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Abstract: In this paper, an improved Simulated Annealing algorithm for Protein Fold-
ing Problem (PFP) is presented. This algorithm called Cluster Perturbation Simulated
Annealing (CPSA) is based on a brand new scheme to generate new solutions using a
cluster perturbation. The algorithm is divided into two phases: Cluster Perturbation
Phase and the Reheat Phase. The first phase obtains a good solution in a small amount
of time, and it is applied at very high temperatures. The second phase starts with a
threshold temperature and reheats the system for a better exploration. CPSA reduces
the execution time of the Simulated Annealing Algorithm without sacrificing quality
to find a native structure in PFP in Ab-Initio approaches.
Key Words: Simulated Annealing, Protein Folding, Tuned SA, Cluster Perturbation
Simulated Annealing
Category: J.0, J.3, J.7

1 Introduction

The design of modern techniques to ameliorate the computational cost of NP

Hard problems (NPH) are a huge challenge nowadays [Fraenkel 1993]. Imple-

mentation of new optimization methods is important in any instance of NPH

such as Protein Folding Problem (PFP) [Unger and Moult 1993]. Thus, heuris-

tic methods avoiding the generation of all possible solution states of the pro-

tein has been proposed [Chivian et al., 2005]. New Metaheuristics based on the
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Monte Carlo method have been proposed to solve the PFP [Zhan et al., 2006,

Frausto-Solis et al., 2009]. In the present work, the proposed algorithm uses only

the primary structure of the protein without the use of chaperones, in order to

reach the final three-dimensional structure. In the other hand, Ab Initio meth-

ods obtain predictions of the protein structures without using information of

previously solved structures [M.Zaki 2008]. Computational techniques should be

designed to find the optimal solution of the protein folding model, which has the

minimum energy and thus determine the three-dimensional native structure of

the protein. The paper is organized as follows: In section two, protein folding

problem is presented; in section three, Simulated Annealing is briefly reviewed,

and Cluster Perturbation method is introduced; section four shows implemen-

tation details of the proposed method; and the results of experimentation with

this method are shown in section five; finally the conclusions are presented at

the end of the paper.

2 Protein Folding Problem

Proteins are linear polypeptide compounds of 20 naturally-occurring amino acids

joined by peptide bonds. The proteins fold into a unique biological configuration.

The atoms of a protein are intertwined in a three-dimensional geometrical struc-

ture where the free Gibbs energy is the lowest [Anfinsen 1961]. The geometry of

the protein can be described by the Cartesian coordinates of each atom. The di-

hedral angles along the backbone of the protein determine the geometrical shape

of the protein in the folding process. Commonly these dihedral angles are φ, ψ,

ω, and χ. In recent years, physics based methods combined with computational

procedures that explore the conformational space have been used as a general

solution to the problem. These models are based on the thermodynamic hy-

pothesis that the biological native structure is folded as a near minimum energy

conformation [Anfinsen 1973, Dill et al., 2008].

The assumption that the protein biologically folds in a minimum energy state,

is the most common paradigm used for small protein folding, although there are

some well known exceptions [Sohl Julie L. et al., 1998, Baker and Agard 1994].

Molecular dynamics in conjunction with physical potentials are used to ana-

lyze the folding behavior. According to physical models, the simulation of large

scale proteins can be really difficult for an accurate prediction of protein folding

[Dill et al., 2007]. These physical models of energy depend on the distance and

interaction among the atoms that conform the protein. For this purpose, the en-

ergy can be calculated using the torsion angles of the structure and the distance

between any pair of atoms. In the folding process, the possible conformation

structures that the protein can take are extremely high, and the required com-

putational time can be unsuitable for practical applications [Levinthal 1968]. In

general, PFP is defined as follows:

2208 Frausto-Solis J., Sanchez-Perez M., Linan-Garcia E., Sanchez-Hernandez J.P. ...



Given:

– A sequence of n amino acids (a1, a2, a3, ...an), representing the primary struc-

ture of a protein, and

– An initial set of m dihedral angles (σ1, σ2, σ3, ..., σm) representing a three-

dimensional structure of the protein or peptide,

The problem is:

– To determine the minimal free energy fmin(σ1, σ2, σ3, ...σm) of the given

sequence, and

– To find the optimal set of angles, which represents the protein native struc-

ture.

The last definition, involves PFP for proteins and peptides; however, as was

previously mentioned there are some exceptions [Sohl Julie L. et al., 1998].

Energy Force Fields have been used to represent the molecular interaction

of the atoms. The basic form of a force field is conformed by bonded terms

(Hydrogen and Torsion Bonds) and nonbonded terms (Electrostatic, and Van

der Waals bonds) [Momany et al., 1975].

The force field represents the physical properties, which are tested by struc-

tural data-sets obtained from classical analysis like x-ray crystallography. How-

ever, the development of new parameters is a laborious task that includes many

interactions of atoms, affecting their internal energy.

Equation 1 is the simplest potential energy function to represent the basic

features of the protein folding in an atomic approach.

Etotal =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2 +

∑
torsion

kθ[cos(nφ+ δ) + 1]

+
∑

nonbond

[
qiqj

rij
+
Aij

r12ij
− Cij

r6ij
]

(1)

The most common force fields are AMBER [Cornell et al., 1995], CHARMM

[Brooks et al., 1983], and ECEPP [Nemethy et al., 1983]. New heuristic meth-

ods have been used to solve protein folding problem with these kind of force

fields [Frausto-Solis et al., 2007]. One of the most effective is Simulated Anneal-

ing (SA) [Chivian et al., 2005, Kirkpatrick et al., 1983, Xu et al., 2003]. The al-

gorithm has been successfully applied in NPH problems [Fonseca et al., 2012,

Černý 1985]. SA algorithm is modified in the present work to improve the SA

applicability for PFP. As a result, Cluster Perturbation Simulated Annealing

(CPSA) is proposed. In the proposed algorithm, the Simulated Annealing pa-

rameters should be tuned for finding better solutions than the classical SA al-

gorithm [Frausto-Solis et al., 2006, Pérez et al., 2002]. ECEPP energy function
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is calculated using SMMP software [Eisenmenger et al., 2006]. This package has

successfully used for PFP on Monte Carlo algorithms [Zhan et al., 2006], Ge-

netic Algorithms [Sudha et al., 2013],[Sindhu et al., 2012] and other techniques

[Bahamish et al., 2008 ].

3 Cluster Perturbation Simulated Annealing

CPSA is based on Monte Carlo like methods such as SA. Simulated Annealing

could obtain better performance by applying different improvement techniques

such as Ad hoc cooling function, improving the generation of new solutions, and

the analytical tuning techniques.

3.1 Analytical Tuning

Simulated Annealing was proposed by Kirkpatrick [Kirkpatrick et al., 1983] and

by Cerny [Černý 1985] as an extension of the well known Metropolis algorithm

[Metropolis et al., 1953].

SA is a simulation of the thermodynamic process where a metal is heated to

extremely high temperatures until it melts and then is allowed to cool slowly.

The atoms are rearranged with a molecular lowest energy conformation until

they obtain a quasi-dynamic equilibrium at the end of the cooling process.

Although, this thermodynamic process is heuristically referred to the cooling

of metal, it can be applied in optimization problems. The objective function is

related to the energy function of the original problem. SA is really successful

in combinatorial optimization problems, where it is difficult to reach the global

optimum [Martinez-Rios et al., 2008],[Nolte et al., 2001],

[Peter J. M. van Laarhoven et al., 1992].
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Algorithm 1 SA Algorithm

Require: Ti, Tf , Si, α

while Ti � Tf do

while METROPOLIS CYCLE do

Sj = Perturbation(Si)

δE = E(Sj)− E(Si)

if δE � 0 then

Si = Sj

else

if exp −δE
Ti

> random[0, 1] then

Si = Sj

end if

end if

end while

Ti = α ∗ Ti
end while

The Algorithm 1 is the pseudocode of classical SA. As it can be observed, the

algorithm employs an initial temperature (Ti) and a final temperature (Tf ). An

initial solution (Si) is randomly generated, and a geometrical cooling function

Ti = αTi that decrements the temperature by an α factor is applied.

The solution cycles through different states until the best solution is reached;

the current solution is an estimation of the global optimum. In the algorithm,

a new solution (Sj) is obtained by a generation function referred to a perturba-

tion function, which is used on the previous solution (Si) for generating a fresh

one. A sequence of solutions S1, S2, S3...Sn corresponds to a sequence of energy

states e(S1), e(S2), e(S3)...e(Sn) where the energies tend to decrease with the

decrements of the cooling function to reach the lowest energy conformation of

the system. SA algorithm computes the energy decrement δE = E(Sj)−E(Si);

if (δE) < 0, then the new solution is accepted; otherwise, the new configura-

tion is accepted using the Boltzmann criterion that accepts low quality solutions

with a certain probability. SA uses an initial temperature Ti that is related to

the acceptance probability of the new solution. At highest temperatures, the ac-

ceptance probability of a new solution P (ΔZMAX) is close to one. However, the

acceptance probability is decreased when the temperature is decremented until

the final temperature Tf is reached and the minimum acceptance probability

P (ΔZMIN ) is obtained.

Analytical tuning method for SA algorithm obtains the initial and final tem-

peratures (Ti) and (Tf ) from equations 2 and 3 [Sanvicente-Sánchez et al., 2004].

These temperatures are associated with the maximum and minimum deteriora-
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tion of the objective function (ΔZMAX , ΔZMIN ) and the associated acceptance

probability from equation 2 and 3.

exp(
−ΔZMAX

Ti
) = P (ΔZMAX) (2)

exp(
−ΔZMIN

Tf
) = P (ΔZMIN ) (3)

Ti =
−ΔZMAX

ln(P (ΔZMAX))
(4)

Tf =
−ΔZMIN

ln(P (ΔZMIN ))
(5)

Other parameters are also used in this analytical tuning method; one of them

is the length of the Markov chain (Lk) of the Metropolis cycle (or number of

iterations) [Frausto-Solis et al., 2006]. SA can be adapted using constant or vari-

able Markov Chains. The first approach is in general more easily implemented;

however, the last one has shown to achieve a better performance than constant

Markov chains [Frausto-Solis et al., 2007]. In order to adjust the variable Markov

Chains, the analytical tuning method determines the length of the metropolis

cycle.

– The initial temperature in PFP according to equation (4) is usually ex-

tremely high. At the highest temperatures, SA has a uniform distribution

for new solutions because all of them have an acceptance probability almost

equal to one.

Therefore, at these temperatures, the length (Lk) of the first Metropolis

cycle can be settled as small as possible. As a consequence, Lk = L1 ≈
1 is used. In this case, the stochastic equilibrium is reached by the first

configuration randomly obtained by the algorithm. When the temperature

is decreased to the next cycle, the corresponding Markov chain length Lk

must be incremented.

– In SA, the decrements of the temperature parameter can be done by a ge-

ometrical cooling function Tk+1 = αT (k). By contrast, the length of the

Markov chain Lk must be incremented by L(k + 1) = βL(k), where the β

factor increases the size of the Markov chain.

– When SA is in the last metropolis cycles, the energy of the protein is too

low, and a dynamic equilibrium is reached. This time a bad solution, has a

truly small acceptance probability, and it is extremely close to zero. Thus,

the length of the Markov chain is really long, and the maximum number of

Metropolis cycle is obtained by LMAX = βnL(1).
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– To calculate the number of steps (n) to arrive from Ti to Tf we use n =
lnTf−lnTi

lnα . This is the number of times that the Metropolis cycle is executed.

Once n is determined, the β coefficient can be calculated using equation 6.

β = exp

(
lnLMAX − lnL1

n

)
(6)

Applying the previous assumptions Tuned Simulated Annealing (TSA) algo-

rithm is obtained. TSA avoids the excessive computational tasks for reaching

stochastic equilibrium and make the algorithm become faster than the clas-

sical SA [Frausto-Solis et al., 2006],[Frausto-Solis et al., 2007].

3.2 Cluster Perturbation and Reheat

To reduce the computational cost of the Tuned Simulated Annealing, a cluster

perturbation method is proposed (CPSA). The perturbation technique in SA

consists in modifying the initial solution vector (Si) with a neighborhood up-

grade or modifying the neighborhood order, to generate a new solution (Sn).

Perturbation in SA for PFP uses a regular perturbation technique, where one

dihedral angle of the chain σ1, σ2, σ3, ...σm is incremented or decremented by a

factor μ.

The Cluster perturbation approach reduces the number of variables to a

cluster of certain dihedral angles. Thus, the possible number of dihedral angles

to be changed are lower than the regular model.

The protein chain is divided into fragments of four amino acids a1, a2, a3, ...a4
[Levitt 1976]. Each fragment i is composed of all the dihedral angles of the se-

lected amino acids represented by Fi{σ1,i, σ2,i, σ3,i, σ4,i}. The protein is clustered

in a new set of variables compound by the first amino acid set of variables a1 and

the last amino acid set of variables a4 of each fragment. Thus, the amino acids

a1,a4 are characterized by a set of dihedral angles (σ1,i, σ4,i), in order to obtain

a cluster of dihedral angles defined by Cluster = σ1,1, σ4,1, σ1,2, σ4,2...σ1,n, σ4,n,

where n is the number of fragments that the protein or peptide is divided. Using

this approach the number of variables to perturbate is reduced.

To determine which set is going to be perturbated by the algorithm, (the

normal variables or the cluster variables), a uniform probability distribution is

used, and a λ factor in the range 0.7 < λ < 0.9 is chosen.

2213Frausto-Solis J., Sanchez-Perez M., Linan-Garcia E., Sanchez-Hernandez J.P. ...



Algorithm 2 Perturbation

Require: Ti, Tt, P (σ
′
), Si

λ = random[0, 1]

if Ti � Tt then

if m � P (σ
′
) then

Sj = ClusterPerturbation(Si)

else

Sj = Perturbation(Si)

end if

else

Sj = Perturbation(Si)

end if

return Sj

CPSA reduces the computational cost used at very high temperatures to

obtain a feasible solution without changing the alpha value of the cooling func-

tion. With cluster perturbation alone, the minimal energy obtained for Met5 −
enkephaline is -3.9 kcal/mol. To improve the quality of the algorithm, the sys-

tem is reheated to reachMet5−enkephaline minimal energy near -10Kcal/mol.

The algorithm is divided into two phases: the cluster annealing phase and the

reheat annealing phase. In the first phase, the new solutions are generated by

cluster perturbation , and in the reheat phase, the new solutions are generated

by regular annealing perturbation.

The reheat mechanism is used to increase the actual value of a particular

temperature Ti in a specific range as shown in Figure 1. The additional com-

putational cost of the reheat phase is not significant because only part of the

algorithm is repeated since a certain temperature.

The reheat technique tries to avoid local optima in a certain phase of the

CPSA. The temperature is divided into four new temperatures ranges obtained

with the experimental tuning process. The correspondent new temperatures es-

tablish a threshold where the system is going to be reheated.

4 Implementation

In the present work, the temperature is decreased with a geometrical cooling

function Ti = α ∗ Ti, 0 < α < 1. Figure 2 shows the behavior of this func-

tion for different α values. When SA uses an alpha value near-zero, the cooling

function decreases extremely fast, and the optimal solution can be lost. On

the other hand, the cooling function decreases extremely slow by choosing an
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Figure 1: Cooling Behavior of SA with Reheat

alpha value very close to one. In this case the possibilities to find the opti-

mum solution is increased. However, SA implementation can become impracti-

cally long. Usually the alpha parameter is chosen in the range 0.7 < α < 0.99

[Aarts and Korst 1988, Frausto-Solis et al., 2006].

In this work, a high α value of 0.95 was experimentally determined, consid-

ering a trade-off between execution time and quality solution.

Figure 2: Behavior of Different values of α in the range of 0.7 < α < 0.99
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Met5 − enkephaline, C − peptide and T0335 were used as target proteins

(see Table 1). T0335 is a CASP Benchmark Protein. CASP (Critical Assessment

of Techniques for Protein Structure Prediction) is a world wide community for

protein structure prediction [Moult et al., 1995].

These proteins are chosen to be compared with the published results of

Analytical Tuned Simulated Annealing, that has prediction accuracy of 1 − 3

angstroms with respect to the protein native structure [Frausto-Solis et al., 2007,

Frausto-Solis et al., 2009]. One of these methods uses a change in the alpha value

and starts a new phase of the algorithm [Frausto-Solis et al., 2009]. In other

hand, the new CPSA algorithm updates the temperature in a certain level.

Thus, both strategies have the same prediction accuracy.

The energy function used in this work is ECEPP/2 [Momany et al., 1975].

SMMP software [Eisenmenger et al., 2001], is used to implement the protein

folding simulation [Eisenmenger et al., 2006, Meinke et al., 2008].

Table 1: Protein Folding Instances

Instance PFP Amino acids Number of Variables

Met5 − enkephaline 5 19

C-peptide 13 68

T0335(Basilius subtilis)(2HE) 85 450

The algorithms TSA, CPSA, and their variants were executed thirty times.

The runtime values and minimum and maximum values of energy were obtained

for the purpose of comparing the target proteins, and the results are discussed

in the next section.

5 Results

In this section, the results of several test cases are presented. The following

implementations were compared and tested in this work: SMMP original code,

Analytical Tuned Simulated Annealing (TSA) [Frausto-Solis et al., 2007], CPSA

and their variants CPSA7, CPSA8, CPSA9 with λ = (0.7, 0.8, 0.9) probability of

cluster. The algorithms were implemented with a geometrical cooling function

with α = 0.95; all the results were obtained executing the algorithms thirty

times and reporting the average. The results obtained for Met5 − enkephaline

are shown on Table 2; CPSA9 overcomes the quality of the solution for the

best solution case than other approaches. The best results in quality solution

correspond to CPSA9 (columns 2 of Table 2). CPSA7 obtains the best results

for the average solution case (columns 5 of Table 2).
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Table 2: Met5 − enkephaline Results

Best Solution Worst Solution Average Solution

Approach Energy Time Energy Time Energy Time

Kcal/mol sec Kcal/mol sec Kcal/mol sec

SMMP -10.38 1093 -6.65 1093 -9.40 1091

TSA -9.41 333.7 -4.3 338.6 -6.97 335.44

CPSAP7 -8.94 376.6 -6.35 376.79 -6.44 381.68

CPSAP8 -9.5 376.6 -4.45 376.8 -6.60 380.89

CPSAP9 -10.48 376.7 -5.03 376.73 -7.52 380.10

Table 2 shows the best, worst and average solution for that CPSA, SMMP

and TSA. For the best solution case, CPSA found the lowest energy (−10.48).

However, SMMP found the lower energy in the worst and average case for this

small peptide.

Table 3: C-Peptide Results

Best Solution Worst Solution Average Solution

Approach Energy Time Energy Time Energy Time

Kcal/mol sec Kcal/mol sec Kcal/mol sec

SMMP -89.110 86215 -89.11 86215 -89.11 86215

TSA -109.060 26875 -107.09 26863 -107.64 26898

CPSAP7 -109.060 27666 -103.09 27645 -107.92 27652

CPSAP8 -109.066 27644 -107.08 27653 -108.30 27653

CPSAP9 -109.067 26775 -107.50 26754 -108.42 26761

In Table 3, CPSA and TSA results for a little larger protein (C-peptide) of

thirteen amino acids are shown. In this case CPSA9 obtains the best quality

results (columns 2-6), that is a considerable reduction in computational time

than the other two approaches. The other CPSA variants have better quality

results than TSA; besides, the execution time of CPSA9 is significantly reduced,

and all the results overcome the quality of the solution of TSA and SMMP.
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Table 4: T0335Results

Best Solution Worst Solution Average Solution

Approach Energy Time Energy Time Energy Time

Kcal/mol sec Kcal/mol sec Kcal/mol sec

SMMP -404.93 800404 -403.47 800405 -404.57 800402

TSA -403.65 40828 -366.00 33745 -373.49 37287

CPSAP7 -404.43 34408 -355.33 33457 -385.22 34965

CPSAP8 -434.28 33549 -366.55 33456 -386.55 36573

CPSAP9 -443.52 33514 -328.56 33510 -387.49 35726

The results obtained with CPSA for T0335 are shown in Table 4. First of all,

it can be observed that the execution time is significantly reduced in contrast

with TSA. Notice that the quality solution is also increased with CPSA9 for all

the target proteins tested. Additionally, in the previous experimentation a three

reheats technique of CPSA is applied. However, to reduce the computational cost

of CPSA algorithms, the number of reheats can be reduced to only one. Finally, in

Table 5 the best implementation of the Cluster perturbation method is compared

versus TSA and SMMP. A significant reduction in execution time by using CPSA

with one reheat can be observed for all the instances tested in this work. We

observed that whether the number of the reheat is risen the computational cost

of CPSA is increased. CPSA overcomes TSA with an important reduction in

execution time, and the best quality solution is obtained. SMMP with constant

default values obtains good results for the worst and average cases; however, the

computational time taken for hard proteins like T0335 is excessively large. This

can be avoided by reducing the number of iterations that the SMMP algorithm

performs, but the quality of the solution would be affected.
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Table 5: Final Results (All Proteins with the algorithms SMMP, TSA, and CP90)

Best Solution Worst Solution Average Solution

Approach Protein Energy Time Energy Time Energy Time

Kcal/mol sec Kcal/mol sec Kcal/mol sec

SMMP MET -10.38 1093 -6.65 1093 -9.40 1091

TSA MET -9.41 333 -4.30 338 -6.97 335

CPSA MET -10.71 368 -5.87 368 -7.75 368

SMMP C-PEPTIDE -89.11 86215 -89.11 86215 -89.11 86215

TSA C-PEPTIDE -109.06 26875 -107.09 26863 -107.64 26898

CPSA C-PEPTIDE -109.07 25802 -106.03 25816 -108.45 25810

SMMP T0335 -404.93 800404 -403.47 800405 -404.57 800402

TSA T0335 -403.65 40828 -366.00 33745 -373.49 37287

CPSA T0335 -443.52 33444 -366.55 33456 -386.55 36573

According to the results presented in Table 5. CPSA obtained the best results

for Met5 − enkephaline, these results are to close with that obtained by those

recently publised in the literature [Sudha et al., 2013].

6 Conclusions

In this paper Cluster Perturbation Simulated Annealing algorithm (CPSA) for

small proteins in PFP is presented. The new algorithm remains simple as the

classical simulated annealing (SA) with a geometrical cooling scheme, and a

well-known tuning parameters is applied. At the beginning of the algorithm, the

solution is generated with a new technique called cluster perturbation. This ap-

proach applies a probability distribution in a perturbation scheme to generate

new solutions by modifying fragments of the old ones. A particular fragment is

conformed by the initial and final set of variables which are adjusted by the per-

turbation scheme. This first phase reduces the execution time of the algorithm

compared with the original SMMP and TSA (Simulated Annealing algorithm

using tuning parameters). Basically, in TSA new solutions are generated by typ-

ical generation functions as in the classical SA. The performance of simulated

annealing algorithm is really ameliorated by using CPSA. The important reduc-

tion of computational cost of the cluster perturbation approach let us add new

techniques for improving the quality of the solution of the algorithm. In CPSA,

a reheat technique is applied as a second phase. The time taken for this phase is

worthwhile because it improves the quality of solution while the total execution

time is still lower than TSA. In this paper, a tuning method is adapted for CPSA.
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It includes initial, final and reheat temperatures, number of metropolis cycles,

and the metropolis length chains. In conclusion, as the experimentation shows

the execution time is really better than TSA while the quality obtained with

CPSA is very close or better than the ones obtained by TSA implementation

and SMMP.
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[Černý 1985] V. Černý. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory and Ap-
plications;, 45(1):41–51, 1985. ISSN 0022-3239. doi: 10.1007/BF00940812.

[Xu et al., 2003] J. Xu, M. Li, D. Kim, and Y. Xu. RAPTOR: optimal protein thread-
ing by linear programming. J Bioinform Comput Biol, 1(1):95–117, Apr. 2003.
ISSN 0219-7200. URL http://view.ncbi.nlm.nih.gov/pubmed/15290783.

[Zhan et al., 2006] L. Zhan, J. Z. Chen, and W.-K. Liu. Conformational Study of
Met-Enkephalin Based on the ECEPP Force Fields . Biophysical Journal, 91(7):
2399–2404, 2006.

2223Frausto-Solis J., Sanchez-Perez M., Linan-Garcia E., Sanchez-Hernandez J.P. ...


