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1 Introduction

Solving equations and systems of equations is one of the oldest mathemati-

cal problems. Nevertheless, there are many new results connected with solving

equations published in the last years (see [Barrington et al. 2000],

[Broniek 2006], [Goldmann and Russel 2002], [Gorazd and Krzaczkowski 2011],

[Gorazd and Krzaczkowski 2010], [Horváth 2011], [Horváth and Szabó 2006],

[Horváth and Szabó 2011], [Horváth and Szabó 2012], [Kĺıma et al. 2007],

[Larose and Zádori 2006], [Schwarz 2004]). In this paper we consider the term

satisfiability problem TERM-SAT(A) and the polynomial satisfiability problem

POL-SAT(A). We are interested in the computational complexity of these prob-

lems for two-element algebras.

P and NP are probably the most often considered classes in the computa-

tional complexity theory. It is used to assume that P is a class of “easy” problems.

But is a problem solvable in the time O(n100) really “easy”? Is an algorithm

working in the time O(n100) really computable? The class of “easy” problems

is often associated with a complexity class that differs from P. A few results

on this topic can be found in [Creignou 1995], [Dewdney 1982], [Gräedel 1990],

[Grandjean 1994], [Gurevich and Shelah 1989], [Schnorr 1978]. One of the con-

sidered classes is the class of problems solvable in quasilinear time i.e. in the

time O(n logk n), where k is a constant. By analogy with the classes P and
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NP we consider the classes QL and NQL, where QL and NQL are the classes

of problems computable in quasilinear time on a deterministic Turing machine

and a non-deterministic Turing machine, respectively. The NQL-completeness is

defined by using the deterministic quasilinear time many-one reduction. It was

shown in [Schnorr 1978] that SAT is NQL-complete, but on the other hand it

is known that not every NP-complete problem belongs to NQL [Cook 1972]. In

this paper we show that for any finite algebra A the problems TERM-SAT(A)

and POL-SAT(A) are in NQL. Moreover, we completely classify the complexity

of these problems for two-element algebras.

It is well known that if P is not equal to NP, then in NP there are

problems which are neither in P nor NP-complete. Nevertheless, there

are large natural classes of problems contained in NP such that any prob-

lem from these classes is either in P or NP-complete. One such a class is the

constraint satisfaction problems on two and three element sets [Schaefer 1978],

[Bulatov 2002]. Another example is TERM-SAT over the two-element

algebras [Gorazd and Krzaczkowski 2011] and the preprimal algebras

[Gorazd and Krzaczkowski 2010].

Similarly to the case of P and NP we do not know if QL=NQL. If QL is not

equal to NQL then there are problems in NQL which are neither in QL nor NQL-

complete. We prove that for any two-element algebra the problem TERM-SAT

is either in QL or NQL-complete. It may not seem surprising but it requires com-

pletely other proofs then those presented in [Gorazd and Krzaczkowski 2011].

One of the interesting questions about problems connected with solving equa-

tions is whether for a given algebra A their complexity depends only on Clo(A)

(the clone of term operations of an algebra A, see [McKenzie et al. 1987]). In

the general case, it is not true:

Example 1. Let (S3, ·) be the three-element symmetric group, and let

s(x, y, z, w) = x · [[[x, y], z]], w]−1,

where [x, y] = x−1 · y−1 · x · y.

– Clo(S3, ·) = Clo(S3, ·, s),

– POL-SAT(S3, ·) is in P [Horváth and Szabó 2006],

– POL-SAT(S3, ·, s) is NP-complete (P. M. Idziak’s result, the proof is pub-

lished in [Gorazd and Krzaczkowski 2010]).

Algebras with the clone of term operations equal to the clone of the al-

ternating group A4 are another example where the computational complex-

ity of POL-SAT does not depend on the clone of the algebra’s term opera-

tions [Horváth and Szabó 2011], [Horváth and Szabó 2012]. In such a context
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G.Horváth and C.Szabó consider so called “extended solvability problem”. They

ask how computational complexity of POL-SAT(A) changes if we allow using

operations from the arbitrary finite subset of Clo(A) in equations.

On the other hand, for the two-element algebras the computational complex-

ity of TERM-SAT (up to polynomial time reduction) depends only on the clone

of term operations of the related algebras (see [Gorazd and Krzaczkowski 2011],

[Gorazd and Krzaczkowski 2010]). The main conclusion of the results presented

in this paper is that for any two-element algebras A and B such that Clo(A) =

Clo(B) if TERM-SAT(A) is NQL-complete (in QL) then TERM-SAT(B) is also

NQL-complete (in QL).

The paper is organized as follows. Section 1 is an introduction to the subject.

Section 2 contains the basic definitions needed in the next sections. In Section

3 we define and analyze the classes QL and NQL. Moreover, we present there

some specific problems that we encounter when studying QL and NQL and

describe the assumptions we make. Sections 4 and 5 contain two main results of

this paper. In Section 4 we prove that TERM-SAT for finite algebras is in NQL

and in Section 5 we characterize the computational complexity of TERM-SAT

and POL-SAT for two element algebras in terms of QL and NQL. Finally, in

Section 6 we propose some possibilities for further research.

2 Definitions

A language (or type) of algebras is a set F of function symbols with a nonnegative

integer assigned to each member of F . This integer is called the arity of f ∈ F .

The subset of n-ary function symbols of F is denoted by Fn.

An algebra of type F is an ordered pair A = (A,F ), where A is a nonempty

set (called universe) and F is a family of finitary operations on A indexed by the

language F such that for any n-ary symbol f ∈ F there is an n-ary operation fA

on A. The fA’s are called fundamental operations of A. If F = {f1, . . . , fn} it is

customary to write (A, f1, . . . , fn) rather than (A,F ). In this paper we consider

only algebras with finite universes. Notice that the set of fundamental operations

may not be finite.

For a language F and a set of variables X (|X | = ω) we define T (X), the set

of terms of type F , as the smallest one, such that

– X ∪ F0 ⊆ T (X)

– If t1, . . . , tn ∈ T (X) and f ∈ Fn, then the “string” f(t1, . . . , tn) ∈ T (X)

If for an algebra A of type F we additionally admit all constant operation

symbols on A while building terms, we get the polynomials of A.
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Definition 2. The composition of terms t(x1, . . . , xk), w1(x1
1, . . . , x

1
n1

), . . . ,

wk(xk
1 , . . . , x

k
nk

) is the term obtained by replacing each occurrence of xi in the

term t by the term wi(x
i
1, . . . , x

i
ni

).

We denote the composition of these terms by t(w1(x1
1, . . . , x

1
n1

), . . . ,

wk(xk
1 , . . . , x

k
nk

)).

In some cases it is suitable to think about a term as a tree. We define a subtree

of a tree T to be a tree consisting of a node in T and all of its descendants in T.

An internal node of a tree is a node which have at least one child.

Definition 3. The tree of a term t is a tree T whose nodes are labeled by func-

tion symbols and variables occurring in the term t and defined in the following

way:

– if t is a variable x then T is a tree containing one node labeled by x,

– if t is in the form f(t1, . . . , tk), then the root of T is labeled by f and

the subtrees of the root, from left to right, are the trees of terms t1,. . . ,tk
respectively.

For a tree T we define Sub(T ) as the set of all proper subtrees of T that contain

at least two nodes and whose roots are children of the root of T .

In a similar way, we can define the composition of polynomials and the tree

of a polynomial.

If A is an algebra of type F , then with terms and polynomials we can asso-

ciate operations on the set A in an obvious way. If t is a term (polynomial), in

which only the (distinct) variables from {x1, . . . , xn} appear, then tA(x1, . . . , xn)

describes the corresponding n-ary term (polynomial) operation. We denote the

set of all term operations of A by Clo(A) (and the set of polynomial opera-

tions of A by Pol(A)). Observe that this set is a clone of operations on A, i.e.

sets of operations on A, closed under composition, and containing the projection

operations πn
i (x1, . . . , xn) = xi.

The notion of frugal terms and polynomials plays an important role in our

proofs of the NQL-completeness.

Definition 4. Let t(x1, . . . , xk) be a term in the language F and A be an algebra

of type F . We call this term frugal in the algebra A iff any xi such that tA

depends on it occurs in t only once. Frugal polynomials are defined analogously.

When we write that t(x1, . . . , xk) is a frugal term (polynomial) we mean that

tA depends on every variable x1, . . . , xk and that it is possible there are other

variables in t on which tA does not depend. It does not lead any confusion in the

latter arguments and algorithms. An operation f will be called frugally definable

in algebra A if f is equal to tA for a term t frugal in A.

The main problem considered is TERM-SAT:
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Definition 5. For an algebra A the term satisfiability problem, TERM-SAT(A),

is the decision problem with

Instance: A pair of terms (s, t) with the tables of the fundamental operations

of A corresponding to all function symbols occurring in s and t.

Question: Does there exist a substitution of variables of s and t by elements

of A such that the corresponding values of sA and tA are the same?

If in the above definition we put polynomials instead of terms we obtain the

definition of POL-SAT. The tables of fundamental operations in the instances of

these problems are important because we also consider algebras with infinitely

many operations. Notice that the set of operations of an algebra may not be

recursive. In the consequence if we did not have the tables of the fundamental

operations as a part of the instance, TERM-SAT or POL-SAT for such algebras

would be undecidable. For algebras of finite types it does not matter if the tables

of fundamental operation occurring in terms or polynomials are a part of the

input or not. In both cases, for such algebras TERM-SAT and POL-SAT have

the same asymptotic complexity because all the tables of operations may be a

part of the algorithm.

We do not exactly consider the problem of solving equation (i.e. looking for

a solution). However, using the proofs from the paper, it is not hard to see

that for a given two-element algebra, the problem of solving equations and the

corresponding satisfiability problem (e.g. TERM-SAT, POL-SAT etc.) belong to

the corresponding functional and decisional complexity classes.

In the next section we show a quasilinear time deterministic algorithm solving

the following problem:

Definition 6. For the algebra A, we call POL-VAL(A) the problem with

Instance: A polynomial p that does not contain any variable together with the

tables of fundamental operations of A corresponding to all function symbols

occurring in p.

Question: What is the value of pA?

The fact that we can solve the above problem in quasilinear time is often used

in proofs in this paper. The problem POL-VAL is of course a generalization of

the well known CIRCUIT VALUE problem.

We will make an essential use of the Post classification for clones on the

two-element set [Post 1941]. The Hasse diagram of the order on the set of such

clones is presented in the following figure. We use the original Post notation for

the clones on the set 2 = {0, 1}, however, we recall them here for the reader’s

convenience.
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Figure 1: The lattice of clones on the two-element set.

C1 = (2,∧,∨,¬) C3 = (2,−,∨) C4 = (2,∨, ki)
A1 = (2,∧,∨, 0, 1) A3 = (2,∧,∨, 0) A4 = (2,∧,∨)

D3 = (2, d,¬) D1 = (2, d,+3) D2 = (2, d)

L1 = (2,+,¬) L3 = (2,+) L5 = (2,+3,¬) L4 = (2,+3)

Fm
8 = (2,−, dm) F∞

8 = (2,−) Fm
7 = (2, ka, dm, 0) F∞

7 = (2, ka, 0)

Fm
6 = (2, ka, dm) F∞

6 = (2, ka) Fm
5 = (2, ki, dm) F∞

5 = (2, ki)

P6 = (2,∧, 0, 1) P5 = (2,∧, 1) P4 = (2,∧, 0) P2 = (2,∧)

R13 = (2,¬, 0) R4 = (2,¬) R11 = (2, 0, 1) R8 = (2, 0)

R1 = (2)
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where

x− y = x ∧ ¬y,

ki(x, y, z) = x ∧ (y → z),

ka(x, y, z) = x ∧ (y ∨ z),

+3(x, y, z) = x + y + z ( mod 2),

dm(x0, . . . , xm) =
∨m

i=0(x0 ∧ . . . ∧ xi−1 ∧ xi+1 ∧ . . . ∧ xm), m ≥ 2,

d = d2.

They describe the central and right hand side parts of the diagram. The clones

C2, A2, L2, R6, F
α
i and Si are dual to C3, A3, L3, R8, F

α
i+4 and Pi, respectively,

in the sense that an operation f is dual to g if f(x1, . . . xk) = ¬g(¬x1, . . . ,¬xk),

i.e. the clone X is dual to Y if the map ¬ : 2 −→ 2 is an isomorphism of (2, X)

onto (2, Y ).

A function f : 2n → 2 is called

– monotone iff (∀0≤i<n ai ≤ bi) ⇒ f(a0, . . . , an−1) ≤ f(b0, . . . , bn−1).

– 0-valid iff f(0, . . . , 0) = 1

– 1-valid iff f(1, . . . , 1) = 1

The symmetric group S3 and alternating group A4 are examples which show

that the computational complexity of a problem parameterized by an algebra A

may not be determined by Clo(A).

Definition 7. We say that for a clone C a problem is NQL-complete (in QL) if

for any algebra A such that C = Clo(A) the problem is NQL-complete (in QL).

In this paper we prove that for any clone on the two-element set the problems

TERM-SAT and POL-SAT are either NQL-complete or in QL.

3 QL and NQL

We say that an algorithm works in quasilinear time if for an input of size n the

algorithm works in time O(n logk n), where k is a constant. We define QL (NQL)

as a class of problems solvable in quasilinear time on the multitape deterministic

(non-deterministic) Turing machines. We define NQL-completeness using reduc-

tions computable on a multitape deterministic Turing machine in quasilinear

time. These classes do not depend on the number of tapes and the size of the

alphabet provided that there are at least two tapes and two alphabet symbols.

In [Schnorr 1978] Schnorr proved the following important theorem:

Theorem 8. SAT is NQL-complete.
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It is a straightforward matter to see that 3-SAT is also NQL-complete.

The easy conclusion of Theorem 8 is the following:

Corollary 9. Every NQL-complete problem is NP-complete.

Observe that if NQL = QL then NP = P . From the results obtained by Cook

[Cook 1972] we have that NQL is a proper subclass of NP.

When we consider QL and NQL we have to be more careful than in the case

of P and NP. For example in contrast to the polynomial time case the classes of

problems solvable on the random access machine and the deterministic Turing

machine in quasilinear time are probably not equal. So we cannot use in our algo-

rithms the random access memory instead of the Turing machine’s tape. On the

other hand, it may be shown using technic from [Gurevich and Shelah 1989] and

[Angluin and Valiant 1979] that NQL is equal to the class of problems solvable

in quasilinear time on non-deterministic random access machinie.

All algorithms in this paper are parameterized by a finite algebra A of type

F . The universe of this algebra will be the set A = {a1, . . . , an}, the elements

will be ordered in the natural way.

The alphabet of the Turing machine will be the following:

– 0, 1 for the encoding numbers

– brackets,

– characters for each element of the set A,

– two symbols for the designation names of functions and variables. The par-

ticular function (variable) name will be represented by the special symbol

with a unique number after it,

– some additional characters used for separation of elements on the tape.

We assume that the alphabet is ordered as given above.

As an instance of TERM-SAT we have two terms which are written on the

first tape. We assume that the tables of fundamental operations we need are

written on the second tape. For a k-ary fundamental function f we encode its

table in the following way: as the first symbol we write k and then

– if k = 0 then f is a constant operation and its value is written on the tape,

– if k > 0 then the table consists of recursively written tables of operation

f(a1, x2, . . . , xk),. . . , f(an, x2, . . . , xk) but without information about their

arity.

It seems that the purpose of describing operations by their tables is to in-

crease the size of the input but in the average case it is impossible to find signifi-

cantly shorter description of operations. Notice that the number of different k-ary
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operations on set A is |A|(|A|k) and hence we need O(log |A|(|A|k)) = O(|A|k)

bits to be able to describe every such an operation. Moreover, it easy to see

that the average number of bits needed to describe k-ary operations on set A is

O(|A|k), too. For comparison, note that the size of table of a k-ary operation on

set A is |A|k.

Note that we consider also algebras with an infinite number of fundamental

operations but we use the Turing machine over a finite alphabet. It implies

that we need more than one character to write the function symbols and in

consequence, the length of function symbols may be arbitrarily large. The similar

situation is with variables. We assume that the function symbols (variables)

consist of unique numbers of them and a special character used only in the

function symbols (variables). We could assume that the function symbols and

variables are numbered consecutively but this is not needed.

In this paper we will frequently use the notion of a token. The meaning of

this notion depends on the context. Typically, a token may be a character but

also a variable or a function symbol. Sometimes it means a function symbol with

its arguments too. This will be clear from the context. The idea is that we may

divide terms in many ways, and tokens are parts of terms obtained during such a

process. We often use this concept when sorting elements on a tape. In this case

we will only describe the main tokens, the others will be the remaining elements

of the alphabet. We order tokens in such a way that the main tokens are the

first ones.

One important fact we use is that one can sort elements written on the Turing

machine’s tape in quasilinear time. For example, it is quite easy to implement

the mergesort algorithm working in deterministic quasilinear time on the Turing

machine (see [Schnorr 1978], Program p1). Observe that the size of the input is

not the number of sorted tokens but the number of characters written on the

tape. One may ask if the fact that the sorted elements may be arbitrarily large

increases the complexity of sorting. Fortunately, in our case the size of the sorted

tokens does not affect the computational complexity of sorting. In general, for

some complicated comparing functions, this may be a problem.

Note that in some algorithms we sort parts of a term. We will need to separate

sorted tokens in order to be able to check easily where they start and end. Of

course, this can be done in quasilinear time using an additional character. We

will ignore such problems in implementations in order not to complicate the

algorithms. Also when describing the Turing machines we will not talk about

the additional tapes we need for sorting. The reader can easily complete all the

algorithms.

For convenience we suppose that on the first tape after every function symbol

there is written the arity of the symbol. On can easily convert the standard input

to this form in quasilinear time using the methods presented in the following
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sections.

4 Term-Sat is in NQL

First we will prove that TERM-SAT(A) for any finite algebra A is in NQL. The

main problem in the proof is that we also allow algebras with an infinite set of

operations. We note on the other hand, when we consider algebras only of finite

type, the tables of operations are in fact a part of the machine, not of the input.

In this case the proof is very easy. Our proof for algebras of arbitrary type will

be a corollary of two lemmas.

Lemma10. Let A be a finite algebra.

There is a deterministic Turing machine which for a given frugal polynomial

t(x1, . . . , xk) and polynomials w1(x1
1, . . . , x

1
n1

), . . . , wk(xk
1 , . . . , x

k
nk

) over A cre-

ates their composition – i.e. the polynomial t(w(x1
1, . . . , x

1
n1

), . . . , w(xk
1 , . . . , x

k
nk

))

– in quasilinear time.

Proof. We show the deterministic Turing machine M composing the given poly-

nomials over A in quasilinear time. We may assume that machine M has three

main tapes. On the first one there is the polynomial t. On the second tape there

are polynomials w1(x1
1, . . . , x

1
n1

), . . . , wk(xk
1 , . . . , x

k
nk

) ordered by their indexes.

The third tape is an auxiliary one.

Notice that the naive algorithm which just rewrites the polynomial t and

substitutes its variables by appropriate polynomials works in quadratic time. It

is because the variables in the polynomial t may occur in different orders and on

a Turing machine to find the polynomial wi we have to shift the machine head

step by step. This can take linear time. The main idea used in this proof is the

same as that used by Schnorr [Schnorr 1978] to prove that SAT is in NQL.

The main tokens on the first tape will be the names of variables ordered by

their indexes. Let n be the number of tokens. The machine M writes on the third

tape the numbers from 1 to n. In the next step M sorts tokens on the first tape.

While sorting M applies the same transformation simultaneously to the corre-

sponding numbers on the third tape. After that the machine M substitutes every

occurrence of any variable on the first tape by corresponding polynomial from

the second one (every occurrence of xi should be replaced by wi(x
i
1, . . . , x

i
ni

)).

It possible to do the substitution in linear time using one auxiliary tape.

The last thing the machine M has to do is to sort the numbers on the third

tape applying the same transformation simultaneously to the corresponding to-

kens on the first tape. The main tokens on the first tape will be the polynomials

w1(x1
1, . . . , x

1
n1

), . . . , wk(xk
1 , . . . , x

k
nk

). Now, the first tape contains the polyno-

mial t(w(x1
1, . . . , x

1
n1

), . . . , w(xk
1 , . . . , x

k
nk

)). Because of the frugality of t the final

term is not longer than the input and one can see that M works in quasilinear

time.
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Notice that if the polynomial t in the Lemma 10 were not frugal then the size of

the composition of polynomials can be even quadratic in the size of the input.

Obviously, in such a case there is no quasilinear algorithm composing polynomi-

als.

Corollary 11. Let t be a term over A. There is a deterministic Turing machine

which substitutes all variables of t by given values from A in quasilinear time.

Proof. This comes directly from the proof of Lemma 10. Notice that because the

length of the elements of A is equal to 1 we do not need the assumption about

the frugality of t.

To prove the second lemma mentioned above we will need the following ob-

servation:

Observation 12. Let T be a set of trees closed under formation of subtrees and

let s : T → N be defined as follows:

– s(T ) = 1 if t has at most one internal node,

– s(T ) = max{s(X) : X ∈ Sub(T )} if there is exactly one tree R such that

s(R) = max{s(X) : X ∈ Sub(T )},

– s(T ) = max{s(X) : X ∈ Sub(T )}+ 1 if there are at least two trees R1, R2 ∈
Sub(T ) such that R1 �= R2 and s(R1) = s(R2) = max{s(X) : X ∈ Sub(T )}.

Then s(T ) is O(log2 |T |), where |T | is the number of nodes of tree T .

Proof. We will show that s(T ) ≤ log2 |T |+ 1. The proof will be by induction on

the structure of T . The case where T has at most one internal node is obvious.

Now it is enough to consider the last two cases of the definition of s. In the

second case we have that s(T ) = s(R) ≤ log2|R| + 1 ≤ log2|T | + 1. In the third

case we assume without a loss of generality that |R1| ≤ |R2|. Hence, we have

that

s(T ) = s(R1) + 1 ≤ log2 |R1| + 1 + 1 = log2 |R1| + log2 2 + 1 =

= log2 (2 · |R1|) + 1 ≤ log2 |T | + 1.

The second lemma needed to prove that TERM-SAT(A) for any finite algebra

A is in NQL is the following:

Lemma13. Let A be a finite algebra. Then the problem POL-VAL(A) is solv-

able in quasilinear time.
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Proof. We will show a quasilinear time algorithm computing the value of a given

polynomial without any variable in it. Our algorithm will step by step compute

values of unbranched paths in the tree of the considered polynomial as long as

it computes the value of the polynomial. An unbranched path of a polynomial

is a maximal subtree of the tree of the polynomial such that every node of this

subtree has at most one child which is not a leaf.

Let p be the polynomial given in the input. We will use five main tapes. We

assume that the polynomial p is on the first tape and the tables of fundamental

operations of A corresponding to all function symbols occurring in p are on the

second tape. We use the standard lexicographic order when sorting tokens.

To make it clearer how our algorithm works we present it through the example

of the unbranched path:

f(a1, g(a2, h(a1)), a3), (1)

where f, g, h are the function symbols and A = {a1, a2, a3}.

Algorithm14.

1. Repeat steps (2)-(8) until the value of p is computed.

2. Rewrite all unbranched paths from the first to the third tape in the following

way: for every internal node of a path write the function symbol from the

node with all possible values of children. Rewrite nodes contained in the

same path in the order from the top to the bottom. Rewrite paths in the

order of their occurrence in p. For example (1) we will obtain:

f(a1, a1, a3), f(a1, a2, a3), f(a1, a3, a3), g(a2, a1), g(a2, a2), g(a2, a3), h(a1)

3. Now on the third tape the tokens are the occurrences of function symbols

together with their arguments. Let m be the number of tokens. Write on the

fourth tape the numbers from 1 to m.

4. Sort tokens on the third tape in the lexicographic order and apply the same

transformation simultaneously to the corresponding numbers on the fourth

tape.

5. Substitute tokens on the third tape by their values.

6. Restore the original order of tokens of the third tape by simultaneous sorting

numbers on the fourth tape.

Suppose that for the path in the example (1) we obtain the values:

a3, a3, a1, a1, a3, a1, a2

7. Compute values of all paths and write them on the fifth tape. For the path

in the example (1) this will be the value a1.
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8. Substitute every unbranched path in the polynomial on the first tape by its

value.

It is obvious that the above algorithm computes the value of p. The problem

is if the computations could be done in quasilinear time. First observe that the

length of the symbols on the third tape in step (2) is at most linearly bigger than

the size of the polynomial written on the first tape. It is because the algebra is a

part of the algorithm not a part of the input. Hence, it is clear that steps (3), (4)

and (6) may be computed in quasilinear time. To compute step (5), it is enough

to read the second and third tapes once. Hence, we have that step (5) may be

done in quasilinear time. Step (7) can be done in linear time reading the values

on the fourth tape from the end to the beginning. Now step (8) can by done in

linear time if, for example, in step (2) we write the positions of the occurrences

of unbranched paths on an auxiliary tape.

Step (2) may be computed in quasilinear time using an algorithm reading the

polynomial from its end to the beginning with the auxiliary tape as a stack. The

algorithm stores on the stack the read constants and function symbols with the

information if a given symbol belongs to an unbranched path. If the algorithm

reaches a function symbol then it gets and removes arguments of this function

from the stack. Next, the algorithm pushes on the stack the function symbol

with the information if it belongs to an unbranched path. Function symbols

belonging to some unbranched paths are written on the third tape together with

all possible values of their arguments.

It remains to show that steps (2)-(8) of Algorithm 14 will be computed at

most O(log n) times, where n is the length of p. Note that the value of every

unbranched path of p is computed in one turn of the loop. Hence, steps (2)-(8)

will be computed s(T ) times, where s is the function from Observation 12 and

T is the tree of the polynomial p. To complete the proof consider that from

Observation 12 s(T ) is O(log n).

Now we are ready to prove the main theorem in this section.

Theorem 15. For any finite algebra A the problem TERM-SAT(A) is in NQL.

Proof. The following algorithm running on a non-deterministic Turing machine

checks if a given equation over A has a solution:

Algorithm16.

1. Write on the auxiliary third tape a list of values of variables (in a non-

deterministic way).

2. Substitute variables occurring in terms of the equation by the values written

on the third tape.
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3. Compute values of polynomials obtained in step (2).

4. If the values computed in step (3) are equal return YES. Otherwise return

NO.

The fact that the above algorithm solves TERM-SAT(A) on a non-deterministic

Turing machine is obvious. The only thing we need to justify is that steps (2)

and (3) may be computed in quasilinear time. We have it from Corollary 11 and

Lemma 13.

The immediate corollary of the above theorem is that POL-SAT(A) is in

NQL for any finite algebra A.

5 TERM-SAT and Two-Element Algebras

In this section we show the classification of two-element algebras according to the

computational complexity of TERM-SAT. We will use the same type of Turing

machines as before but we will consider only algebras on the set {0, 1}.

First we start with algebras for which TERM-SAT is NQL-complete :

Lemma17. For a function f : 2n → 2 the following are equivalent:

(i) f is affine, i.e. f ∈ Clo(L1)

(ii) for any pairwise different a0, a1, a2, a3 ∈ 2n which differ at most on positions

0 ≤ i �= j ≤ n− 1, we have one of the following:

– f(a0) = f(a1) = f(a2) = f(a3) or

– f(ag) = f(ah) �= f(ak) = f(al), where {g, h, k, l} = {0, 1, 2, 3}

Proof. (i) ⇒ (ii)

It is enough to observe, that f(x0 . . . xn−1) =
∑

i∈I xi + c, for some set

I ⊆ {0 . . . n− 1} and c = 0 or 1. Then the proof is obvious. (ii) ⇒ (i)

First, we show that for any 0 ≤ i ≤ n− 1 exactly one of the following holds:

(a) ∀(a0...an−1)∈2n f(a0 . . . ai−1, 0, ai+1 . . . an−1) = f(a0 . . . ai−1, 1, ai+1 . . . an−1)

(b) ∀(a0...an−1)∈2n f(a0 . . . ai−1, 0, ai+1 . . . an−1) �= f(a0 . . . ai−1, 1, ai+1 . . . an−1)

Suppose, f(a0, . . . , ai−1, 0, ai+1, . . . , an−1) �= f(a0, . . . , ai−1, 1, ai+1, . . . , an−1)

for some i, a0, . . . , ai−1, ai+1, . . . , an−1.

Take a tuple (b0, . . . , bi−1, bi+1, . . . , bn−1) which differs from (a0, . . . , ai−1,

ai+1, . . . , an−1) exactly on one position.

Now, from (ii) we have f(b0 . . . bi−1, 0, . . . bn−1) �= f(b0 . . . bi−1, 1, . . . bn−1).

Notice, that we can reach any element of 2n−1 from (a0, . . . , ai−1, ai+1 . . . , an−1),
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step by step, by changing only one position in every step. Hence, for all tuples

(c1, . . . , ci−1, ci+1, . . . , cn) ∈ 2n−1 we have that f(c0 . . . ci−1, 0, ci+1, . . . cn−1) �=
f(c0 . . . ci−1, 1, ci+1, . . . cn−1)

Let I be the set of all 0 ≤ i ≤ n − 1 such that (b) is true. It is easy to see

that f(x0 . . . xn−1) =
∑

i∈I xi + f(0, . . . , 0).

Lemma18. For an algebra A such that ∧,¬ ∈ Clo(A) and ∧ is frugally defin-

able over A, the problem TERM-SAT(A) is NQL-complete.

Proof. It is clear that ∨ and the constant 1 are also definable over A. There

is an obvious reduction from 3-SAT to TERM-SAT(A), which transforms the

formula

(x1
1 ∨ x1

2 ∨ x1
3) ∧ . . . ∧ (xk

1 ∨ xk
2 ∨ xk

3),

where xj
i are the variables or negations of variables, into the equation

(x1
1 ∨ x1

2 ∨ x1
3) ∧ . . . ∧ (xk

1 ∨ xk
2 ∨ xk

3) = 1.

In order to obtain a reduction to TERM-SAT(A) we have to express the last

equation in the language of A. First in the preprocessing we find a term defining

the constant 1 and the term v(x1
1, x

1
2, x

1
3) such that vA(x1

1, x
1
2, x

1
3) = x1

1∨x1
2∨x1

3.

Let c2(x1, x2) be a term over A which frugally defines x1 ∧ x2. Now we are

looking for a term ck(x1, . . . xk) over A defining the function x1∧ . . .∧xk. Notice

that k is not known in the preprocessing.

One can see that if we have a frugal term ci representing the conjunction of i

variables, we can obtain a frugal term representing the conjunction of 2i variables

by applying Lemma 10 to the terms c2, ci, ci. In this way, in quasilinear time we

can obtain the term ck(x1, . . . xk).

In the last step of our reduction we apply Lemma 10 for terms ck(x1, . . . xk),

v(x1
1, x

1
2, x

1
3) . . . v(xk

1 , x
k
2 , x

k
3).

It turns out that there are only two clones for which TERM-SAT is NQL-

complete. The first one is the clone of all operations on the two-element set.

Lemma19. TERM-SAT for the clone Clo(2,∧,¬) is NQL-complete.

Proof. Let A = (2, F ) and Clo(A) = Clo(2,∧,¬). Thus, there exist fu, fp ∈ F

such that fu is not monotone and fp is not affine (Clo(A) � Clo(A1) and

Clo(A) � Clo(L1)).

Because fu is not monotone there are (a0, . . . , ai, ai+1, . . . , anu−1) ∈ 2nu−1

such that fu(a0, . . . , ai, 1, ai+1, . . . , anu−1) < fu(a0, . . . , ai, 0, ai+1, . . . , anu−1).

It is easy to see that ¬(x) ≡ fu(a0, . . . , ai, x, ai+1, . . . , anu−1) (obviously 1, 0 ∈
Clo(A)) and in consequence ¬ is frugally definable over A.
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On the other hand, because of the fact that fp is not affine, from Lemma

17 there are pairwise different b1, b3, b3, b4 ∈ 2np which differ at most on the

positions 0 ≤ i �= j ≤ np and fp(b1) = fp(b3) = fp(b3) �= fp(b4).

Now, consider F (x, y) = fp(b0, . . . , bi−1, x, bi+1, . . . , bj−1, y, bj+1, . . . , bnp−1).

It is easy to see that F (x, y) is equivalent to one of the following functions x∨y,

x ∧ y, ¬x ∨ ¬y, ¬x ∧ ¬y, ¬x ∨ y, ¬x ∧ y, x ∨ ¬y or x ∧ ¬y. The term F (x, y) is

of course a frugal one.

To complete the proof, observe that using F (x, y) and ¬ we can create a frugal

term defining ∧. From this fact based on Lemma 18 we have that TERM-SAT(A)

is NQL-complete.

The second clone for which TERM-SAT is NQL-complete is the clone D3

Lemma20. TERM-SAT for the clone Clo(2, d,¬) is NQL-complete.

Proof. Let A be an algebra with Clo(A) = Clo(D3). If to the basic operations

of A we add the constant operation 1 we obtain a new algebra A′ such that

Clo(A′) = Clo(2,∧,¬).

Call ¬ a term in the language of A representing negation.

We will define a reduction from 3-SAT to TERM-SAT(A). Let S be a 3-SAT

instance. First, we verify whether S is a tautology or not. This can be easily

done in quasilinear time, for example, by checking if any of the clauses can be

false. We reduce every tautology to the equation x = x.

If S is not a tautology we compute the reduction from the proof of Lemma 19

to obtain the term t′(x1, . . . , xk) over A′ which is equal to 1 iff S is true (for the

same valuation of variables). Next in t′(x1, . . . , xk) we replace every occurrence

of constant 1 with a new variable u. We call the new term t(x1, . . . , xk, u). Now

we reduce S to the following instance of TERM-SAT(A)

t(x1, . . . , xk, u) = t(x′
1, . . . , x

′
k,¬u), (2)

where {x1, . . . , xk} ∩ {x′
1, . . . , x

′
k} = ∅.

We have to show that the procedure described above is in fact a reduction.

One can see that all the above operations can be done in the quasilinear time

and that the size of t(x1, . . . , xk, u) is at most quasilinearly larger than that of

S.

Observe that for every term g in the language of A we have

¬g(x1, . . . , xm) = g(¬x1, . . . ,¬xm) (3)

If S is not satisfiable then ∀(a1,...,ak)∈2k tA(a1, . . . , ak, 1) = 0 and therefore

from (3) we have that ∀(a1,...,ak)∈2k tA(a1, . . . , ak, 0) = 1. Consequently, (2)

cannot be satisfiable.

Conversely, assume that S is satisfiable and not a tautology.
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There are (a1, . . . , ak), (b1, . . . , bk) ∈ 2k such that tA(a1, . . . , ak, 1) = 1 and

tA(b1, . . . , bk, 1) = 0. Now, using (3), we have that

tA(a1, . . . , ak, 1) = tA(¬b1, . . . ,¬bk, 0)

Therefore (2) is satisfiable.

Before the proof of the main theorem of this section we have to consider

affine algebras, one of the classes of algebras for which TERM-SAT is in QL.

Lemma21. Let C be a clone on the two-element set such that C ⊂ Clo(2,+,¬).

Then TERM-SAT for the clone C is in QL.

Proof. Let A = (A,F ) with Clo(A) = C.

Every operation f ∈ Clo(2,+,¬) may be expressed in the form:

f(x1, . . . , xk) =
∑

i∈If

xi + cf , (4)

where cf ∈ {0, 1} and If is a set of indexes of arguments on which f depends.

The plan of the proof is the following. First we show how to obtain in quasi-

linear time an expression in form (4) from the table of a given operation. Next

we show how to transform a given term over A into the form (4). Finally, we

show a quasilinear time algorithm determining whether or not a given equation

between the expressions in form (4) has a solution.

Observe that to transform the table of a function into an expression in form

(4) we need only to obtain a set If and the constant cf . Fortunately, a k-ary

operation f depends on the i-th argument iff the first and the (1 + 2k−i)-th

elements of the table of the operation f are different. Additionally, the first

element of the table is equal to the constant cf from expression (4). So to obtain

the set If and the constant cf , it is enough to read the table once and make k

comparisons. This is an easy consequence of the fact that f may be expressed

in form (4).

Consequently we may assume that instead of the table for any basic operation

f we have the set If and the constant cf written on the second tape.

Now we need an algorithm which transforms a given term into form (4). The

algorithm we show uses six main tapes. Tapes one and two contain the input.

Tape three contains variables which have a chance to occur in the resulting

expression and tape four is used in the computation of cf . On tape five the

algorithm writes the output. The sixth tape is used as a stack. As tokens in this

algorithm we mean the function symbols and the variables. For simplicity of the

algorithm we assume that terms are written without brackets.

The main idea of our algorithm is that we traverse the tree of a given term.

For every node we skip subtrees on which the operation corresponding to the
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node does not depend. We use a stack instead of the recursion. The algorithm is

quite similar to the classical one computing the value of the expression written

in the Reverse Polish Notation.

Algorithm22.

1. Rewrite the given term in such a way that after every function symbol f

there is written the set If and the constant cf (this may be done in a similar

way as the composition of polynomials in the proof of Lemma 10).

2. Push on the stack the symbol 1.

3. Read the next token from tape 1 (denote it by d). If there is no token to

read go to step 9.

4. Read and pop a symbol from the stack (denote it by s).

5. If s = 1 and d = x is an variable then add x to the list on tape 3 and go to

step 3.

6. If s = 1 and d = f is a function symbol then

(a) Read cf and add it (modulo 2) to the value written on tape 4. If tape 4

is empty then just write cf on it.

(b) Push on the stack the values of the indicator function of the set If in

the order from the last to the first argument.

(c) Go to step 3.

7. If s = 0 and d is a variable then go to step 3.

8. If s = 0 and d is a function symbol then move the pointer on tape 1 after

the last argument of this symbol and go to step 3.

9. Sort variables written on tape 3.

10. Write on tape 5 the symbol of every variable which occurrs on tape 3 an odd

number of times.

11. Add on the end of tape 5 the value from tape 4 (if any value is written there).

The above algorithm is obviously computable in quasilinear time. For a given

term it returns on tape 5 the list of variables on which the corresponding function

depends. At the end of the list it writes the value of the constant cf of formula

(4).

The following algorithm checks in quasilinear time whether or not the given

equation between terms over A has a solution.
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Algorithm23.

1. For the two terms from the input write on tapes 2 and 3 respectively the

lists of the variables on which they depend and the corresponding constants

from formula (4). Use Algorithm 22.

2. If the constants on both tapes obtained in step (1) are equal return YES

3. If the constants on both tapes obtained in step (1) are not equal then check

if on tapes 2 and 3 there are exactly the same variables.

(a) If there are the same variables then return NO.

(b) Otherwise return YES.

Now, we are ready to show the whole classification of the computational

complexity of TERM-SAT for two-element algebras.

Theorem 24. Let C be a clone on a two-element set.

TERM-SAT for the clone C is NQL-complete if and only if one of the fol-

lowing holds

– C = Clo(2,∧,¬) = Clo(C1)

– C = Clo(2, d,¬) = Clo(D3)

Otherwise, TERM-SAT for C is in QL.

Proof. From Lemmas 19 and 20 we know that if C = Clo(2,∧,¬) or C =

Clo(2, d,¬) then TERM-SAT for C is NQL-complete.

Observe that if Clo(A) �= Clo(2,∧,¬) and Clo(A) �= Clo(2, d,¬) then there

are four possible cases:

All functions from C are

– affine, i.e. C ⊆ Clo(L1)

– monotone, i.e. C ⊆ Clo(A1)

– 1-valid, i.e. C ⊆ Clo(C2)

– not 0-valid, i.e. C ⊆ Clo(C3)

In the first case TERM-SAT is in QL from Lemma 21. The quasilinear time

algorithms in the last three cases are obvious.

An easy consequence of the above theorem is the following:

Corollary 25. Let A be a two-element algebra.

If d ∈ Clo(A) and ¬ ∈ Clo(A) then TERM-SAT(A) is NQL-complete.

Otherwise, TERM-SAT(A) is in QL.
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Since for the two-element algebras A = (A,F ) and A′ = (A,F ∪ {0, 1})

Pol(A) = Clo(A′) and POL-SAT(A) is obviously equivalent to TERM-SAT(A′)
in quasilinear time, we have another easy corollary of Theorem 24.

Theorem 26. Let A be a two-element algebra and C = Pol(A).

If the clone C = Pol(2,∧,¬) then POL-SAT(A) is NQL-complete. Otherwise

POL-SAT(A) is in QL.

6 Conclusion

We have characterized the computational complexity of TERM-SAT for two

element algebras in terms of QL and NQL. It is natural to ask what the situation

looks like if we considered larger algebras. Unfortunately, for such algebras we

do not have a similar description of the clone lattice as we have for two element

algebras. Additionally, there is a continuum of clones of algebras with three or

more elements.

We have shown that for two element algebras TERM-SAT is NP-complete

iff it is NQL-complete and TERM-SAT is in P iff it is in QL. Is this also true

for larger algebras? It had been mentioned in the introduction that there exist

NP-complete problems which are not in NQL. Analysis of the known proofs of

NP-completeness of TERM-SAT for different classes of finite algebras indicates

that some of these proofs seem to be hard to use when proving NQL-completeness

of TERM-SAT. Hence, we state the conjecture that there exists a finite algebra

A such that TERM-SAT(A) is NP-complete but not NQL-complete. It seems

to us that it is possible to find such an example among the primal algebras, i.e.

algebras generating the clone of all operations.
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