
An Algebraic Theory of Epistemic Processes

Hamid Reza Mahrooghi

(Department of Computer Engineering, Sharif University of Technology

Tehran, Iran

mahrooghi@ce.sharif.edu)

Rasool Jalili

(Department of Computer Engineering, Sharif University of Technology

Tehran, Iran

jalili@sharif.edu)

Abstract: In the past few years, several process-algebraic frameworks have been pro-
posed that incorporate the notion of epistemic knowledge. These frameworks allow for
reasoning about knowledge-related properties, such as anonymity, secrecy and authen-
tication, in the operational specifications given in process-algebraic languages. Hith-
erto, no sound and (ground-)complete axiomatization has been given for the above-
mentioned process-algebraic frameworks. In this paper, we define notions of bisimula-
tion that are suitable for such process algebras with histories and give a sound and
ground-complete axiomatization for the theory of CryptoPAi , which is a process al-
gebra based on Milner’s Calculus of Communicating Systems (CCS) extended with
cryptographic terms and identities. Moreover, we show that one of our defined notions
of bisimulation is precisely characterized by the extension of the Hennessy-Milner logic
with epistemic constructs.

Key Words: Process Algebra, Epistemic Logic, Axiomatization, Security Protocols,
Cryptography

Category: F.4, F.4.1, F.4.3

1 Introduction

Equational reasoning is a cornerstone of algebraic process theory and allows for

reasoning on processes at the level of syntax, without generating their (huge and

often infinite) state space. Several process algebras have been proposed in the

past four decades [Milner 1980, Hoare 1985, Baeten et al. 2009] and many of them

have been applied to academic and industrial case studies. More recently, several

process theories have been equipped with sufficient syntactic and semantic con-

structs to allow for reasoning about epistemic properties of processes and agents,

e.g., to express properties such as the anonymity (lack of knowledge) of certain

actions, or the authentication (having true belief about the identity) of certain

agents. Examples of such process algebras include the Agent Communication

Programming Language (ACPL, a CSP-based process algebra) of [de Boer et al.

2003, Eijk et al. 2003], the Calculus of Cryptographic Communication (C3) of

[Borgström et al. 2006] and its timed extension [Borgström et al. 2006], and the

Journal of Universal Computer Science, vol. 19, no. 10 (2013), 1396-1432
submitted: 19/10/12, accepted: 27/5/13, appeared: 28/5/13 © J.UCS

Calculus of Communicating Systems with identities (CCSi) of [Dechesne et al.

2007] and its extension with cryptographic constructs CryptoPAi [Mahrooghi

and Mousavi 2011].

We are not aware of a (ground-)complete axiomatization for any of the above-

mentioned process theories (or any other process theory extended with epistemic

constructs). In this paper, we fill this gap by first defining some notions of bisim-

ulation that are suitable for epistemic processes. Subsequently, we use one of our

defined notions of bisimulation to provide a sound and complete axiomatization

for the process algebra CryptoPAi . We further show that the chosen notion of

bisimulation is precisely characterized by the extension of the modal mu-calculus

with epistemic knowledge constructs.

1.1 Related Work

Axiomatizing process languages has been a challenging task and the first finite

ground-complete axiomatization of a process algebras dates back to the seminal

work of Bergstra and Klop in [Bergstra and Klop 1984]. Ever since, many pa-

pers have been published on axiomatization and unaxiomatizability of process

algebras, of which [Baeten 2005] and [Aceto and Ingólfsdóttir 2007] provide in-

teresting historical accounts. Our approach to axiomatizing CryptoPAi builds

upon these earlier approaches, but is complicated by a few issues: the existence

of histories recording the past events (a necessary ingredient for epistemic rea-

soning), makes it non-trivial to define an appropriate notion of bisimulation. To

solve this issue, we rely on earlier research on bisimulation for process algebras

with data [Baeten and Bergstra 1997, Mousavi et al. 2004, Mousavi et al. 2005].

Moreover, the introduction of cryptographic terms as data call for some addi-

tional work in equating atomic actions and their parameters. To this end, we

adapt some ideas from earlier work on symbolic cryptography, for example, in

[Abadi and Rogaway 2002].

Our axiomatization and its proofs can be readily used for a ground axioma-

tization of PAi [Dechesne et al. 2007], since PAi is a special case of CryptoPAi ,

where the set of parameters is taken to be empty. Also, we expect our results to be

applicable to other process algebras with epistemic constructs, such as those pro-

posed in [de Boer et al. 2003, Eijk et al. 2003, Borgström et al. 2006, Borgström

et al. 2006].

1.2 Structure of the Paper

The rest of this paper is structured as follows. In Section 2, we recall the syntax

and the semantics of CryptoPAi . In Section 3, we explore different possibilities

for defining a notion of bisimulation for processes with epistemic constructs and

propose a notion of bisimulation that is a congruence, i.e., compositional, for

1397Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

CryptoPAi . In Sections 4 and 5, we provide a sound and ground completeness

of, respectively, the sequential subset, and the full CryptoPAi language, for the

proposed notion of bisimulation. In Section 6, we introduce the extension of the

Hennessy-Milner logic with an epistemic knowledge construct, called EHML,

and show that our notion of bisimilarity is the notion of equivalence characterized

by the introduced modal logic. We conclude the paper in Section 7.

2 The CryptoPAi Calculus

The syntax of CryptoPAi calculus extends the syntax of Milner’s Calculus of

Communicating Systems (CCS) with two essential ingredients: identities and

cryptographic terms. Identities are used to annotate actions in order to desig-

nate the agents that can observe the action (the agents that cannot observe a

certain action, will observe its public appearance). Cryptographic terms are used

to denote the data that is communicated in a basic action and possession of keys

by agents will provide another aspect of observability (and thus, indistinguisha-

bility) to the calculus. In the remainder of this section, we first define our notion

of cryptographic terms. Subsequently, we define the syntax of the CryptoPAi

calculus and present its operational semantics.

2.1 Cryptographic Terms

Our signature for cryptographic terms features basic constructs such as plain

text, nonces, symmetric keys and encryption, given in the following definition.

This language can be extended, as demonstrated in [Mahrooghi and Mousavi

2011], with more constructs such as asymmetric keys, signing, and blinding.

However, the addition of these constructs does not have any influence for the

axiomatization presented in the remainder of this paper and hence, will not be

considered henceforth.

Definition 1 Symbolic Terms. We assume a syntactic class Key of symmetric

keys, typically denoted by k, kI ,. . .; a syntactic class Id of principal identities,

typically represented by A, B, 1, 2, . . .; a class Nonce of nonces, denoted by

n, nI , . . .; a class Msg of plain-text messages, denoted by m, mI , . . .; a class

Rnd of formal random-numbers, denoted by r, ri, Plain text messages, keys,

nonces, and random-numbers are different syntactic classes and are assumed to

be disjoint.

The set of crypto-terms, denoted by T erm, is defined by the following gram-

mar:

m,m′ ::= k | id | t | n | {m}rk | (m,m′)

where k ∈ Key, id ∈ Id, t ∈ Msg, r ∈ Rnd, and n ∈ Nonce. The term {m}rk
is the result of encrypting m with the symmetric key k and random-number r.

The term (m,m′) represents the pairing of m and m′.

1398 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

(∈T)
T � m

m ∈ T

(pair)
T � m T � m′

T � (m,m′)
(fst)

T � (m,m′)
T � m

(snd)
T � (m,m′)

T � m′

(dec)
T � {m}k T � k

T � m
(enc)

T � k T � m

T � {m}k

Figure 1: Term Deduction Rules

Since some of the cryptographic constructors (such as encryption) represent

probabilistic operations, we need to use Rnd in order to keep track of different

invocations of the encryption primitive (as defined in [Abadi and Jürjens 2001]

and [Laud and Corin 2003]). We reason under the assumption of perfect cryp-

tography and assume that the results of two invocations of encryption will be

different, even with the same arguments. Thus, to keep track of invocation of

that operation, the elements of Rnd are used. As the labels r are identifiers of

invocations of the encryption primitive, whenever we consider two expressions

{m}rk and {m′}rk′ with the same label r, then it should also hold that m = m′

and k = k′.
Informally, we may just write {m}k instead of {m}rk, when r is irrelevant or

clear from the context. To avoid cluttering the notation, we assume that pairing

associates to the right and denote nested pairs of the form (m0, (m1, , . . . , (mn−1,

mn))) by (m0,m1, . . . ,mn−1,mn).

2.2 Term Deduction

Using cryptographic operations, terms can be derived (i.e., (de)constructed) from

others. We have captured this concept by the deduction rules in Figure 1. A

judgement of the form T � m reads term m is derivable from the set T of terms.

The deduction rules are self-explanatory; it should only be noted that m is an

arbitrary crypto-term in these rules, while k is a key.

Example 1. Below, for instance, we assume T as a set of terms that has been

encountered in a run of a protocol.

T = {(A,B, nA), {(kAB, B, {(kAB, A)}kBS)}kAS , {(kAB, A)}kBS , {nB}kAB , kAS}.

The derivation depicted in Figure 2, shows that the term nB is derivable from

T , using the deduction rules of Figure 1.

1399Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

(dec)

(fst)

(dec)

(∈T)
T � {(kAB, B,

{kAB, A}kBS)}kAS

(∈T)
T � kAS

T � (kAB, B, {kAB, A}kBS)

T � kAB

(∈T)
T � {nB}kAB

T � nB

Figure 2: Deduction Rules for T � nB

2.3 CryptoPAi Syntax

In this section we present the syntax of CryptoPAi , which is a process alge-

braic language with value-passing of crypto-terms. Let Act be a finite set of

action names ranged over by a, !a, ?a, b, . . ., and let Id be a finite set of identi-

ties typically denoted by i, j, We use the exclamation and the question mark

to designate send and receive actions, respectively. Actions that result from a

synchronization as well as internal actions are denoted without any annotation.

This is a slight deviation from Milner’s CCS, where the result of a synchroniza-

tion is necessarily denoted by an internal action. In our calculus, agents may

be able to observe and derive useful information from synchronizations. Action

τ ∈ Act denotes the silent action which also represents a message that offers no

new information to any observer.

P,Q ::= Processes

0 inaction

D;P action prefixing

P +Q nondeterministic choice

P || Q parallel composition

∂(P) encapsulation

D ::= (J)α(
−→
M)

Constant 0 denotes inaction (termination). D;P denotes action prefixing; an

action may contain zero or more crypto-terms as parameters. Nondeterministic

choice among P and Q is denoted by P + Q and means that the first action

taken by either of the two processes determines the choice. P ||Q denotes paral-

lel composition; it allows for interleaving of internal actions and the results of

earlier communications as well as hand-shaking synchronization between input

and output actions. Hand-shaking synchronization results in a value-passing by

replacing the variables of the receiving party with closed terms from the sending

party. Our language also includes an encapsulation operator, ∂, which prevents

unsuccessful communication attempts and turns them into deadlock.

1400 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

(J)α(
−→
M) ∈ D denotes a parametric decorated action, which has the following

intuition: action α ∈ Act with parameters
−→
M is visible to principal i ∈ J ⊆

Id. Other principals (j /∈ J) observe ρ(α(
−→
M)) being taken, where ρ : Act ×

T erm∗ → Act × T erm∗ is a global renaming function, which assigns a “public

appearance” to every parameterized action and should be defined by the specifier

of a protocol. We assume that ρ(τ) is always defined to be τ , reflecting the fact

that τ is invisible to all principals. The combination of identity decoration on

actions, action renaming (public appearance), and action parameters provides

different views on the behavior of protocols, according to different (participating

or observing) principals.

To avoid cluttering the syntax, we assume that action prefixing binds stronger

than non-deterministic choice and non-deterministic choice binds stronger than

parallel composition. Also, we omit the trailing 0 and write, for example, D for

D; 0.

2.4 CryptoPAi Semantics: Indistinguishability

The operational state of CryptoPAi is typically denoted by (p, Γ), which com-

prises two components: a process p and a computation Γ . The first component of

the operational semantics determines the possible future behavior of the specified

system, while the second component records the history of its past behavior, i.e.,

which processes executed which decorated actions leading to the current state.

The process p has the syntax described in the previous section. The computa-

tion Γ , formally defined below, is a sequence of pairs of processes and decorated

actions.

Definition 2 Computation. A computation Γ ∈ Comp is a sequence of pairs

of the form (p, d), where p is a process and d is a parameterized decorated

action with term parameter (in the syntax given in Section 2.3). We denote

concatenating a pair (p, d) with a computation Γ by (p, d) � Γ . The empty

computation is denoted by ε.

The operational semantics defines two types of relations among states: a tran-

sition relation, defining how a state may evolve by performing actions, and an

indistinguishability relation (labeled by principal identities), defining all states

that are deemed possible, given the current computation observed by each prin-

cipal. This combination, called an Epistemic Labeled Transition System (ELTS).

In order to define the indistinguishability, we need a number of auxiliary defini-

tions, which are presented in the remainder of this section.

In order to reason about the behavior of processes, we need to attach compu-

tations to them. However, not all computations are consistent with a particular

process, in that the computation in the past may not lead to the process at hand.

1401Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

Hence, it is necessary to make sure that the past (computation) is consistent with

the present (process), as defined below.

Definition 3 Consistency of Computations and Processes. Let (p, Γ) be

an operation state where p ∈ Proc and Γ ∈ Comp. Assume that the computation

Γ , which is a finite computation recording the history of the process executed

so far, is of the form (p0, d0), . . . , (pn, dn). Γ is consistent with p when:

(pi, (p0, d0), . . . , (pi−1, di−1))
di→ (pi+1, (p0, d0), . . . , (pi, di)) for each i ≤ n and

moreover, pn+1 = p.

Two computations Σ and Σ′ are called consistent, if the last process of Σ

and the first process of Σ′ are identical.

For example, ((J)α(
−→
M) + (J)β(

−→
M ′), ε) is consistent with both (J)α(

−→
M) and

(J)β(
−→
M ′). Also, ((J)α(

−→
M); (J)α(

−→
M), ε) is consistent with (J)α(

−→
M), but not with

(J)β(
−→
M ′).

Definition 4 Patterns. A pattern is a crypto-term with (possibly multiple)

occurrences of a specific symbol �r (indexed by random-numbers), capturing

those encrypted messages that cannot be decrypted. Hence, the set PTerm of

patterns is defined with the following grammar.

mP ,m
′
P ::= k | id | t | n | {mP }rk | (mP ,m

′
P) | �r

The below-given function Pattern : T erm → PTerm defines the pattern

of a message given a set of keys and is defined using the auxiliary function

pat : T erm×Key → PTerm.

Pattern(M) = pat(M, {k ∈ Key | M � k}).
Intuitively, the pattern of a term is what can be learned and understood from the

term from the viewpoint of a principal having a number of keys at its disposal.

pat(k,K) = k (k ∈ Key),

pat(id,K) = id (id ∈ Id),
pat(t,K) = t (t ∈ Msg),

pat(n,K) = n (n ∈ Nonce),

pat((m,m′),K) = (pat(m,K), pat(m′,K)),

pat({m}rk,K) =

⎧⎨
⎩

{pat(m,K)}rk if k ∈ K,

�r otherwise.

We re-use the same notation and write pat(m) for pat(m,K), where K is the

set of all keys k such that {m} � k.

1402 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

Example 2. The following examples illustrate the notion of pattern:

pat({{(kAB, A)}rkBS
}r′kAS

, ∅) = �r′

pat({{(kAB, A)}rkBS
}r′kAS

, {kAS}) = {�r}r′kAS
if kAS �= kBS

pat({{(kAB, A)}rkBS
}r′kAS

, {kAS , kBS}) = {{(kAB, A)}rkBS
}r′kAS

pat({{(kAB, A)}rkBS
}r′kAS

) = �r′

pat(({A}rk, {A}r
′

k)) = (�r,�r′)

Using the notion of patterns and incorporating the randomness of keys,

nonces and random-numbers, we define the following notion of pattern equiva-

lence, denoted by ≡p.

Definition 5 Pattern Equivalence. Two terms m and m′ ∈ T erm are pat-

tern equivalent, denoted by m ≡p m′, if and only if there exists a type preserving

bijection σ of Key ∪ Nonce ∪ Rnd, such that pat(m) = pat(m′σ), where m′σ
denotes the application of σ to m′.

Example 3. The following examples illustrate the notion of pattern equivalence:

k ≡p k′

(k0, k0) �≡p (k0, k1) if k0 �= k1
{A}rk ≡p {B}r′k′

({A}rk, k) �≡p ({B}r′k′ , k′) if A �= B

({A}rk, {A}rk) �≡p ({A}rk, {A}r
′

k) if r �= r′

For instance, we have Ar
k ≡p Br′

k′ . This is because the keys k and k′ are not

known and hence, the observer will see an obscure bit-stream that cannot be

deciphered in either case. Consequently, {A}rk and {B}r′k′ are pattern equivalent,

because there exists a type-preserving bijection σ of Key ∪Rnd which maps k′

to k, r′ to r and hence, it holds that pat({A}rk) = pat({B}r′k′σ) = �r.

Example 4. Assume two terms M and N as follows.

M = (({0}r1k1
, {1}r2k2

), ({1}r3k3
, k4)), pat(M) = ((�r1 ,�r2), (�r3 , k4))

N = (({1}r5k5
, {0}r6k6

), ({0}r7k7
, k8)), pat(N) = ((�r5 ,�r6), (�r7 , k8))

Then, if we replace k5 → k1, k6 → k2, k7 → k3, k8 → k4, r5 → r1, r6 → r2,

and r7 → r3 in N , the pattern of N turns into the pattern of M . i.e., the two

terms M and N are pattern equivalent, denoted by M ≡p N , because there

exists a type preserving bijection σ of Key ∪Rnd such that maps k5 to k1, k6
to k2 etc and consequently, we have pat(M) = pat(Nσ) = ((�r1 ,�r2), (�r3 , k4)).

The following lemma illustrates that the information that is abstracted away

by the notion of pattern, can always be recovered by putting terms into context.

1403Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

Lemma6. Consider two terms m and m′ such that m ≡p m′; if it holds that

for each term m′′, (m′′,m) ≡p (m′′,m′), then m and m′ are syntactically equal.

Proof. By induction on the size of m plus the size of m′. We make a case dis-

tinction based on the structure of m:

– Assume that m is a plain text message or an identifier; then it follows from

Definition 4 that m′ has to be of the same form and also syntactically equal

to m; hence, the lemma follows trivially.

– Assume that m is a nonce and take m′′ to be the same nonce as m; then,

it should hold that (m,m) ≡p (m,m′). Then, there exists a bijection σ such

that pat((m,m)) = pat((m,m′)σ), or, following the definition of pat, (m,m)

has to be syntactically identical to (mσ,m′σ); however, since σ is a bijection,

this can only hold if m and m′ are syntactically equivalent.

– Assume that m′ is a key; following a similar reasoning as above (by taking

m′′ to be the same key as m), it follows that m′ should also be the same key.

– Assume that m is a pair of the form (m0,m1); then it follows from Def-

inition 4 that m′ should also be a pair of the form (m′
0,m

′
1) such that

pat(m0) = pat(m′
0σ) and pat(m1) = pat(m′

1σ). It then follows from the

induction hypothesis that m0 should be syntactically equal to m′
0 and m1

has to be syntactically equal to m′
1. Hence, m and m′ are syntactically equal.

– Assume that m is an encrypted message of the form {m0}rk; then m′ should
also be of the form {m′

0}r
′

k′ . Take m′′ to be (k, {m0}rk, k′, {m′
0}r

′
k′) and it

follows from the induction hypothesis, the definition of pat, and Definition

4 that m0 and m′
0 are syntactically identical and so are, respectively, r and

r′, and k and k′. ��

A straightforward generalization of Lemma 6 concerns its lifting to sequences

of terms; in fact, we use this generalization in some of our proofs in the remainder

of this paper.

Lemma7. ≡p is an equivalence relation.

Proof. Equality on patterns is an equivalence relation and hence ≡p is an equiv-

alence relation. ��

In order to lift the notion of pattern equivalence to computations, we need

the notions of appearance for actions and visible terms, defined below.

1404 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

Definition 8 Appearance of Actions. Given a decorated action d, an iden-

tity i, and a fixed global renaming function ρ, the appearance of d to i, denoted

by Appeari(d), is defined as follows.

Appeari((J)a(
−→
M)) =

⎧⎪⎨
⎪⎩

a(
−→
M) if i ∈ J,

b(
−→
M ′) if i /∈ J and ρ(a(

−→
M)) = b(

−→
M ′)

In the above definition it is assumed that
−→
M and

−→
M ′ can be empty vectors of

terms, denoting actions with no parameter (including τ).

Definition 9 Visible Terms. Given a computation Γ and an identity i, the set

of visible terms in Γ according to i is denoted by TermSeti(Γ), and is defined

below (ε and ∅ denote an empty computation and empty set, respectively).

TermSeti(Γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if Γ = ε,

{−→M} ∪ TermSeti(Γ ′) if Γ = (p, d)�Γ ′ and
Appeari(d) = a(

−→
M),

T ermSeti(Γ ′) if Γ = (p, d)�Γ ′ and
Appeari(d) = a().

Definition 10 Indistinguishability of Computations. Let Γ be a compu-

tation, then the pattern of computation Γ from the viewpoint of the principal i

is denoted by CPattern i(Γ), as defined below.

CPattern i(Γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if Γ = ε,

CPattern i(Γ ′) if Γ = (p, d)�Γ ′ and

Appeari(d) = τ,

a(pat(M,T i))�CPatterni(Γ ′) if Γ = (p, d)�Γ ′ and
Appeari(d) = a(M),

a()� CPatterni(Γ ′) if Γ = (p, d)�Γ ′ and

Appeari(d) = a() and a �= τ,

where T i = {t|t ∈ T erm ∧ TermSeti(Γ) � t}.

1405Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

(0)
(0, Γ)� (d)

(d; p, Γ)
d⇒ (p, Γ�(d; p, d))

(n0)
(p0, Γ)

d⇒ (q0, Γ
�(p0, d))

(p0 + p1, Γ)
d⇒ (q0, Γ

�(p0 + p1, d))
(n2)

(p0, Γ)�
(p0 + p1, Γ

′)�

(p0)
(p0, Γ)

d⇒ (q0, Γ
�(p0, d))

(p0 || p1, Γ)
d⇒ (q0 || p1, Γ�(p0 || p1, d))

(p2)
(p0, Γ)� (p1, Γ

′)�
(p0 || p1, Γ ′′)�

(p3)
(p0, Γ)

(J)?a(
−→
M)⇒ (q0, Γ

′) (p1, Γ)
(J′)!a(

−→
M)⇒ (q1, Γ

′′)

(p0 || p1, Γ)
(J∪J′)a(−→M)⇒ q0 || q1, Γ�(p0 || p1, (J ∪ J′)a(

−→
M)))

(encap)
(p0, Γ)

d⇒ (q0, Γ
�(p0, d))

(∂(p0), Γ)
d⇒ (∂(q0), Γ

�(∂(p0), d))

(strip)
(p, Γ)

(J)a(
−→
M)⇒ (q, Γ ′)

(p, Γ)
a(

−→
M)→ (q, Γ ′)

(IC)
Γ0

i
= Γ1

(p0, Γ0)
i· · · (p1, Γ1)

Figure 3: SOS Rules of CryptoPAi

Next, we define the indistinguishability relation, denoted by
i
=, of computations

as follows.

Γ
i
= Γ ′ iff CPatterni(Γ) = CPatterni(Γ ′σ),

for a type-preserving bijection σ on Key ∪ Nonce ∪Rnd.

Two computations are called indistinguishable when they are indistinguish-

able with respect to every identity.

2.5 CryptoPAi Semantics: Deduction Rules

Plotkin-style deduction rules for the structural operational semantics [Plotkin

2004] of CryptoPAi are given in Figure 3.

The transition relation → has exactly the same role and meaning as in the

standard notion of Labeled Transition system (LTS). The formula s� shows the

possibility of termination in state s. The indistinguishability between s0 and

s1 according to principal i is denoted by expression s0
i· · · s1. Observing of ac-

tions depends on the visibility range of actions. The relation
d⇒ ⊆ St× St has

1406 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

been defined for each parametric decorated action d ∈ D where St is the set

of operational states. The deduction rules for
d⇒ are mostly self-explanatory

and standard to most process algebras. In the deduction rule (strip), the extra

information on the labels (concerning the visibility range) are stripped off, i.e.,

we block individual send and receive actions and thereby obtain the transition

relation → . The deduction rule (IC) moves the indistinguishability relation of

computations up to operational states. Γ0 and Γ1 are consistent with p0 and p1,

respectively. Because
i· · · only concerns histories and not processes, it specifies

when two past histories are indistinguishable, and does not make any statement

about their possible future developments. The symmetric rules (n1), (n3), (p1),

and (p4) are omitted for brevity. Termination of a process is orthogonal to its

past history, so different meta-variables are used for the histories in the premises

and the conclusion of rules (n2) and (p2). The transition relation ⇒ and in-

distinguishability equivalence relation · · · are the sets of all closed statements

provable using the deduction rules (plus their symmetric versions) from Figure

3. These define an Epistemic Labeled Transition System (ELTS) for each process

p, as defined below.

Definition 11 Semantics of Processes. Given the sets Act and T erm, an

ELTS is a 5-tuple 〈St, → ,�, IC , s0〉, where → ⊆ St×Act×T erm∗×St is the

transition relation, � ⊆ St is the termination predicate, IC ⊆ St × Id × St is

the indistinguishability relation, and s0 is the initial state.

The semantics of process p has been defined by the ELTS with pairs of

processes and computation as the states, → as the transition relation, � as

the termination relation, · · · as the indistinguishability equivalence relation, and

(p, ε) as the initial state, where ε denotes the empty computation.

An operational state is a pair (p, Γ), where p ∈ Proc is a CryptoPAi process

and Γ is a finite computation recording the history of the process executed so

far.

3 Notions of Bisimulation for Epistemic Processes

We aim to provide an equational theory for our CryptoPAi calculus to equa-

tionally reason about security protocols. First, we need to present a notion of

our bisimilarity relation between processes on the ELTS. We define this notion

based on the notion of strong bisimilarity.

3.1 Notions of Bisimilarity

We need to adapt strong bisimilarity to cater for the computations attached to

processes in our operational semantics. Our approach is inspired by [Mousavi

1407Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

et al. 2004], but makes some modifications in order to support the issues re-

garding patterns, consistency of computations, and applying substitutions. The

following notion of bisimilarity is the first attempt to enrich strong bisimilarity

with computations.

Definition 12 State-based Pattern Bisimulation Relation. A binary sym-

metric relation Rσ
sb ⊆ (Proc × Comp)2 over the set of states of an ELTS is a

state-based pattern bisimulation if and only if whenever (p, Γp) R
σ
sb (q, Γq) then

Γp and Γq are, respectively, consistent with p and q and moreover, the following

statements hold:

- Γp
i
= Γqσ, for each i ∈ Id,

- if (p, Γp)
d→ (p′, Γp′) then there exists a transition (q, Γq)

d′
→ (q′, Γq′) such that

(p′, Γp′) Rσ
sb (q

′, Γq′),

- if (p, Γp)� then (q, Γq)�, and

- if (p, Γp)
i· · · (p′, Γp′) then there exists a relation (q, Γq)

i· · · (q′, Γq′) such that

(p′, Γp′) Rσ
sb (q

′, Γq′).

Two states (p, Γp) and (q, Γq) are called state-based pattern bisimilar, de-

noted by (p, Γp) ∼sb (q, Γq), iff there exits Rσ
sb s.t. (p, Γp) R

σ
sb (q, Γq).

Note that in the second condition in Definition 12, the target computations

(Γp′ and Γq′) have to be indistinguishable due to the first condition in the same

definition and hence, the labels d and d′ are implicitly related.

Theorem 13. The state-based pattern bisimularity is an equivalence relation.

Proof. Equivalence of the state-based pattern bisimularity follows trivially from

the equivalence property of the state-based equivalence bisimilarity [Mousavi

et al. 2004] and that of our indistinguishability equivalence relation. ��

Our state-based pattern bisimilarity relates pairs of processes and computa-

tions and as such does not allow for any interference from the context and hence is

not robust (compositional) with respect to process composition. In other words,

if the common initial history state is not known (e.g., if the components have to

start their execution on the result of an unknown or non-deterministic process),

then this notion of bisimilarity is not useful. The example below, illustrates this

fact, which is also depicted in Figure 4. Note that for simplicity, we have left out

the principal identities which do not play a role in our example.

1408 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

√

!a({1}k)

(!a({1}k); 0, ε)

(0, < (!a({1}k); 0, !a({1}k >)

(!a({1}k); 0, ε)∼sb

(0,

(!a({0}k); 0, ε)

< (!a({0}k); 0, !a({0}k >)
√

!a({0}k)

(!a({0}k); 0, ε)

but it does not hold that:

< (!b(k); !a({0}k); 0, !b(k), !a({0}k); 0, !a({0}k) >)

!a({1}k)

√
(0, < (!b(k); !a({1}k); 0, !b(k), !a({1}k); 0, !a({1}k) >)

!a({0}k)

(0,

!b(k)

(!b({k}; !a({1}k); 0, ε)

(!a({1}k); 0, < (!b(k); !a({1}k); 0, !b(k) >)

(!b({k}; !a({1}k); 0, ε)∼sb

(!a({0}k); 0, < (!b(k); !a({0}k); 0, !b(k) >)

!b(k)

(!b({k}; !a({0}k); 0, ε)

s1 t1

t2s2

s′1 t′1

s′2 t′2

√
s′3 t′3

(!b({k}; !a({0}k); 0, ε)

Figure 4: Lack of compositionality for state-based pattern bisimilarity.

Example 5. Let s = (!a({0}k); 0, ε) and t = (!a({1}k); 0, ε) ∈ St. We have s ∼sb t,

but it does not hold that (!b(k); a({0}k); 0, ε) ∼sb (!b(k); a({1}k); 0, ε). This is due
to the computation of the corresponding operational-states are indistinguishable

in the first case while it is violated in the second one. As shown in Figure 4, ac-

cording to the form of states (pst, Γst): the process part and the computation

part, the following relations can be extracted for each i ∈ Id:

CPattern i(Γs1) = CPatterni(Γt1) = ε,

CPattern i(Γs2) = CPatterni(Γt2) =< a(�) >,

but,

CPattern i(Γs′1) = CPatterni(Γt′1) = ε,

CPattern i(Γs′2) = CPatterni(Γt′2) =< b(k) >,

CPattern i(Γs′3) =< b(k), a({0}k) > �= CPattern i(Γt′3) =< b(k), a({1}k) >,

and so there is no bijection σ to hold that CPattern i(Γs′3) = CPatterni(Γt′3σ).

To overcome this problem, we define below the notion of initially stateless

pattern bisimilarity.

1409Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

Definition 14 Initially Stateless Pattern Bisimulation. Let p, q ∈ Proc;

Γp, Γq ∈ Comp; and σ be a bijection. We define p and q are initially stateless

pattern bisimilar, denoted by p ∼isl q, if and only if there exists a state-based

pattern bisimulation relation Rσ
sb s.t. (p, Γp) Rσ

sb (q, Γq) for each two indistin-

guishable computations Γp and Γq that are consistent with p and q, respectively.

Theorem 15. The initially stateless pattern bisimularity is an equivalence rela-

tion.

Proof. Equivalence of the initially stateless pattern bisimularity follows trivially

from the equivalence property of the initially stateless equivalence bisimilarity

[Mousavi et al. 2004] and that of our indistinguishability relation. ��

Congruence, which is an important property of equivalence relations in pro-

cess algebra, requires an equivalence relation to be closed under composition us-

ing algebraic operators. For analyzing protocols, a congruence behavioral equiv-

alence comes very handy since it allows for breaking the verification task into

smaller parts and concluding the result from the results of the sub-problems.

Theorem 16. The initially stateless pattern bisimularity is a congruence with

respect to the sequential subset of CryptoPAi operators.

Proof. Assume that p, p′, q, q′ ∈ Proc, p ∼isl p
′, and q ∼isl q

′. By definition, this

means there exist state-based pattern bisimulations Rσ1

sb and Rσ2

sb such that ((p,

Γ), (p′, Γ ′)) ∈ Rσ1

sb and ((q, Γ), (q′, Γ ′)) ∈ Rσ2

sb . Before we proceed with the rest

of the proof, we unify the two substitutions by means of the following lemma.

Lemma17. Given two terms p and p′, if there exists a state-based pattern bisim-

ulation relation Rσ
sb such that ((p, Γ), (p′, Γ ′)) ∈ Rσ

sb for each two indistinguish-

able computations Γ and Γ ′ (consistent with p and p′, respectively), then, Rid
sb is

also a state-based pattern bisimulation relation where id is the identity function

on nonces, keys, and random numbers.

Proof. We show that Rσ
sb is a state-based pattern bisimulation relation under

substitution id. Take a pair ((p, Γ), (q, Γ ′)) in Rσ
sb. Transition (p, Γ)

d→ (p′, Γ�d)

can be mimicked by q using a transition of the form (q, Γ ′) d′
→ (q′, Γ ′ �d′), such

that Γ�d and Γ ′ �d are indistinguishable. Since Γ and Γ ′ can be extended

with arbitrary prefixes, a generalization of the proof of Lemma 6 implies that

for each identity i, the sequence of visible terms of Γ�d and Γ ′ �d′ should be

syntactically identical. Hence, the identity function can be used to relate these

two sequences, which concludes the proof. ��

Thus, henceforth we shall use Rsb instead of Rσi

sb . To prove congruence, we

prove the following items:

1410 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

(1) d; p ∼isl d
′; p′, where Appear i(d) = Appear i(d′) for each identity i. This is a

stronger claim than congruence, i.e., by taking d = d′, congruence follows,

(2) p+ q ∼isl p
′ + q′, and

(3) ∂(p) ∼isl ∂(p
′).

Let Rp be the minimum bisimulation relation relating p and p′, Rq be the one

relating q and q′, Id be the identity relation, and Γ, Γ ′ ∈ Comp be indistinguish-

able computations s.t. Γ
i
= Γ ′ for all i ∈ Id.

1. We construct the relation R � Id ∪Rp ∪ {((d; p, Γ), (d′; p′, Γ ′)) | ((p, Γ), (p′,

Γ ′)) ∈ Rp ∧ (∀i∈Id (Γ
i
= Γ ′ ∧ Appear i(d) = Appear i(d′)))}. Then;

- We have the transition (d; p, Γ)
d⇒ (u, Γu) due to the rule (d) where u = p

and Γu = Γ�(d; p, d). By applying the same deduction rule, we obtain

that (d′; p′, Γ ′) d′
⇒ (u′, Γ ′

u) where u′ = p′ and Γ ′
u = Γ ′ �(d′; p′, d′). But

since for all identity i, Γ
i
= Γ ′ and Appear i(d) = Appear i(d′), we have

Γu
i
= Γ ′

u. It follows that ((u, Γu), (u
′, Γ ′

u)) ∈ R and hence, this condition

is satisfied.

- If (d; p, Γ)
i· · · (w, Γw), for some i ∈ Id, this is only derivable from

the rule (IC) and hence, it holds that Γ
i
= Γw. Since Γ and Γ ′ are

indistinguishable and indistinguishability is an equivalence relation, we

have Γ ′ i
= Γw that follows (d′; p′, Γ ′)

i· · · (w, Γw), for all identity i. The

fact that (w,w) ∈ Id proves that this condition is also satisfied.

2. We construct the relation R � Id ∪Rp ∪Rq ∪{((p+ q, Γ), (p′+ q′, Γ ′)) | ((p,

Γ), (p′, Γ ′)) ∈ Rp ∧ ((q, Γ), (q′, Γ ′)) ∈ Rq ∧ (∀i∈Id Γ
i
= Γ ′)}. The pairs of

process terms in R that are elements of Id, Rp, or Rq obviously satisfy the

transfer conditions. Thus, it remains to prove that the pairs of process terms

((p+ q, Γ), (p′ + q′, Γ ′)) satisfy the transfer conditions. Then;

- If (p + q, Γ)
d⇒ (u, Γu), it is due to the rule (n0) where u = p1 and

Γu = Γ�(p + q, d). Since p ∼isl p′, we have (p′, Γ ′) d′
⇒ (p′1, Γ ′

p) where

Γ ′
p = Γ ′ �(p′, d′), Γ i

= Γ ′, and Γp
i
= Γ ′

p, for each i ∈ Id. The application
of the same rule (n0) concludes that (p′ + q′, Γ ′) d′

⇒ (u′, Γ ′
u) s.t. u

′ = p′1
and Γ ′

u = Γ ′ �(p′ + q′, d′). Because Γu
i
= Γ ′

u and ((u, Γu), (u
′, Γ ′

u)) ∈ R,

this condition is satisfied.

- If (p + q, Γ)
i· · · (w, Γw), for some i ∈ Id, this case is identical to indis-

tinguishability for action prefixing and hence, it is not repeated.

1411Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

- If (p+q, Γ)�, this transition is due to the rule (n2) that follows (p, Γp)�
(or (q, Γq)�). Since p ∼isl p

′ (and q ∼isl q
′), it implies that (p′, Γ ′

p)� (or

(q′, Γ ′
q)�). By applying the same deduction rule, we obtain (p′+q′, Γ ′)�.

3. We construct the relation R � Id ∪ {((∂(p), Γ), (∂(p′), Γ ′)) | ((p, Γ), (p′,
Γ ′)) ∈ Rp ∧ (∀i∈Id Γ

i
= Γ ′)}. Then;

- If (∂(p), Γ)
(J)a(

−→
M)⇒ (u, Γu), it is due to the rule (encap) where u = ∂(p1)

and Γu = Γ�(∂(p), (J)a(
−→
M)). It implies (p, Γ)

(J)a(
−→
M)⇒ (p1, Γp) where

Γp = Γ�(p, (J)a(
−→
M)). Since p ∼isl p′, we have (p′, Γ ′)

(J)a(
−→
M ′)⇒ (p′1, Γ

′
p)

where Γ ′
p = Γ ′ �(p′, (J)a(

−→
M ′)),

−→
M ≡p

−→
M ′, Γ i

= Γ ′, and Γp
i
= Γ ′

p, for all

i ∈ Id. Applying the rule (encap) concludes that (∂(p′), Γ ′)
(J)a(

−→
M ′)⇒ (u′,

Γ ′
u) where u

′ = ∂(p′1) and Γ ′
u = Γ ′ �(∂(p′), (J)a(

−→
M ′)). Because Γu

i
= Γ ′

u

and ((u, Γu), (u
′, Γ ′

u)) ∈ R, this condition is satisfied.

- If (∂(p), Γ)
i· · · (w, Γw), for some i ∈ Id, it is due to using the rule (IC)

that implies (p, Γ)
i· · · (w, Γw) where Γ

i
= Γw. But since p ∼isl p

′, then

there exits a state (w′, Γ ′
w) s.t. (p′, Γ ′)

i· · · (w′, Γ ′
w) where Γ

i
= Γ ′ and

Γ ′ i
= Γ ′

w, for all i ∈ Id. It implies that (∂(p′), Γ ′)
i· · · (w′, Γ ′

w) for all

i ∈ Id. The facts that Γw
i
= Γ ′

w and ((w, Γw), (w
′, Γ ′

w)) ∈ R prove the

satisfaction of this condition.

��

However, putting two initially stateless pattern bisimilar processes in a par-

allel context may break their bisimilarity, as the intermediate computations may

be modified by the context. In the following example, this issue is illustrated.

Example 6. Let p =!b({0}k); 0 and q =!b({1}k); 0 ∈ St. According to Theorem

16, we have ?c(xk); p ∼isl ?c(xk); q. As depicted in Figure 5, it does not hold

that !c(k) ||?c(xk); p ∼isl !c(k) ||?c(xk); q. For example, for each i ∈ Id, we have:

CPatterni(Γs1) = CPattern i(Γt1) = ε,

CPatterni(Γs2) = CPattern i(Γt2) =< c(xk) >,

CPatterni(Γs3) = CPattern i(Γt3) =< c(xk), b(�) >,

but,

CPatterni(Γs′1) = CPatterni(Γt′1) = ε,

CPatterni(Γs′2) = CPatterni(Γt′2) =< c(k) >,

CPatterni(Γs′3) =< c(k), b({0}k) > �= CPatterni(Γt′3) =< c(k), b({1}k) >,

1412 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

<?c(xk); !b({0}xk
), ?c(xk), !b({0}xk

); 0, !b({0}xk
) >)

!b({1}xk
)

√

?c(xk)

(?c(xk); !b({1}xk
); 0, ε)

(!b({1}xk
); 0,

(0,

<?c(xk); !b({1}xk
); 0, ?c(xk) >)

<?c(xk); !b({1}xk
), ?c(xk), !b({1}xk

); 0, !b({1}xk
) >)

?c(xk); !b({1}xk
); 0∼isl

(!b({0}xk
); 0,

(?c(xk); !b({0}xk
); 0, ε)

<?c(xk); !b({0}xk
); 0, ?c(xk) >)

!b({0}xk
)

√

?c(xk)

(0,

?c(xk); !b({0}xk
); 0

<!c(k)||?c(xk); !b({0}xk
), c(k), !b({0}k); 0, !b({0}k) >)

!b({1}k)

√

c(k)

(!c(k)||?c(xk); !b({1}xk
); 0, ε)

(!b({1}k); 0,

(0,

<!c(k)||?c(xk); !b({1}xk
); 0, c(k) >)

<!c(k)||?c(xk); !b({1}xk
), c(k), !b({1}k); 0, !b({1}k) >)

!c(k)||?c(xk); !b({1}xk
); 0∼isl

(!b({0}k); 0,

(!c(k)||?c(xk); !b({0}xk
); 0, ε)

<!c(k)||?c(xk); !b({0}xk
); 0, c(k) >)

!b({0}k)

√

c(k)

(0,

!c(k)||?c(xk); !b({0}xk
); 0

but it does not hold that:

s1 t1

s2 t2

s3 t3

s′1

s′2

s′3

t′1

t′2

t′3

Figure 5: Example of breaking up the congruency property of the initially state-

less pattern bisimilarity.

and so there is no bijection σ to hold that CPattern i(Γs′3) = CPatterni(Γt′3σ).

To remedy this problem, the notion of stateless bisimilarity has been intro-

duced, as in [Mousavi et al. 2003, Groote and Ponse 1994, Mousavi et al. 2004].

We adapt this notion to our setting in the following definition.

Definition 18 Stateless Pattern Bisimulation Relation. Let Γp, Γp′ , Γq,

Γq′ ∈ Comp; p, p′, q, q′ ∈ Proc; α ∈ Act; M,M ′ ∈ T erm; and σ as a bijec-

tion. The symmetric relation Rσ
sl on processes is a stateless pattern bisimulation

relation if and only if for all processes p and q, if p Rσ
sl q then the following

statements hold for each two indistinguishable computations Γp and Γq that are

consistent with p and q, respectively:

- ∀d,p′,Γp′ if (p, Γp)
d→ (p′, Γp′) then:

• there exists a transition (q, Γq)
d′
→ (q′, Γq′), and

• Γp′
i
= Γq′σ for each i ∈ Id, and

• p′ Rσ
sl q

′,

1413Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

- if (p, Γp)� then (q, Γq)�, and

- if (p, Γp)
i· · · (p′, Γp′) then there exists a relation (q, Γq)

i· · · (q′, Γq′) such that

p′ Rσ
sl q

′.

p and q are stateless pattern bisimilar, denoted by p ∼sl q, if and only if

there exists a relation Rσ
sl s.t. (p, q) ∈ Rσ

sl.

Theorem 19. Stateless pattern bisimularity is an equivalence relation.

Proof. Equivalence of the stateless pattern bisimilarity follows trivially from the

equivalence property of the original stateless equivalence bisimilarity [Mousavi

et al. 2004] and that of our indistinguishability relation [Mahrooghi and Mousavi

2011]. ��

Theorem 20. The stateless pattern bisimularity is a congruence with respect to

CryptoPAi operators.

Proof. Common to the proof of Theorem 16 and using a similar line of reasoning

as in Lemma 17, we can drop the substitutions and tacitly assume that all

substitutions can be replaced by the identity substitution. To prove the theorem,

the following propositions should be proven. For all decorated parametric actions

d = (I)α(
−→
M) and d′ = (I)α(

−→
M ′) where

−→
M ≡p

−→
M ′, and for all processes p, p′, q,

and q′, if p ∼sl p
′ and q ∼sl q

′ then we have:

(1) d; p ∼sl d
′; p′, where Appear i(d) = Appear i(d′) for each identity i,

(2) p+ q ∼sl p
′ + q′,

(3) ∂(p) ∼sl ∂(p
′), and

(4) p || q ∼sl p
′ || q′.

Let Rp be the minimum bisimulation relation relating p and p′, Rq be the one

relating q and q′, Id be the identity relation, and Γ, Γ ′ ∈ Comp be indistinguish-

able computations s.t. Γ
i
= Γ ′ for all i ∈ Id.

1. We construct the relation R � Id ∪ Rp ∪ {(d; p, d′; p′) | (p, p′) ∈ Rp ∧
(∀i∈Id Appear i(d) = Appear i(d′))}. Then;

- If (d; p, Γ)
d⇒ (u, Γu), it is due to the rule (d) where Γu = Γ�(d; p, d).

Applying the same deduction rule concludes that (d′; p′, Γ ′) d′
⇒ (u′, Γ ′

u)

where u′ = p′, Γ ′
u = Γ ′ �(d′; p′, d′). Since Appear i(d) = Appear i(d′) and

Γ
i
= Γ ′, we have Γu

i
= Γ ′

u, for each identity i. It follows that (u, u′) ∈ Rp

and hence, this condition is satisfied.

1414 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

- If (d; p, Γ)
i· · · (w, Γw), for some i ∈ Id, it is only derivable from the rule

(IC) and hence, it holds that Γ
i
= Γw. Since Γ and Γ ′ are indistinguish-

able and indistinguishability is an equivalence relation, we have Γ ′ i
= Γw

that follows (d′; p′, Γ ′)
i· · · (w, Γw), for all identity i. (w,w) ∈ Id proves

that this condition is also satisfied.

2. We construct the relation R � Id∪Rp∪Rq ∪ {(p+q, p′+q′) | (p, p′) ∈ Rp∧
(q, q′) ∈ Rq}. It suffices to prove the pairs of process terms (p + q, p′ + q′)
satisfy the transfer conditions. Then;

- If (p+q, Γ)
d⇒ (u, Γu), this transition is due to the rule (n0) where u = p1

and Γu = Γ�(p+q, d). It follows that necessarily (p, Γ)
d⇒ (p1, Γp) where

Γp = Γ�(p, d). But since p ∼sl p′, we have (p′, Γ ′) d′
⇒ (p′1, Γ

′
p) where

p1 ∼sl p
′
1, Γ

′
p = Γ ′ �(p′, d′), Γ i

= Γ ′, and Γp
i
= Γ ′

p, for each i ∈ Id. The
application of the rule (n0) concludes that (p′ + q′, Γ ′) d′

⇒ (u′, Γ ′
u) where

u′ = p′1 and Γ ′
u = Γ ′ �(p′ + q′, d′). Similar to the case 1, Γu

i
= Γ ′

u; and

due to the fact that (u, u′) ∈ R, the condition is satisfied.

- If (p+ q, Γ)
i· · · (w, Γw) for some i ∈ Id, this case is identical to indistin-

guishability for action prefixing and hence, it is not repeated.

- If (p + q, Γ)�, it is due to the rule (n2) that follows (p, Γp)� (or (q,

Γq)�). Since p ∼sl p
′ (and q ∼sl q

′), we have (p′, Γ ′
p)� (or (q′, Γ ′

q)�).

By applying the same deduction rule, we obtain (p′ + q′, Γ ′)�.

3. Let the relation R to be R � Id ∪ {(∂(p), ∂(p′)) | (p, p′) ∈ Rp}. Then;

- If (∂(p), Γ)
(J)a(

−→
M)⇒ (u, Γu), this transition is due to the rule (encap)

where u = ∂(p1) and Γu = Γ�(∂(p), (J)a(
−→
M)). It follows that necessarily

(p, Γ)
(J)a(

−→
M)⇒ (p1, ΓP) where Γp = Γ�(p, (J)a(

−→
M)). But since p ∼sl p

′, we

have (p′, Γ ′)
(J)a(

−→
M ′)⇒ (p′1, Γ

′
p) such that Γ ′

p = Γ ′ �(p′, (J)a(
−→
M ′)), Γ i

= Γ ′,

and Γp
i
= Γ ′

p, for all i ∈ Id. Applying the rule (encap) concludes

that (∂(p′), Γ ′)
(J)a(

−→
M ′)⇒ (u′, Γ ′

u) where Γ ′
u = Γ ′ �(∂(p′), (J)a(

−→
M ′)) and

u′ = ∂(p′1). Because (u, u′) ∈ R and Γu
i
= Γ ′

u, this condition is satisfied.

- If (∂(p), Γ)
i· · · (w, Γw), for some i ∈ Id, it is due to the deduction rule

(IC) and hence, Γ
i
= Γw that implies (p, Γ)

i· · · (w, Γw). Since p ∼sl p
′,

there exits a state (w′, Γ ′
w) s.t. w ∼sl w′, (p′, Γ ′)

i· · · (w′, Γ ′
w), Γ

i
=

Γ ′, and Γ ′ i
= Γ ′

w, for each identity i. The application of the rule (IC)

1415Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

concludes that (∂(p′), Γ ′)
i· · · (w′, Γ ′

w) for each i ∈ Id. The facts that

(w,w′) ∈ R and Γw
i
= Γ ′

w prove the satisfaction of this condition.

4. We construct the relationR � Id∪Rp∪Rq∪ {(p || q, p′ || q′) | (p, p′) ∈ Rp∧ (q,

q′) ∈ Rq}. Then;

- If (p || q, Γ)
d⇒ (u, Γu), this transition is due to the rule (p0) where u = p1

and Γu = Γ�(p || q, d). It follows that necessarily (p, Γ)
d⇒ (p1, Γp) where

Γp = Γ�(p, d). But since p ∼sl p′, we have (p′, Γ ′) d′
⇒ (p′1, Γ

′
p) where

p1 ∼sl p
′
1, Γ

′
p = Γ ′ �(p′, d′), Γ i

= Γ ′, and Γp
i
= Γ ′

p, for each identity i.

The application of the rule (p0) concludes that (p′ || q′, Γ ′) d′
⇒ (u′, Γ ′

u)

where u′ = p′1 and Γ ′
u = Γ ′ �(p′ || q′, d′). Because (u, u′) ∈ R and

Γu
i
= Γ ′

u, this condition is satisfied.

- If (p || q, Γ)
(J)a(

−→
M)⇒ (u, Γu), it is due to the rule (p3) where u = p1 || q1

and Γu = Γ�(p || q, (J)a(−→M)). It follows that (p, Γ)
(Jp)?a(

−→
M ′)⇒ (p1, Γp)

and (q, Γ)
(Jq)!a(

−→
M)⇒ (q1, Γq) where J = Jp ∪ Jq, Γp = Γ�(p, (Jp)?a(

−→
M ′)),

and Γq = Γ�(q, (Jq)!a(
−→
M)). Since p ∼sl p′ and q ∼sl q′, we have

(p′, Γ ′)
(Jp)?a(

−→
M ′

1)⇒ (p′1, Γ
′
p) and (q′, Γ ′)

(Jq)!a(
−→
M1)⇒ (q′1, Γ

′
p) where p1 ∼sl p′1,

Γ ′
p = Γ ′ �(p′, (Jp)?a(

−→
M ′)), q1 ∼sl q′1, and Γ ′

q = Γ ′ �(q′, (Jq)!a(
−→
M ′)),

M ≡p M1, M
′ ≡p M ′

1, Γ
i
= Γ ′, Γp

i
= Γ ′

p, and Γq
i
= Γ ′

q, for each iden-

tity i. Applying the rule (p3) concludes that (p′ || q′, Γ ′)
(J)a(

−→
M1)⇒ (u′, Γ ′

u)

where u′ = p′1 || q′1 and Γ ′
u = Γ ′ �(p′ || q′, (J)a(−→M1)). Because M ≡p M1,

(u, u′) ∈ R, and Γu
i
= Γ ′

u, this condition is satisfied.

- If (p || q, Γ)
i· · · (w, Γw), for some i ∈ Id, it is due to using the rule

(IC) and hence, Γ
i
= Γw that implies (p, Γ)

i· · · (w, Γw). Since p ∼sl p
′,

there exits a state (w′, Γ ′
w) s.t. w ∼sl w

′, (p′, Γ ′)
i· · · (w′, Γ ′

w), Γ
i
= Γ ′,

and Γ ′ i
= Γ ′

w, for each identity i . The application of the rule (IC)

concludes that (p′ || q′, Γ ′)
i· · · (w′, Γ ′

w) for each identity i. The facts that

(w,w′) ∈ R and Γw
i
= Γ ′

w prove the satisfaction of this condition.

- If(p || q, Γ)�, this transition is due to the rule (p2) that follows (p, Γp)�
and (q, Γq)�. But since p ∼sl p

′ and q ∼sl q
′ this holds if and only if

(p′, Γ ′
p)� and (q′, Γ ′

q)�. By applying the same deduction rule, we obtain

(p′ || q′, Γ ′)�.

��

1416 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

3.2 Comparing the Notions of Bisimilarity

Among the notions of pattern bisimilarity defined in this section, the state-

based pattern bisimilarity is the least robust and also the weakest one. The

reason, as witnessed by Example 5, is that the state-based pattern bisimulation

attaches a fixed initial computation to the related processes and confines the

changes of computation to the related processes. Hence, any change in the initial

computation or interference with the intermediate ones will break the state-

based pattern bisimilarity. The initially stateless pattern bisimilarity allows for

arbitrary initial states and hence, is stronger and more robust than the state-

based pattern bisimilarity, but still does not allow for intermediate interference

with the computations. The stateless pattern bisimilarity is the strongest (finest)

notion and the most robust one. Our comparison regarding the strength of these

different notions is summarized in the following lemma.

Lemma21. For each two closed process terms p and q, and each two indistin-

guishable computations Γ and Γ ′, we have

(1) p ∼sl q implies p ∼isl q,

(2) p ∼isl q implies (p, Γ) ∼sb (q, Γ
′).

Proof. Below, we prove two implications separately:

1. Since p and q are stateless pattern bisimilar, they can mimic each other’s

transitions with respect to any arbitrary (indistinguishable and consistent)

pairs of initial states and the resulting processes are again related. Construct

a relation on pairs of processes and computations, that relates p and q on

all (indistinguishable and consistent) initial states and the rest of the re-

lated processes (in the stateless pattern bisimulation relation) only on those

computations, that are reachable from the pairs of initial states mentioned

above. This is clearly a state-based pattern bisimulation relation as the trans-

fer conditions are only subsets of the transfer conditions available from the

stateless pattern bisimulation relation. Since p and q are related using all

initial computations, p and q are initially stateless pattern bisimilar.

2. Immediate consequence of Definition 14.

��

Note that Examples 5 and 6 also provide witnesses that the inclusions indi-

cated in Lemma 21 are indeed strict.

4 Axiomatizing Sequential CryptoPAi

In this section, we present a sound and ground-complete axiomatization of

CryptoPAi modulo stateless pattern bisimilarity (Definition 18). Our choice for

1417Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

A1 p+ 0 = p A2 p+ p = p
A3 p+ q = q + p A4 p+ (q + r) = (p+ q) + r

D1 ∂((I)!a(
−→
M); p) = 0 D2 ∂((I)?a(

−→
M); p) = 0

D3 ∂((I)a(
−→
M); p) = (I)a(

−→
M); ∂(p) D4 ∂(p+ q) = ∂(p) + ∂(q)

Figure 6: Axiomatization of CryptoPAi Terms

stateless pattern bisimilarity is motivated by its robustness and the fact that

axioms proven sound for this notion also remain sound for the weaker notions

introduced in Section 3.

We start with a set of standard axioms, as shown in Figure 6, by exploiting

from [Bergstra and Klop 1987], where p, q, r ∈ Proc and d, d′ ∈ D. To take care

of transitions that feature syntactically different, yet observationally equivalent

labels, we extend our axiomatization system with the axioms given in Figure 7.

We write CryptoPAi � p = q to denote that the equation p = q is derivable from

the axiom system given in Figures 6 and 7.

4.1 Soundness

In this section, we prove that our axiomatization is sound for the term algebra

of CryptoPAi modulo stateless pattern bisimularity.

Theorem 22. The process theory CryptoPAi is a sound axiomatization of the

term algebra of CryptoPAi modulo ∼sl.

Proof. We need to prove that our axiomatization is sound for the term algebra of

processes modulo ∼sl. It must be shown that, for each axiom p = q of CryptoPAi ,

P(CryptoPAi)/∼sl
|= p = q. Let Γ, Γ ′ be indistinguishable computations s.t.

Γ
i
= Γ ′ for all i ∈ Id. The proofs are given below.

• A1. Let the minimum bisimulation relation relating p and p be the identity

relation denoted by Id. It suffices to give a bisimulation on process terms

that contain all pairs (p+ 0, p). We construct the relation R � Id ∪ {(p+ 0,

p) | (p, p) ∈ Id}. According to Definition 18, it should be proven that R

is a stateless pattern bisimulation relation. To this aim, we show that all

elements of R satisfy Definition 18. The definition trivially holds for all pairs

(p, p). Hence, we consider the elements of R which have the form (p+ 0, p).

Let (p+ 0, p) be such an element. Then;

- If (p+ 0, Γ)
d⇒ (p′, Γu), this transition is due to the rule (n0). It follows

that (p, Γ)
d⇒ (p′, Γ ′

u). The fact that (p′, p′) ∈ R proves this case.

1418 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

- If (p+ 0, Γ)
i· · · (w, Γw) for some i ∈ Id, this is only derivable from the

rule (IC) and hence, it holds that Γ
i
= Γw and consequently, we have

(p, Γ ′)
i· · · (w, Γw). The fact that (w,w) ∈ R indicates the satisfaction of

this condition.

• A2. Let the minimum bisimulation relation relating p and p be the identity

relation denoted by Id. Similarly to the case A1, it suffices to give a bisim-

ulation on process terms that contain all pairs (p + p, p). We construct the

relation R � Id∪{(p+p, p) | (p, p) ∈ Id}. The definition of stateless pattern

bisimulation relation trivially holds for all pairs (p, p) and so we consider

only the elements of R which have the form (p+ p, p). Let (p+ p, p) be such

an element. Then;

- If (p+ p, Γ)
d⇒ (p′, Γu), this transition is due to the rule (n0) (or (n1)).

It follows that necessarily (p, Γ)
d⇒ (p′, Γ ′

u). The fact that (p′, p′) ∈ R

proves that this transfer condition is satisfied.

- If (p + p, Γ)
i· · · (w, Γw), for some i ∈ Id, this is only derivable from

the rule (IC) and hence, it holds that Γ
i
= Γw. Consequently, we have

(p, Γ ′)
i· · · (w, Γw). The fact that (w,w) ∈ R indicates the satisfaction of

this condition.

• A3. Let the minimum bisimulation relation relating p and p, and also q

and q, be the identity relation denoted by Id. We construct the relation

R � Id∪{(p+ q, q+p) | (p, p) and (q, q) ∈ Id}. The definition trivially holds

for all pairs in Id and so we consider only the elements of R which have the

form (p+ q, q + p). Let (p+ q, q + p) be such an element. Then;

- If (p+q, Γ)
d⇒ (u, Γu), this transition is due to the rule (n0) where u = p1

and Γu = Γ�(p + q, d). It follows that (p, Γ)
d⇒ (p1, Γp) where Γp =

Γ�(p, d). The application of the rule (n1) (symmetric version of (n0))

yields (q+ p, Γ)
d⇒ (p1, Γ

′
u) that follows Γ

′
u = Γ�(q+ p, d). The facts Γu

and Γ ′
u are indistinguishable and (p1, p1) ∈ R prove the satisfaction of

this condition.

- If (p+ q, Γ)
i· · · (w, Γw), for some i ∈ Id, it is due to using the rule (IC)

and hence, it holds that Γ
i
= Γw. It follows that (q + p, Γ ′)

i· · · (w, Γw).

The fact that (w,w′) ∈ R proves the satisfaction of this condition.

- If (p+q, Γ)�, this transition is due to the rule (n2) that follows (p, Γp)�
(or (q, Γq)�). By applying the same rule (n2), we obtain (q + p, Γ ′)�.

1419Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

• A4. Let the minimum bisimulation relation relating p and p, q and q, and

also r and r, be the identity relation denoted by Id. We construct the relation

R � Id∪{(p+(q+r), (p+q)+r) | (p, p), (q, q) and (r, r) ∈ Id}. The definition
trivially holds for all pairs in Id and so we consider only the elements of R

which have the form (p+ (q + r), (p + q) + r). Let (p+ (q + r), (p + q) + r)

be such an element. Then;

- If (p+(q+ r), Γ)
d⇒ (u, Γu), this transition is due to the rule (n0) where

Γu = Γ�(p+(q+r), d) and u = p1. It follows that (p, Γ)
d⇒ (u, Γp) where

Γp = Γ�(p, d). Two times application of the rule (n0) concludes that

(p+q, Γ)
d⇒ (u, Γpq) and ((p+q)+r, Γ)

d⇒ (u, Γ ′
u) s.t. Γpq = Γ�(p+q, d)

and Γ ′
u = Γ�((p+ q) + r, d). The facts Γu and Γ ′

u are indistinguishable

and (u, u) ∈ R prove this case.

- If (p+(q+ r), Γ)
i· · · (w, Γw), for some i ∈ Id, this is only derivable from

the rule (IC) and hence, it holds that Γ
i
= Γw. Consequently, we have

((p + q) + r, Γ ′)
i· · · (w, Γw). This transfer condition is satisfied due to

Γw
i
= Γw and (w,w) ∈ R.

• D1-D2. The proofs of these cases are straightforward because there is no

possible transition for (∂((I)!a(
−→
M); p), Γ) or (∂((I)?a(

−→
M); p), Γ).

• D3. We construct the relation R � Id ∪ {(∂((I)a(−→M); p), (I)a(
−→
M); ∂(p))}.

The definition of stateless pattern bisimulation relation trivially holds for all

pairs (∂(p), ∂(p)) and hence, we consider only the elements of R which have

the form (∂((I)a(
−→
M); p), (I)a(

−→
M); ∂(p)). Let (∂((I)a(

−→
M); p), (I)a(

−→
M); ∂(p))

be such an element. Then;

- If (∂((I)a(
−→
M); p), Γ)

(I)a(
−→
M)⇒ (u, Γu), this transition is due to the rule

(encap) where u = ∂(p) and Γu = Γ�(∂((I)a(
−→
M); p), (I)a(

−→
M)). By

applying the rule (d), we obtain ((I)a(
−→
M ′); ∂(p), Γ ′)

(I)a(
−→
M ′)⇒ (u′, Γ ′

u) s.t.

u′ = ∂(p) and Γ ′
u = Γ ′�((I)a(

−→
M ′); ∂(p), (I)a(

−→
M ′)). Consequently, we

have M ≡p M ′ and Γ
i
= Γ ′ for all i ∈ Id. Because (u, u′) ∈ R, this

transfer condition is satisfied.

- If (∂((I)a(
−→
M); p), Γ)

i· · · (w, Γw), for some i ∈ Id, it is due to using

the rule (IC) and hence, it holds that Γ
i
= Γw. Consequently, we have

((I)a(
−→
M); ∂(p), Γ ′)

i· · · (w, Γw). The fact that (w,w) ∈ R proves the

satisfaction of this condition.

1420 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

• D4. Let the minimum bisimulation relation relating ∂(p) and ∂(p) be the

identity relation denoted by Id. We construct the relation R � Id ∪ {(∂(p+
q), ∂(p) + ∂(q))}. The definition of stateless pattern bisimulation relation

trivially holds for all pairs (∂(p), ∂(p)) and so we consider only the elements

of R which have the form ((∂(p+ q), ∂(p)+∂(q)). Let ((∂(p+ q), ∂(p)+∂(q))

be such an element. Then;

- If (∂(p+ q), Γ)
(I)a(

−→
M)⇒ (u, Γu), this transition is due to the rule (encap)

where u = ∂(u0) and Γu = Γ�(∂(p + q), (I)a(
−→
M)). It follows that nec-

essarily (p+ q, Γ)
(I)a(

−→
M)⇒ (u0, Γu1). By applying the rule (n0) (or (n1)),

we obtain (p, Γ)
(I)a(

−→
M)⇒ (u0, Γu2) (or (q, Γ)

(I)a(
−→
M)⇒ (u0, Γu3)). It follows

that (∂(p), Γ ′)
(I)a(

−→
M)⇒ (∂(u0), Γ

′
u1
) (or (∂(q), Γ)

(I)a(
−→
M)⇒ (∂(u0), Γ

′
u2
)) by

re-applying the rule (encap). The application of the rule (n0) concludes

(∂(p) + ∂(q), Γ ′)
(I)a(

−→
M)⇒ (∂(u0), Γ

′
u). The fact that (∂(u0), ∂(u0)) ∈ R

proves this case.

- If (∂(p+q), Γ)
i· · · (w, Γw), for some i ∈ Id, it is due to using the rule (IC)

and hence, it holds that Γ
i
= Γw. Consequently, we have (∂(p) + ∂(q),

Γ ′)
i· · · (w, Γw). Because (w,w) ∈ R, this transfer condition is satisfied.

• D5. Let the minimum bisimulation relation relating p and p be the identity

relation denoted by Id. It suffices to give a bisimulation on process terms that

contains all pairs ((I)α(
−→
M); p, (J)α(

−→
M); p) s.t. ρ(α(

−→
M)) = α(

−→
M). We con-

struct the relation R � Id ∪ {((I)α(−→M); p, (J)α(
−→
M); p) | ρ(α(

−→
M)) = α(

−→
M)}.

The definition of stateless pattern bisimulation relation trivially holds for all

pairs (p, p) and so we consider only the elements of R which have the form

((I)α(
−→
M); p, (J)α(

−→
M); p). Let ((I)α(

−→
M); p, (J)α(

−→
M); p) be such an element.

Then;

- If ((I)α(
−→
M); p, Γ)

(I)α(
−→
M)⇒ (p, Γu), this transition is due to the rule (d)

where Γu = Γ�((I)α(
−→
M); p, (I)α(

−→
M)). Applying the same rule (d) yields

((J)α(
−→
M); p, Γ ′)

(J)α(
−→
M)⇒ (p, Γ ′

u) s.t. Γ
′
u = Γ ′�((J)α(

−→
M); p, (J)α(

−→
M)). Def-

inition 10 and the condition of Axiom D5 follow that ρ(α(
−→
M)) = α(

−→
M)

and Γu
i
= Γ ′

u. The fact that (p, p) ∈ R proves this case.

- If ((I)α(
−→
M); p, Γ)

i· · · (w, Γw), for some i ∈ Id, it is due to using the

rule (IC) and hence, it holds that Γ
i
= Γw. Consequently, we have

((J)α(
−→
M); p, Γ ′)

i· · · (w, Γw). Because (w,w) ∈ R, this transfer condi-

tion is satisfied.

1421Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

D5 (I)α(
−→
M);p = (J)α(

−→
M);p if ρ(α(

−→
M)) = α(

−→
M)

D6 (I)α(
−→
M);p = (I)α(

−→
M ′);p if ρ(α(

−→
M)) = ρ(α(

−→
M ′)) and M ≡p M ′

D7 (I)α(
−→
M);p = (I)α(

−→
M ′);p if I = ∅ and ρ(α(

−→
M)) = ρ(α(

−→
M ′))

D8 (I)α(
−→
M);p = (I)α(

−→
M ′);p if ρ(α(

−→
M)) = α(

−→
M ′) and ρ(α(

−→
M ′)) = α(

−→
M)

Figure 7: Extension of the Axiomatization of CryptoPAi Terms

• D6. Let the minimum bisimulation relation relating p and p be the identity

relation denoted by Id. It suffices to give a bisimulation on process terms

that contains all pairs ((I)α(
−→
M); p, (I)α(

−→
M ′); p) s.t. ρ(α(

−→
M)) = ρ(α(

−→
M ′))

and M ≡p M ′. We construct the relation Rσ � Id ∪ {((I)α(−→M); p,

(I)α(
−→
M ′); p) | ρ(α(

−→
M)) = ρ(α(

−→
M ′)) and M ≡p M ′σ}. Similar to the

case D5, our bisimulation relation trivially holds for all pairs (p, p) and

hence, we consider only the elements of R which have the form ((I)α(
−→
M); p,

(I)α(
−→
M ′); p). Let ((I)α(

−→
M); p, (I)α(

−→
M ′); p) be such an element. Then;

- If ((I)α(
−→
M); p, Γ)

(I)α(
−→
M)⇒ (p, Γu), this transition is due to the rule (d)

where Γu = Γ�((I)α(
−→
M); p, (I)α(

−→
M)). The application of this rule yields

((I)α(
−→
M ′); p, Γ ′)

(I)α(
−→
M ′)⇒ (p, Γ ′

u) where Γ
′
u = Γ ′�((I)α(

−→
M ′); p, (I)α(

−→
M ′)).

Definition 10 and the conditions of Axiom D6 follow that necessarily

Γu
i
= Γ ′

u. It implies (p, p) ∈ R that proves this case.

- If ((I)α(
−→
M); p, Γ)

i· · · (w, Γw), for some i ∈ Id, it is due to using the

rule (IC) and hence, it holds that Γ
i
= Γw. Consequently, we have

((I)α(
−→
M ′); p, Γ ′)

i· · · (w, Γw). Because (w,w) ∈ R, this transfer condi-

tion is satisfied.

• D7-D8. The proofs are similar to the case D6.

��

The soundness of our axiomatization of CryptoPAi guarantees that using the

equational theory for deriving equalities cannot lead to mistakes. Conversely, the

ground-completeness property assures that our axiomatization is strong enough

to derive all stateless pattern bisimilarities between closed terms (i.e., assuming

two closed CryptoPAi -terms p and q those are bisimilar, the equality of p and q

is also derivable).

We recall the notion of summands as introduced in [Baeten et al. 2009].

For any CryptoPAi -terms p and q, it is said that p is a summand of q if and

only if CryptoPAi � p + q = q (i.e., the summand p describes a subset of the

alternatives of term q, and consequently can be added to q without essentially

1422 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

changing the process). In fact, the idea behind the ground-completeness proof is

to show CryptoPAi � p = q via the intermediate results CryptoPAi � p = p+ q

and CryptoPAi � p + q = q. These intermediate results imply CryptoPAi �
p = p+ q = q. The proof of ground-completeness property shows that if p and q

are stateless pattern bisimilar, it must be the case that every summand of p is a

summand of q and vice versa. Corresponding to the above intermediate results,

it implies that p as a whole can be seen as a summand of q and vice versa.

We need the following two lemmas in the ground-completeness proof.

Lemma23. Let p,q, and r be closed CryptoPAi-terms. If (p+ q) + r ∼sl r,then

p+ r ∼sl r and q + r ∼sl r.

Proof. We assume d = (J)α(
−→
M) and d′ = (J)α(

−→
M ′) where α ∈ Act, J ⊆ Id, and

M,M ′ ∈ T erm are pattern-equivalent terms (i.e., M ≡p M ′). We construct the

relation R � Id ∪ {(p+ r, r) | (p + q) + r ∼sl r}. The definition trivially holds

for all pairs in Id and so we consider only the elements of R which have the form

(p+ r, r). Let (p+ r, r) be such an element.

If ((p+q)+r, Γ)
d⇒ (u, Γu), this transition is due to one of the following deduction

rules:

– (n0) that follows Γu = Γ�((p+ q)+ r, d), and then, by repeated application

of the same rule, we obtain (p, Γ)
d⇒ (u, Γ ′

u) and (p + r, Γ)
d⇒ (u, Γ ′′

u) where

Γ ′
u = Γ�(p, d) and Γ ′′

u = Γ�(p + r, d). It is clear that Γ ′′
u

i
= Γu for each

i ∈ Id.

– (n1) that follows Γu = Γ�((p+ q) + r, d), and then, (r, Γr)
d′
⇒ (r′, Γ ′

r) where

Γ ′
r = Γ�

r (r, d′), u ∼sl r
′, Γ i

= Γr and Γu
i
= Γ ′

r for each i ∈ Id.

Consequently, we have Γ ′′
u

i
= Γ ′

r for each i ∈ Id. The facts that u ∼sl r′,
Γ

i
= Γr, and Γ ′′

u
i
= Γ ′

r (for each i ∈ Id) satisfy the conditions of ∼sl definition

(see Definition 18). It means that p + r ∼sl r. Similarly, it can be proven that

q + r ∼sl r. ��

Lemma24. Let p be a closed CryptoPAi-term. If (p, Γp)
(J)α(

−→
M)⇒ (p′, Γp′) for

some closed term p′, α ∈ Act, J ⊆ Id, and M ∈ T erm, then CryptoPAi �
p = (J)α(M).p′ + p.

Proof. The property is proven by induction on the structure of p.

1. Assume p ≡ 0. This case cannot occur as (0, Γp)
(J)α(

−→
M)

� .

2. Assume p ≡ p1 + p2 for some closed terms p1 and p2. (p, Γp)
(J)α(

−→
M)⇒ (p′,

Γp′) follows that (i) (p1, Γp)
(J)α(

−→
M)⇒ (p′, Γp′) or (ii) (p2, Γp)

(J)α(
−→
M)⇒ (p′, Γp′).

1423Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

By induction, (i) implies CryptoPAi � p1 = (J)α(M).p′ + p1 and then

CryptoPAi � p = p1+p2 = ((J)α(M).p′+p1)+p2 = (J)α(M).p′+(p1+p2) =

(J)α(M).p′+p. Also, (ii) implies CryptoPAi � p2 = (J)α(M).p′+p2 and then

CryptoPAi � p = p1+p2 = p1+((J)α(M).p′+p2) = (J)α(M).p′+(p1+p2) =

(J)α(M).p′ + p.

3. Assume p ≡ (I)b(
−→
M ′).p′′ for some closed term p′′, b ∈ Act, I ⊆ Id, and M ′ ∈

T erm. The assumption that (p, Γp)
(J)a(

−→
M)⇒ (p′, Γ ′

p) implies that b ≡ a, J ≡ I,

and M ≡ M ′. Thus, CryptoPAi � p+ p = (I)b(
−→
M ′).p′′ + p = (J)a(

−→
M).p′+ p.

4. Assume p ≡ ∂(p1). It follows directly from the axioms in Table 6 that:

• if p1 ≡ (J)!a(M); p2 or p1 ≡ (J)?a(M); p2 then we have p ≡ ∂(p1) ≡ 0

due to Axiom D1 or Axiom D2. This is also not possible, since the latter

term does not afford any transition.

• if p1 ≡ (J)a(M); p2 then we have p ≡ ∂(p1) ≡ (J)a(M); p′ where p′ =
∂(p2) (due to Axiom D3). The proof of this case is similar to the case 3.

• if p1 ≡ p2 + p3 then we have p ≡ ∂(p1) ≡ p′2 + p′3 where p′2 = ∂(p2) and

p′3 = ∂(p3) (due to Axiom D4). Similar to the case 2, this case can be

proven.

��

4.2 Ground-Completeness

We prove that our axiomatization is ground-complete for the term algebra of

CryptoPAi with finite-state models, modulo stateless pattern bisimularity.

Theorem 25. The axiomatization of the process theory CryptoPAi is ground-

complete for the term algebra of CryptoPAi modulo ∼sl, i.e., for any closed

CryptoPAi-terms p and q, p ∼sl q implies CryptoPAi � p = q.

Proof. Suppose that P(CryptoPAi)/sl |= p = q, i.e., p ∼sl q. It must be shown

that CryptoPAi � p = q. It suffices to prove that, for all closed CryptoPAi -terms

p and q:

(i) p+ q ∼sl q implies CryptoPAi � p+ q = q,

(ii) p ∼sl p+ q implies CryptoPAi � p = p+ q.

Assuming p ∼sl q, from reflexivity and congruence of∼sl, we obtain p+q ∼sl p+p

and q + q ∼sl p + q. It follows from the soundness of Axiom A2 (idempotence

of +) and the latter statements that p + q ∼sl p and q ∼sl p + q. Then, from

(i) and (ii), we have that CryptoPAi � p + q = p and CryptoPAi � q = p + q.

1424 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

From symmetry and transitivity of =, we obtain CryptoPAi � p = q and hence,

ground completeness follows.

Property (i) is proven by induction on the total number of symbols (count-

ing constants and action-prefix operators) in closed terms p and q as follows.

The proof of property (ii) is similar and therefore skipped. The induction proof

goes as follows. Assume p + q ∼sl q for some closed CryptoPAi -terms p and q.

The base case of the induction corresponds to the case that p and q are both 0.

CryptoPAi � 0 + 0 = 0 is trivially followed using Axiom A1, proving the base

case. The proof of the inductive step consists of a case analysis based on the

structure of term p.

1. Assume p ≡ 0. It follows directly from the axioms in Table 6 that CryptoPAi �
p+ q = 0 + q = q + 0 = q.

2. Assume p ≡ p1+p2 for some closed terms p1 and p2. As (p1+p2)+q ∼sl q, by

Lemma 23, p1 + q ∼sl q and p2 + q ∼sl q. Thus, by induction, CryptoPAi �
p1 + q = q and CryptoPAi � p2 + q = q. Combining these results gives

CryptoPAi � p+ q = (p1 + p2) + q = p1 + (p2 + q) = p1 + q = q.

3. Assume p ≡ (J)a(
−→
M).p′ for some a ∈ Act, closed term p′, J ⊆ Id, and

pattern-equivalent terms M,M ′ ∈ T erm. Then, (p, Γp)
(J)a(

−→
M)⇒ (p′, Γ ′

p) and

thus (p + q, Γp)
(J)a(

−→
M)⇒ (p′, Γ ′) by applying the rule (n0). As p + q ∼sl q,

we have (q, Γq)
(J)a(

−→
M ′)⇒ (q′, Γ ′

q) for some closed term q′ such that p′ ∼sl q
′,

Γ ′ and Γ ′
q are indistinguishable, and M and M ′ are pattern-equivalent. By

Lemma 24, we have CryptoPAi � q = (J)a(
−→
M ′).q′ + q. From p′ ∼sl q

′, as
shown above, it follows that p′ + q′ ∼sl q′ and q′ + p′ ∼sl p′ and hence,

by induction, CryptoPAi � p′ + q′ = q′ and CryptoPAi � q′ + p′ = p′.
Combining these last two results gives CryptoPAi � p′ = q′+p′ = p′+q′ = q′

(i.e., CryptoPAi � p′ = q′). Similarly, it can be shown that CryptoPAi �
(J)a(

−→
M)).p′ = (J)a(

−→
M ′)).q′. Finally, CryptoPAi � p+ q = (J)a(

−→
M)).p′+ q =

(J)a(
−→
M ′)).q′+q = q, which completes the proof of this case (i.e., CryptoPAi �

p+ q = q).

4. Assume p ≡ ∂(p1). It follows directly from the axioms in Table 6 that:

• if p1 ≡ (J)!a(M); p2 or p1 ≡ (J)?a(M); p2 then we have p ≡ ∂(p1) ≡ 0

due to Axiom D1 or Axiom D2. Consequently, the proof of this case is

straightforward as the proof of 1.

• if p1 ≡ (J)a(M); p2 then we have p ≡ ∂(p1) ≡ (J)a(M); p′ where p′ =
∂(p2) (due to Axiom D3). The proof of this case is similar to the case 3.

1425Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

CM1 p || q = p‖ q + q‖ p+ p|q CM2 d‖ p = d; p
CM3 d; p‖ q = d; (p || q) CM4 (p+ q)‖ r = p‖ r + q‖ r
CM5 d; p|d′ = (d|d′); p if d|d′ �= 0 CM6 d|d′; p = (d|d′); p if d|d′ �= 0
CM7 d; p|d′; q = (d|d′); (p || q) if d|d′ �= 0 CM8 d; p|d′ = 0 if d|d′ = 0
CM9 d|d′; p = 0 if d|d′ = 0 CM10 d; p|d′; q = 0 if d|d′ = 0
CM11 (p+ q)|r = (p|r) + (q|r) CM12 p|(q + r) = (p|q) + (p|r)
C1 p|q = q|p C2 (p|q)|r = p|(q|r)
C3 p|0 = 0

P1 (p || q) || r = p ||(q || r) P2 p || q = q || p
P3 (p‖ q)‖ r = p‖ (q || r) P4 (p|q)‖ r = p|(q‖ r)

Figure 8: Extension of the Axiomatization of CryptoPAi Terms with Parallel

Activities

• if p1 ≡ p2 + p3 then we have p ≡ ∂(p1) ≡ p′2 + p′3 where p′2 = ∂(p2) and

p′3 = ∂(p3) (due to Axiom D4). Similar to the case 2, this case can be

proven.

��

5 Parallel and Communicating Processes

In this section, we extend our axiomatization to the full set of CryptoPAi -terms.

Our approach is based on the auxiliary operators proposed first in [Bergstra

and Klop 1984]. We extend our axiomatization system with the axioms given in

Figure 8. The parallel composition of two processes p and q is denoted by p || q.
To axiomatize parallel composition, we use two auxiliary operators, namely, ‖
and |, respectively, denoting the left-merge and communication-merge operators.

It is assumed that ‖ and | have the same binding priority as || (i.e., they bind

stronger than choice and weaker than action prefix). Also, since the operators

|| and | are commutative, the order in which the components are presented is

irrelevant. The axioms CM1−CM12, C1−C3, and P1−P4 serve to rewrite each

closed term involving parallel composition operators into a closed CryptoPAi -

term. In these axioms, d|d′ is the result of the communication of a send and a

receive, i.e., (I)!a(
−→
M) | (J)?a(−→M) = (I ∪ J)a(

−→
M) and (I)?a(

−→
M) | (J)!a(−→M) =

(I ∪ J)a(
−→
M); otherwise, if d and d′ are not matching send and receive actions,

d|d′ is defined to be 0.

p || q = p‖ q + q‖ p+ p|q.

The extension of the process theory CryptoPAi with the parallel operator has

enlarged the set of closed terms that can be used for specifying processes. It is

1426 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

important to address the question whether this extension (called CryptoPAiPA)

has also enlarged the set of processes that can be specified in our processes the-

ory (i.e., it must be investigated whether the expressiveness of our process theory

has increased). We show this is not the case and the set of processes which can

be specified is the same, but in more syntactically different ways than before.

A common and standard proof technique is based on an elimination theorem

[Baeten et al. 2009]. Such a theorem states that any process term, given in the

extension of our process theory, can be rewritten into a basic term. The elimi-

nation theorem, stated below, expresses that every new closed-term is derivably

equal to a basic closed CryptoPAi term.

Theorem 26 Elimination. For any closed CryptoPAiPA term p, there exists

a basic term t s.t. p = t can be derived from the axioms of CryptoPAiPA (i.e.,

CryptoPAiPA � p = t) by eliminating parallel composition using the axioms of

Figure 8 as rewrite rules from left to right.

Proof. Note that our axioms are special instances of generic axioms for con-

currency stated in [Baeten et al. 2009] (by taking the communication function

to be defined as specified above on matching send and receive actions and un-

defined otherwise). Hence, the normalization and confluence results of [Baeten

et al. 2009] carry over to our axiomatization and elimination follows. ��

6 Logical Aspects

In this section, we aim to discuss on logical aspects of our process theory. To this

end, we first introduce an epistemic extension of the modal μ-calculus. Then,

we study the issue of the logically equivalency and its correspondence with our

bisimilarity notion. Then the characteristic theorem for our bisimulation notion

in terms of EHML logic (see Section 6.1) is introduced and discussed.

6.1 The epistemic HM-Logic

EHML is an extension of Hennessy-Milner logic with an epistemic construct:

K, representing epistemic knowledge. Epistemic knowledge refers to the facts

that are inferred by principals using the combination of the (locally) observed

computation and the knowledge of the protocol (i.e., the knowledge of other

possible computations). The syntax of this logic has the following grammar.

φ ::= � | φ ∧ φ | ¬φ | 〈a〉φ | Kiφ

where i ∈ Id, and a is an action. 〈a〉φ means that “after some a transitions

φ holds”; Kiφ indicates that “principal i knows that φ holds”.

1427Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

E, s |= � iff true
E, s |= φ0 ∧ φ1 iff E, s |= φj for eachj ∈ {0, 1}
E, s |= ¬φ iff E, s |= φ is not true
E, s |= 〈d〉φ iff there is an s′ ∈ S and d′ ∈ D s.t.

∀i∈IdAppeari(d) = Appeari(d′) and s
d′→ s′ and E, s′ |= φ

E, s |= Kiφ iff for all reachable s′ ∈ S such that s
i· · · s′ : E, s′ |= φ

Figure 9: Satisfaction Relation of our Logic.

EHML-forms denotes the set of EHML formulae. In the following definition,

the satisfaction of a formula φ ∈ EHML-forms in the ELTS E is interpreted.

Definition 27 Satisfaction. Let E be an ELTS as E = 〈S, → ,�, IC , s0〉 and
s ∈ S be a state of E. The satisfaction relation |= for formulae φ ∈ EHML-forms

is defined inductively in Figure 9: E satisfies a formula φ, denoted E |= φ, if

s0 |= φ.

Most of the definitions given in Figure 9 are straightforward. Of particular in-

terest is the definition concerning the knowledge operator Kiφ. It expresses the

fact that i knows that φ if φ holds in all states reachable from s through the
i· · ·

relation. This relation was defined based on what i was allowed to observe and

relating it to all computations that are indistinguishable to i.

Definition 28 Image finite process. A process p is image finite if and only if

the collection {p′ | p α→ p′} is finite for each action α. An LTS is image finite if

so in each of its states [Ben-Menachem 2010].

Note that the ELTS associated to a CryptoPAi process is by construction

image finite, because we do not have any syntactic construct for generating

infinitely many choices.

6.2 Logical Equivalence

In this section, we show that the EHML logics is the precise logical characteri-

zation of our stateless pattern bisimulation.

Theorem 29. For each two processes p, q ∈ Proc and each two indistinguish-

able computations Γ and Γ ′ that are consistent with p and q, respectively, the

following statement holds:

p ∼sl q iff ∀φ∈EHMLE, (p, Γ) |= φ ⇐⇒ E, (q, Γ ′) |= φ.

1428 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

Proof. Below, we split the bi-implication into two implications and prove them

separately:

1. Assume that p ∼sl q and p |= φ for some formulae φ ∈ EHML. Using

structural induction on φ, we prove that q |= φ. By symmetry, this is enough

to establish that p and q satisfy the same formulae in EHML.

The proof proceeds by a case analysis on the form of φ.

• If φ is of the form �, then the theorem holds vacuously because each

process, including q, satisfies �.

• If φ is of the form φ0 ∧ φ1 the theorem holds by the induction hypoth-

esis: it follows from E, (p, Γ) |= φ and the semantics of EHML that

E, (p, Γ) |= φ0 and E, (p, Γ) |= φ1 and from the induction hypothesis,

we obtain E, (q, Γ ′) |= φ0 and E, (q, Γ ′) |= φ1. Using the semantics of

EHML, we obtain E, (q, Γ ′) |= φ.

• If φ is of the form ¬φ′, then the theorem holds by the induction hypoth-

esis, using a similar line of reasoning as above.

• If φ is of the form φ = 〈d〉φ′ for some action d and formula φ′, then, there

exists a state (p0, Γ0) and a decorated action d′ s.t. (p, Γ)
d′
→ (p0, Γ0),

Appeari(d) = Appeari(d′) and (p0, Γ0) |= φ′. It follows from p ∼sl q,

that (q, Γ ′) d′′
→ (q0, Γ

′
0) for some q′0, Γ

′
0 and d′′ such that Γ0

i
= Γ ′

0 and

Appeari(d′) = Appeari(d′′), for each i ∈ Id and moreover, p0 ∼sl q0.

It follows from the latter bisimilarity (p0, Γ0) |= φ′, Γ0
i
= Γ ′

0 and the

induction hypothesis that (q0, Γ
′
0) |= φ′. Appeari(d) = Appeari(d′) =

Appeari(d′′), (q0, Γ ′
0) |= φ′, and (q, Γ ′) d′′

→ (q0, Γ
′
0) follow that necessarily

(q, Γ ′) |= 〈d〉φ′ or (q, Γ ′) |= φ, which was to be shown.

• If φ is of the form Kiφ
′, for some i ∈ Id and φ′ ∈ EHML, then the

reasoning is similar to the above, using the induction hypothesis and

bisimilarity of p and q.

2. Assume that p and q ∈ Proc satisfy the same formulae in EHML. We shall

prove that p ∼sl q. To this end, it is sufficient to show that the following

relation is a stateless pattern bisimulation, for any p, q ∈ Proc and indis-

tinguishable computations Γ, Γ ′ ∈ Comp that are consistent with p and q,

respectively.

R = {(p, q) | ∀φ∈EHMLE, (p, Γ) |= φ ⇔ E, (q, Γ ′) |= φ},

Take a pair (p, q) ∈ R; we aim at showing that p and q satisfy the transfer

conditions of stateless pattern bisimilarity. We do so by induction on the

1429Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

length of the maximum trace afforded by p. Take two computations Γ and

Γ ′, respectively, consistent with p and q.

The induction basis is when p does not afford any transition; then either

q does not afford any transition, by which the theorem follows, or q does

afford some d-labeled transition. In the latter case E, (q, ε) |= 〈d〉�, while

the same formula is not satisfied by E, (p, ε). This, in turn, contradicts with

the assumption that p and q satisfy the same set of EHML formulae.

For the induction step, assume that (p, Γ)
d→ (p′, Γ ′

0), and assume (towards a

contradiction) that (q, Γ ′) does not satisfy the transfer condition of stateless

pattern bisimilarity regarding the transition labeled d, which can be due to

one of the following two reasons:

• Either (q, Γ ′) does not afford any d′-labeled transition, for any d′ such
that Appeari(d) = Appeari(d′). In this case, (p, Γ) satisfies the formula

〈d〉�, while (q, Γ ′) does not satisfy the same formula, which contradicts

the assumption that (p, Γ) and (q, Γ ′) satisfy the same set of EHML

formulae.

• Or for each such d′-labeled transition of the form (q, Γ ′) di→ (q′i, Γ
′
i), p

′

is not stateless pattern bisimilar to q′i. It follows from the induction

hypothesis that for such q′i, there exists a formula φi such that φi is not

satisfied by p, while it is satisfied by q (or vice versa, in which ¬φi, has

the property we seek). Since E is image finite, the number of such d′-
labeled transitions is finite and so is the number of φi; let I be the finite

set gathering all such i’s. Hence ∧i∈I〈di〉φi is not satisfied by p, but it

is satisfied by q, which contradicts our assumption that p and q satisfy

the same set of EHML formulae and hence, concludes the proof. ��

7 Conclusions

In this paper, we defined a number of behavioral equivalences for an extension of

process algebra with a notion of appearance for actions, which makes it suitable

for reasoning about epistemic aspects of security protocols. We also presented

some formal results regarding each of the defined notion and formulated and

proved a congruence result for the most robust notion, called stateless pattern

bisimilarity. Then, a sound and ground-complete axiomatization for CryptoPAi

terms modulo stateless pattern bisimilarity was given. Finally, an extension of

the Hennessy-Milner logic with an epistemic knowledge construct was presented

and was shown that it characterizes our notion of stateless pattern bisimilarity.

As demonstrated in [Mahrooghi and Mousavi 2011], a prototype model-checker

for CryptoPAi has been provided in the Maude rewriting logic tool to model-

check the specified properties on their corresponding models. We plan to further

1430 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

investigate the applicability of this prototype in the domain of e-voting protocols

by applying it to more case studies. Extending CryptoPAi with probabilities is

another avenue for future research.

Acknowledgements

We would like to express our sincerest thanks to Professor Mohammad Reza

Mousavi, for his comments, and many insightful discussions. His contributions

greatly improved this paper. We also want to thank Professor Mohammad Izadi,

for reading and commenting on this paper.

References

[Abadi and Jürjens 2001] Abadi, M., Jürjens, J., 2001. Formal eavesdropping and its
computational interpretation. In: Proceedings of the 4th International Symposium
on Theoretical Aspects of Computer Software. TACS ’01. pp. 82–94.

[Abadi and Rogaway 2002] Abadi, M., Rogaway, P., 2002. Reconciling two views of
cryptography (the computational soundness of formal encryption). Journal of Cryp-
tology 15 (2), 103–127.

[Aceto and Ingólfsdóttir 2007] Aceto, L., Ingólfsdóttir, A., 2007. The saga of the ax-
iomatization of parallel composition. In: Caires, L., Vasconcelos, V. T. (Eds.), Pro-
ceedings of the 18th International Conference on Concurrency Theory (CONCUR
2007). Vol. 4703 of Lecture Notes in Computer Science. Springer, pp. 2–16.

[Baeten 2005] Baeten, J. C. M., 2005. A brief history of process algebra. Theor. Com-
put. Sci. 335 (2-3), 131–146.

[Baeten et al. 2009] Baeten, J. C. M., Basten, T., Reniers, M. A., Dec. 2009. Process
Algebra: Equational Theories of Communicating Processes (Cambridge Tracts in
Theoretical Computer Science), 1st Edition. Cambridge University Press.

[Baeten and Bergstra 1997] Baeten, J. C. M., Bergstra, J. A., 1997. Process algebra
with propositional signals. Theor. Comput. Sci. 177 (2), 381–405.

[Basten and Hooman 1999] Basten, T., Hooman, J., 1999. Process algebra in pvs. In:
Proc. of the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’99), volume 1579 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 270–284.

[Ben-Menachem 2010] Ben-Menachem, M., July 2010. Reactive systems: Modelling,
specification and verification; is written by l. aceto, et al; and published by cam-
bridge university press; distributed by cambridge university press; © 2007,
(hardback), isbn 978-0-521-87546-2, pp. 300. SIGSOFT Softw. Eng. Notes 35, 34–
35.

[Bergstra and Klop 1984] Bergstra, J. A., Klop, J. W., 1984. Process algebra for syn-
chronous communication. Information and Control 60 (1-3), 109–137.

[Bergstra and Klop 1987] Bergstra, J. A., Klop, J. W., 1987. Acp - A Universal Axiom
System For Process Specification Centre for Mathematics and Computer Science.
Newsletter Nr: 15 pages: 3–23.

[Borgström et al. 2006] Borgström, J., Grinchtein, O., Kramer, S., 2006. Timed Calcu-
lus of Cryptographic Communication. In: Proceedings of the Workshop on Formal
Aspects in Security and Trust. Vol. 4691 of Lecture Notes in Computer Science. pp.
16–30.

[Borgström et al. 2006] Borgström, J., Kramer, S., Nestmann, U., 2006. Calculus of
cryptographic communication. In: Proceedings of FCS-ARSPA.

1431Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

[de Boer et al. 2003] de Boer, F. S., van Eijk, R. M., van der Hoek, W., Meyer, J.-
J. C., 2003. A fully abstract model for the exchange of information in multi-agent
systems. Theor. Comput. Sci. 290 (3), 1753–1773.

[Dechesne et al. 2007] Dechesne, F., Mousavi, M., Orzan, S., 2007. Operational and
epistemic approaches to protocol analysis: bridging the gap. In: Proceedings of the
14th international conference on Logic for programming, artificial intelligence and
reasoning, LPAR’07. Springer-Verlag, pp. 226–241.

[Eijk et al. 2003] Eijk, R. M. v., Boer, F. d., Hoek, W. v., Meyer, J.-J. C., 2003. Pro-
cess algebra for agent communication: A general semantic approach. In: Communi-
cation in Multiagent Systems - Agent Communication Languages and Conversation
Policies. Vol. 2650 of Lecture Notes in Computer Science. Springer, pp. 113–128.

[Groote and Ponse 1994] Groote, J. F., Ponse, A., 1994. Process algebra with guards:
Combining hoare logic with process algebra. Formal Asp. Comput. 6 (2), 115–164.

[Hennessy and Milner 1985] Hennessy, M., Milner, R., January 1985. Algebraic laws
for nondeterminism and concurrency. J. ACM 32, 137–161.

[Hoare 1985] Hoare, C. A. R., 1985. Communicating Sequential Processes. Prentice-
Hall.

[Laud and Corin 2003] Laud, P., Corin, R., 2003. Sound computational interpretation
of formal encryption with composed keys. In: In Information Security and Cryptol-
ogy - ICISC 2003, 6th International Conference, LNCS. Springer-Verlag, pp. 55–66.

[Mahrooghi and Mousavi 2011] Mahrooghi, H. R., Mousavi, M., 2011. Reconciling op-
erational and epistemic approaches to the formal analysis of crypto-based security
protocols. In: Proceedings of the 9th International Workshop on Security Issues in
Concurrency (SecCo’11).

[Milner 1980] Milner, R., 1980. A Calculus of Communicating Systems. Vol. 92 of Lec-
ture Notes in Computer Science. Springer.

[Mousavi et al. 2004] Mousavi, M. R., Reniers, M., Groote, J. F., 2004. Congruence for
SOS with data. In: Proceedings of Nineteenth Annual IEEE Symposium on Logic in
Computer Science (LICS’04). IEEE Computer Society Press, Turku, Finland, pp.
302–313.

[Mousavi et al. 2003] Mousavi, M. R., Reniers, M. A., Basten, T., Chaudron, M. R. V.,
2003. Separation of concerns in the formal design of real-time shared data-space
systems. In: ACSD. pp. 71–81.

[Mousavi et al. 2005] Mousavi, M. R., Reniers, M. A., Groote, J. F., 2005. Notions of
bisimulation and congruence formats for sos with data. Inf. Comput. 200 (1), 107–
147.

[Plotkin 2004] Plotkin, G. D., 2004. A structural approach to operational semantics.
Journal of Logic and Algebraic Progamming 60, 17–139.

1432 Mahrooghi H.R., Jalili R.: An Algebraic Theory of Epistemic Processes

