CTC), and

China CERNET. Second, we deploy some probe points in the Cloud host (in

USA, UK, Australia, etc.) that is purchased from the Amazon Elastic Compute

Cloud (EC2) service. We use tcping [Fulkerson 2013] command to determine

the connectivity over TCP. Applying this monitoring module, the detail of the

availability curve graph of a virtual machine in hybrid Cloud is shown in Figure

7. The notification system notified administrators of target availability status

changes according the incident rulesets.

5.3 Performance monitoring module via SNMP

Performance monitoring can be divided into two main categories: computation-

based and network-based. Computation-based tests are related to the following

metrics: service, CPU speed, CPU utilization, memory usage, disk usage, etc..

Network-based tests are related to the following metrics: network throughput,

packet loss, bandwidth, etc. We implement the manager-agent monitoring mod-

ule to measure these metrics using Simple Network Management Protocol (SN-

MP). Furthermore, we present the statistics graphing of historical reference of

these metrics in the browser. This module will appear an alert when the thresh-

olds of the monitored objects were exceeded. Services and processes running on

devices can be monitored to verify whether they are running or not. An example

of the memory and disk monitoring in hybrid Cloud is shown in Figure 8.

In our solution, we use Java SNMP package [Sevy 2013] API to implement

the SNMP monitoring manager, which is responsible to communicate with the S-

NMP agent. We take advantage of SNMP v2c API to get responses from agents.

The JAVA method snmpget is using SNMP GET request to query for infor-

mation on a network entity. An ip address, object identifier (OID), community

string and SNMP version may be given as arguments of the method snmpget.

public String snmpget (String ip , String oid , String community
, int version) {

InetAddress hostAddress = InetAddress .getByName (ip);
SNMPv1CommunicationInterface comInterface = new

SNMPv1CommunicationInterface(version , hostAddress ,
community);

comInterface . setSocketTimeout (20000) ;
SNMPVarBindList newVars = comInterface .getMIBEntry (oid);
SNMPSequence pair = (SNMPSequence) (newVars. getSNMPObjectAt

(0));
SNMPObjectIdentifier snmpOID = (SNMPObjectIdentifier) pair .

getSNMPObjectAt (0);

2256 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 8: An example of the memory and disk monitoring in hybrid Clouds

SNMPObject snmpValue = pair . getSNMPObjectAt (1);
return snmpValue .toString ();

}

In our solution, we deploy the open-source SNMP agent in the physical ma-

chine, the hypervisor and the virtual machine to collect the monitoring data.

The extensible agent for responding to SNMP queries to management informa-

tion includes built-in support for a wide range of the Management Information

Base (MIB) information modules, and can be extended using dynamically loaded

modules, external scripts and commands.

2257Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 9: The number of issues per second for various SQL-commands of MySQL

5.4 Application monitoring module

Application monitoring module provides the most commonly monitoring in the

software layer, including the Web server and database server. The monitored

application often provides some public APIs. Regarding different Web servers,

there are different monitoring methods, depending on the different APIs. Here

are two examples of Web server monitoring. We use mod status module of the

Apache Web server to to keep watch on the operation of the server serves. The

details given are: the number of worker serving requests and idle worker, the

status of each worker, a total number of accesses and byte count served, averages

giving the number of requests per second, the current percentage CPU used by

each worker, etc. We provide stub status module to get some status from Nginx

Web server. The active connections and handled requests are calculated by this

API. Here is an example of database server monitoring. We use Open Replicator

API to capture the statement-based log events as they happen. We can intercept

the database request (alter, select, update, insert and delete) to be analyzed. The

number of issues per second for various SQL-commands are shown in Figure 9.

The Java method capture is shown as follows, which is the implementation of

2258 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Figure 10: An example of user experience tracker

interface Capture. We use Java method selectMonitoring, insertMonitoring,

updateMonitoring and deleteMonitoring to record the performance of select,

insert, update and delete respectively.

public capture (){
final OpenReplicator or=new OpenReplicator ();
or. setBinlogEventListener(new BinlogEventListener () {

String sql = ((String) event).getSql ();
if(event instanceof QueryEvent){

selectMonitoring ();
}
if (event instanceof WriteRowsEvent) {

insertMonitoring ();
}
if (event instanceof UpdateRowsEvent) {

updateMonitoring ();
}
if (event instanceof DeleteRowsEvent) {

deleteMonitoring ();
}

}
});
or.start();
}

5.5 User experience tracker

Compared with the availability monitoring, user experience tracker provides a

more accurate method to calculate the access speed and position real experience

of each visitor. This module embeds a JavaScript in the webpage of the moni-

tored website. The website in Clouds acts as the tenant, and the visitor of the

website acts as the end user. The user access information (IP and location) is au-

tomatically recorded after the load of the webpage. For example, a multi-tenant

social website is served for many cities. Although the visitors in different cities

access the different entrances of the website, they actually visit the same web-

site. Figure 10 shows the average response time of visitors of the website, which

reflects the quality of our website. As depicted in Figure 10, the average response

2259Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

1:0.5 1:1 1:2 1:4 1:8 1:16
0

200

400

600

800

1000

1200

Over−commit

S
y
s
te
m
 l
e
v
e
l
s
c
o
re

UnixBench test results of virtualized guest

Xeon CPU E7−4807 with 2GB RAM

Xeon CPU E5620 with 2GB RAM

Intel Core i5−2300 with 2GB RAM

Figure 11: UnixBench test results of virtualized guest

time of NingXia is the longest, while the response time of Tibet is the shortest.

We can conclude that the visitors in NingXia have poor user experience, and

the visitors in Tibet have a better user experience. That is the guidance for the

Cloud owners to optimize the network. It plays an important part in discovering

the relationship between end user habits and Cloud performances. Furthermore,

the metrics from the tracker is a indirect guidance on how to attract more users

in the hybrid Clouds.

5.6 Over-commit monitoring

In the area of IaaS, over-commit refers to the practice of committing more virtual

resources to customers than the actual resources available on the underlying

physical cluster. Most of the prevailing hypervisors, such as Hyper-V, VMWare

ESX, KVM, and XEN, support both CPU and memory over-commit. When

an IaaS service provider practices over-commit, the over-commit parameters are

usually unknown to the end user. When an end user creates a VM that is labeled

as 1 CPU core and 1 GB memory, the CPU usage limit for that particular VM

might be 1, 0.5 or even 0.1 physical processor core. Similarly, a host server

with 16 GB physical memory may be committing 24GB or even 32 GB virtual

memory to virtual machines. Therefore, we provide over-commit monitoring with

the Cloud tenants, which help the tenants find out the actual performance of the

2260 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

virtual machines. We have built in a local interface in the guest virtual machines

that is served for Cloud tenants. This interface is implemented in open-source

benchmark suite UnixBench [Niemi 2013], which provide a basic indicator of the

performance of a Unix-like system.

The experiments show that the system scores of UnixBench rather than the

parameters of CPU core, and the amount of memory indicate the actual per-

formance of the virtual machine in the same hypervisor. Figure 11 shows the

UnixBench test results of virtualized guest. For virtual machines in the same

hypervisor, as the virtual machine gets bigger, the performance gets better in

the none over-commit circumstance; for virtual machines from the same hyper-

visor, as the virtual machine gets bigger, the performance gets worse in the

over-commit circumstance.

6 Implementation of aspect-oriented Cloud service

monitoring

The aspect-oriented Cloud service monitoring has been implemented within Ax-

is2. The implementations include the client and server of AOP service monitor-

ing.

6.1 Implementation of the monitoring client of AOP service

@Aspect
public class MonitorClient {

@After("execution (* org.apache.axis2.engine. AxisEngine .
invoke (..) ")

public void advice1 (){
t1 =System.nanoTime ();
AllRequests ++;

}
@After("execution (* org.apache.axis2.engine. AxisEngine .

flowComplete (..) ")
public void advice4 (){

t4 = System.nanoTime ();
tresponse = t4 - t1;
SuccRequests ++;

}
}

The first component of our AOP monitoring approach is the monitoring

client, which is the aspect-oriented advice 1 and 4 that intercepts the client at t1
and t4. Its implementation is based on the identification of the methods that the

service engine invokes at t1 and t4. In Axis2, the method invoked at t1 is voke of

the AxisEngine class located in org.apache.axis2.engine package (see Listing 6.1).

When the client sends a request, the Axis engine on the client side is invoked

2261Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

via the method invoke(...). At the instant t4, the method flowComplete of the

AxisEngine class located in org.apache.axis2.engine package.

6.2 Implementation of the monitoring server of AOP service

@Aspect
public class MonitorServer {

@After("execution (* org.apache.axis2.engine. AxisEngine .
invoke (..) ")

public void advice2 (){
t2 =System.nanoTime ();

}
@After("execution (* org.apache.axis2.engine. AxisEngine .

flowComplete (..) ")
public void advice3 (){

t3 = System.nanoTime ();
texec = t3 - t2;

}
}

The second component of our AOP monitoring approach is the monitoring

server. It is the aspect-oriented advice 2 and 3 (see Listing 6.2) that calculates the

execution time. To implement the monitoring server using Axis2, it is necessary

to identify the pointcut 2 and pointcut 3. Pointcut 2 corresponds to the instant t2
when the request arrives at the server side, and pointcut 3 describes the instant t3
when the response leaves the server side. The execution of the method invoke(...)

of the class AxisEnginelocated in the org.apache.axis2.engine package is in

charge of the request processing at the server side. This means that recording the

instants before and after the execution of this method lead to the computation of

the execution time value (see Listing 6.2). Thus, pointcut 2 and 3 correspond to

the interception of the execution of this method, and the related advices should

be applied before and after this method, respectively (see Listing 6.2).

AOP service monitoring also handles multiple clients, which is able to dis-

tinguish between clients by using their IP addresses. Furthermore, AOP service

monitoring uses the request session ID to differentiate between concurrent re-

quests running on the same client. Therefore, it associates monitored QoS param-

eters to the corresponding client. Based on AOP, the monitoring server extracts

the client and the server IP addresses corresponding to the collected monitored

QoS parameters. Furthermore, the monitoring client distinguishes between the

concurrent requests running on the same client, while extracting their session

IDs. It should be pointed out that the AOP monitoring components are com-

pletely independent of the original server. In fact, the developed aspect codes are

not located inside the server source code. With the help of the weaving mech-

anism of AOP, they intercept the methods at defined join points and record

the relevant timestamp information without modifying the source code of the

monitored service.

2262 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

7 Conclusion and Future Work

Nowadays, monitoring plays an important part in hybrid Clouds. However, cur-

rent monitoring solutions on the popular metrics of the hypervisors, the virtual

machines, and the physical machines in hybrid Clouds are minimal at best. To-

wards our goal of building such a lightweight and scalable framework, we inte-

grate some open-source monitoring tools with some extra significant secondary

development work to implement some modules. First of all, we introduce the

monitoring architecture and hierarchy of resource entity models. User experi-

ence is pointed out as a reference to discover the relationship between users’

habits and Cloud performance. In addition, we discuss the manager-agent and

aspect-oriented architecture to perform end-to-end measurements at both virtu-

al and physical machines and software in hybrid Clouds. By default, we provide

the basic monitoring of common metrics. Each monitoring is implemented in

the forms of plug-ins. Aspect-oriented Cloud service monitoring allows the de-

veloper to dynamically write references to aspects at join points to calculate

the performance of Cloud services. Thus, they eliminate many lines of scattered

code. Finally, the implementations of this framework and some experiments have

demonstrated the high performance of the proposed framework.

Future work is targeted in two directions to complete and improve the current

proposal. The first target is to define a general QoS equation that combines all

QoS parameters to describe the state of the service. This equation could then be

integrated into the policies of the fault tolerance framework to further improve

the recovery results. Furthermore, we plan to provide a visual monitoring plat-

form, which is integrated with the current virtualization management system for

Cloud computing.

Acknowledgment

This work was supported by the Doctoral Fund of University of Jinan (XB-

S1237), the Youthful Science and Technology Star Plan of Jinan (20110112), the

Technology development Program of Shandong Province (2011GGX10116), and

the National Key Technology R&D Program (2012BAF12B07).

References

[Aceto et al. 2013] Aceto, G., Botta, A., Donato, W. , and Pescape, A.: ”Cloud moni-
toring: A survey”; Computer Networks, online (2013).

[Cao et al. 2009] Cao, B., Li, B., Xia, Q.: ”A Service-Oriented Qos-Assured and Multi-
Agent Cloud Computing Architecture”; CloudCom’09, Springer-Verlag, Heidelberg
(2009), 644-649.

[Chaves et al. 2011] Chaves, S. A., Uriarte, R. B., and Westphall, C. B.: ”Toward an
architecture for monitoring private Clouds”; IEEE Communications Magazine, 49,
12 (2011), 130-137.

2263Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

[Ciuffoletti et al. 2010] Ciuffoletti, A. : ”Monitoring a virtual network infrastructure:
An Iaas Perspective”; ACM SIGCOMM Computer Communication Review, 40, 5
(2010), 47-52.

[CloudWatch 2013] Amazon Web Services, Inc.: ”Amazon CloudWatch”; http://aws.
amazon.com/es/cloudwatch (Accessed 20 July 2013).

[Dastjerdi et al. 2012] Dastjerdi, A. V., Tabatabaei, S. G. H., and Buyya, R.: ”A
dependency-aware ontology-based approach for deploying service level agreemen-
t monitoring services in Cloud”; Software: Practice and Experience, 42, 4 (2012),
501-518.

[Dhingra et al. 2012] Dhingra, M., Lakshmi, J., and Nandy, S. K.: ”Resource Usage
Monitoring in Clouds”; Proc. of GRID’12, IEEE Computer Society, New York
(2012), 184-191.

[Dixon 2012] Dixon, J.: ”The state of open source monitoring: The good, the bad, the
fucking terrible, and a glimpse into our future”; Github, Tech. Rep. (2012).

[Elrad et al. 2001] Elrad, T., Filman, R. E., and Bader, A.: ”Aspect-oriented program-
ming: Introduction”; Communications of the ACM, 44, 10 (2001), 29-32.

[Forster and Harl 2013] Forster, F. and Harl, S.: ”collectd C The system statistics
collection daemon”; http://collectd.org (Accessed 20 July 2013).

[Fulkerson 2013] Fulkerson, E. : ”Tcpping - ping over a tcp connection”; http://www.
elifulkerson.com/projects/tcping.php (Accessed 20 July 2013).

[Imamagic and Dobrenic 2007] Imamagic, E. and Dobrenic, D.: ”Grid infrastructure
monitoring system based on nagios”; Proc. of HPDC’07, IEEE Computer Society,
New York (2007), 23-28.

[Han et al. 2011] Han, F., Peng, J., Zhang, W., Li, Q., Li, J., and Jiang, Q.: ”Virtual
resource monitoring in Cloud computing”; Journal of Shanghai University (English
Edition), 15, 5 (2011), 381-385.

[Issariyapat et al. 2012] Issariyapat, C., Pongpaibool, P., Mongkolluksame, S., and
Meesublak, K.: ”Using Nagios as a groundwork for developing a better network mon-
itoring system”; Proc. of PICMET’12, IEEE Computer Society, New York (2012),
2771-2777.

[Kung et al. 2011] Kung, H., Lin, C. K., and Vlah, D.: ”Cloudsense: Continuous fine-
grain cloud monitoring with compressive sensing”; Proc. of HotCloud’11, ACM ,
New York (2011), 1-6.

[Ma et al. 2011] Ma, K., Yang, B., Chen, Z, Ma, B., and Li, Q.: ”From the modern
Web applications to the multi-tenant SaaS solution”; Chinese Journal on Commu-
nications, 32, 9A (2011), 133-138.

[Ma et al. 2012a] Ma, K., Yang, B., and Abraham, A.: ”A Template-based Model
Transformation Approach for deriving multi-tenant SaaS applications”; Acta Poly-
technica Hungarica, 9, 0 (2012), 25-41.

[Ma et al. 2012b] Ma, K., and Fang, C.: ”A Security Extension Framework Based on
SOAP Header”; Journal of Information and Computational Science, 9, 17 (2012),
5249-5256.

[Ma et al. 2012c] Ma, K., Sun, R., and Abraham, A.: ”Toward a lightweight framework
for monitoring public Clouds”; Proc. of CASoN’12, IEEE Computer Society, New
York (2012), 361-365.

[Massiea et al. 2004] Massiea, M. L., Chunb, B. N., and Cullera, D. E.: ”The ganglia
distributed monitoring system: Design, implementation, and experience”; Parallel
Computing, 30, 7 (2004), 817-840.

[Messina et al. 2012] Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., and Sarn,
G. M. L.: ”A Trust-Based Approach for a Competitive Cloud/Grid Computing
Scenario”; Proc. of IDC’12, Springer-Verlag, Heidelberg (2012), 129-138.

[Mell and Grance 2011] Mell, P. and Grance, T.: ”The NIST definition of Cloud com-
puting”; NIST Special Publication 800-145, Timothy, Grance (2011).

[Montes et al. 2013] Montes, J., Snchez, A., Memishi, B., Perez, M. S., and Antoni-
u, G.: ”GMonE: A complete approach to cloud monitoring”; Future Generation

2264 Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

Computer Systems, online (2013).
[Naldi 2013] Naldi, M.: ”The availability of cloud-based services: Is it living up to its

promise?”; Proc. of DRCN’13, IEEE Computer Society, New York (2013), 282-289.
[Niemi 2013] Niemi, D. C. : ”UnixBench”; http://code.google.com/p/

byte-unixbench (Accessed 20 July 2013).
[Nurmi et al. 2009] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,

Youseff, L., and Zagorodnov, D.: ”The eucalyptus open-source cloud-computing
system”; Proc. of CCGRID’09, IEEE Computer Society, New York (2009), 124-131.

[OpenNebula 2013] OpenNebula Project: ”OpenNebula: the open source toolkit for
cloud computing”; http://www.opennebula.org (Accessed 20 July 2013).

[Peng et al. 2009] Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., and Li, Q.: ”Com-
parison of several Cloud computing platforms”; Proc. of ISISE’09, IEEE Computer
Society, New York (2009), 23-27.

[Jamsa 2012] Jamsa, K.: ”Cloud Computing”; Jones and Bartlett Learning, Mas-
sachusetts (2012).

[Russell and Cohn 2012] Russell, J. and Cohn, R.: ”RRDtool”; Book on Demand Ltd.,
California (2012).

[Sevy 2013] Sevy, J.: ”Java SNMP Package”; http://gicl.cs.drexel.edu/people/
sevy/snmp (Accessed 20 July 2013).

[Shao et al. 2010] Shao, J., Wei, H., Wang, Q., and Mei, H.: ”A runtime model based
monitoring approach for Cloud”; Proc. of CLOUD’10, IEEE press, New York (2010),
313-320.

[Sunyaev and Schneider. 2013] Sunyaev, A., and Schneider, S.: ”Cloud Services Certi-
fication”; Communications of the ACM, 56, 2 (2013), 33-36.

[Tselentis et al. 2010] Tselentis, G., Galis, A., Gavras, A., Krco, S., Lotz, V., Simperl,
E., Stiller, B., and T. Zahariadis: ”Monitoring service Clouds in the future internet”;
Towards the Future Internet - Emerging Trends from European Research, IOS press,
Netherlands (2010), 115-126.

[Van et al. 2009] Van, H. N., Tran, F. D., and Menaud, J. M.: ”Autonomic virtual
resource management for service hosting platforms”; Proc. of ICSE’09, IEEE Com-
puter Society, New York (2009), 1-8.

2265Ma K., Sun R., Abraham A.: Toward a Module-centralized ...

