
ACO-based Algorithms for Search and Optimization of

Routes in NoC Platform

Luneque Silva Junior

(Department of Electronics Engineering and Telecommunications

Engineering Faculty, State University of Rio de Janeiro

Rio de Janeiro, Brazil

luneque@hotmail.com)

Nadia Nedjah

(Department of Electronics Engineering and Telecommunications

Engineering Faculty, State University of Rio de Janeiro

Rio de Janeiro, Brazil

nadia@eng.uerj.br)

Luiza de Macedo Mourelle

(Department of Systems Engineering and Computation

Engineering Faculty, State University of Rio de Janeiro

Rio de Janeiro, Brazil

ldmm@eng.uerj.br)

Abstract: Network-on-Chip (NoC) have been used as an interesting option in design
of communication infrastructures for embedded systems, providing a scalable structure
and balancing the communication between cores. Because several data packets can be
transmitted simultaneously through the network, an efficient routing strategy must be
used in order to avoid congestion delays. In this paper, ant colony algorithms were used
to find and optimize routes in a mesh-based NoC. The routing optimization is driven
by the minimization of total latency in packets transmission. The simulation results
show the effectiveness of the ant colony inspired routing by comparing it with general
purpose algorithms for deadlock free routing under different traffic patterns.

Key Words: network-on-chip, packet routing, ant colony optimization

Category: B.4.3, I.2.8, I.6.3

1 Introduction

A System-on-Chip (SoC) is an integrated circuit composed by a full computer

system. SoCs contains, within the same package, processors, memory, input-

output controllers and specific application devices. This block structure follows

a design methodology based on intellectual property (IP) cores. Components

designed for a specific project can be reused in other SoCs, reducing design

time. Thus, under an extremely simplified view, to increase the number of tasks

performed by the SoC, just add more IP cores with different features.

Journal of Universal Computer Science, vol. 18, no. 7 (2012), 917-936
submitted: 15/12/11, accepted: 27/3/12, appeared: 1/4/12  J.UCS



The increase of SoCs scale raises new design challenges. Among them is

communication between IP cores. The blocks of a SoC are interconnected by a

communication infrastructure, such as buses or point-to-point links. However,

each of these models have their limitations. Shared buses can cause high de-

lays if multiple blocks need to transmit data simultaneously. This does not

happen in point-to-point architectures. In turn, the communication structure

need to be redesigned for each new system. For many SoC designs, it is desir-

able to use a framework scalable as buses and fast as point-to-point links. An

architecture that includes these two features are the NoCs, Networks-on-Chip

[Benini and Micheli 2002].

In an NoC architecture, switches are interconnected by point-to-point links,

thus describing a network topology. An example of network topology is the mesh

shown in Fig. 1. The switches are also connected to the IP cores that constitute

the system, also called resources. Switches exchange information in the form of

messages and packages. The information generated by a resource is divided into

smaller parts and sent over the network. These packages are organized in the

destination switch and then delivered to resource. This operation is similar to

that performed by computer networks. The structure formed by a switch and a

resource is called a network node. NoCs can be used in the implementation of

multi-processors systems-on-chip (MPSoCs) for running applications with high

level of parallelism [Mourelle et al. 2010].

North

South

West East

 Resource

Switch

(a) Switch

R

S

R

S

R

S

R

S

Resource

Switch Link

 

R

S

R

S

R

S

R

S

R

S

(b) Mesh topology

Figure 1: Network-on-chip architecture.

In the design of NoC-based systems, the communication infrastructure can

918 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



be imported as a single configurable IP block. However, many are the ways to

connect network and resources, in order to achieve the desired application. To

assist the designer, computational tools for project assistance, or EDAs (Elec-

tronic Design Automation), are used [Jóźwiak et al. 2010]. The purpose of EDAs

is to optimize intermediate stages of SoC and NoCs project, in order to obtain

a more efficient design implementation [Edwards et al. 1997].

In general, NoCs are developed to perform a specific application. This ap-

plication can be described initially as a software that must be embedded in

hardware. The EDA tool must be able to use information about the desired

application (at a high level of abstraction) and, through successive stages of op-

timization, implement a solution that meets the design specifications, which may

include hardware area, power consumption and time of execution. This optimiza-

tion may include several steps, such as task allocation [Da Silva et al. 2009], IP

mapping [Nedjah et al. 2011] and static routing. The Fig. 2 shows in a simplified

way the flowchart of a SoC design based on network-on-chip.

D
es

ig
n

 c
o

n
st

ra
in

ts
 n

o
t 

ac
h

ie
v

ed

System specification

Task allocation

Routing

Avaliation

System implementation

Design constraints

IP mapping

Optimization steps

IP repository

Figure 2: Typical embedded system design flow for NoC platform.

The process of IP allocation consists in associating each task (or set of tasks)

to an appropriate IP block within a set of IPs or repository capable of performing

such a task. The mapping of an application consists in associating the set of IPs

resulting from the allocation to each node in communication infrastructure - in

919Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



this case, the NoC. In other words, is spatially defined where each feature will

be implemented, i.e., where in network each IP core is connected. Routing, in

turn, defines which switches will be used for communication between cores.

Delays in communication may occur in congestion situations, when multiple

packets could be transmitted using the same switch at the same time. If the

routing algorithm adopted in the NoCs design is deterministic, the selection of

the packet path from the source to the destination switch will not consider the

load of intermediate switches - those between the source and destination switch.

If these switches are under a heavy traffic, a given packet can only be transmitted

after the end of congestion. This occurs even if other switches, not selected for

routing, are free for transmission. On the other hand, adaptive routing algorithms

can be used in order to avoid network congestion. These algorithms use not only

the position of origin and destination nodes, but also the actual load condition

of the network to calculate the route. When you find a region of network in use,

the routing can set the package to follow another path. This congestion-free path

may, however, be not minimal. These two situations are shown in Fig. 3.

B

D

A C

(a) Ideal hypothetical sit-
uation.

B

D

CA

(b) Blocked packets in de-
terministic routing.

B

D

A C

(c) Non-minimal paths in
adaptive routing.

Figure 3: Routing in a 3× 3 mesh.

In order to overcome the congestion problem, this paper proposes a route

optimization step in the design of NoCs, or more precisely, an adaptive and static

routing. In this routing, a network model provides the communication patterns

required for application execution. The calculation of routes is accomplished by

an optimization algorithm to minimize the communication time. The search is

always for a shortest path between origin and destination. If the intermediate

switches of this path are in use, the algorithm should be able to find another

route, so that the contention effects does not affect the transmission.

In this paper, the algorithm used in the search for routes is the ant colony

optimization (ACO) [Dorigo et al. 1996]. This is an example of swarm intelli-

920 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



gence, where a group of individuals work together to find a solution to a given

problem. We compared the results of the network using the proposed routing

algorithms and literature widely adopted routing algorithms.

The reminder of this paper is organized as follows. In Section 2 we review the

related work in routing algorithms. The specification of the simulated network

is shown in Section 3. In Section 4, we do an overview on ACO meta-heuristic.

The proposed routing is presented in Section 5. Simulation results are presented

in Section 6. The paper closes with a conclusion and the description of future

work in Section 7.

2 Related work

There are several papers that study the efficient routing in parallel and dis-

tributed computing. For a broader reference, [Ni and McKinley 1993] presents a

survey of routing techniques for direct networks.

Many of the techniques used for routing in NoCs, such as the XY algorithm,

were originally developed for computer networks and multiprocessor systems.

The XY algorithm is a routing technique widely used in 2D mesh networks

with wormhole switching, such as the Intel Touchstone DELTA [Intel 1991], the

Intel Paragon [Esser and Knecht 1993], the Symult 2010 [Seitz et al. 1988] and

the Caltech MOASIC [Seitz et al. 1993]. It works by sending packets over the

network first horizontally (X dimension), then vertically (Y dimension). This

idea can be expanded to a larger number of dimensions, being known as such

DOR (dimension order routing) [Ni and McKinley 1993]. In the context of NoCs,

XY routing proves efficient due to its simplicity of implementation and because

it is deadlock-free. Works that made use of this algorithm include the HERMES

network [Moraes et al. 2004] and the SoCIN network [Zeferino and Susin 2003].

Glass and Ni have proposed the so-called Turn Model for adaptive, livelock

and deadlock free algorithms [Glass and Ni 1992]. A turn is a change of 90◦

in the direction of packet transmission. The main idea of this model is to re-

strict the amount of turns that a package can perform in order to avoid the

formation of cycles that cause deadlocks. Following this concept, three routing

algorithms were proposed by Glass and Ni: the West-First, the North-last and

Negative-First. A related approach is the Odd-Even turn model [Chiu 2000] for

designing partially adaptive deadlock-free routing algorithms. Unlike the turn

model, which relies on prohibiting certain turns in order to achieve freedom

from deadlock, this model restricts the locations where some types of turns can

be taken. As a result, the degree of routing adaptiveness provided is more even

for different source-destination pairs.

The work of Jose Duato has addressed the mathematical foundations of rout-

ing algorithms. His main interests have been in the area of adaptive routing algo-

rithms for multicomputer networks. Most of the concepts are directly applicable

921Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



to NoC. In [Duato 1993], the theoretical foundation for deadlock-free adaptive

routing in wormhole networks is given.

3 Network specification

The network model in this work uses switches with five communication ports.

Four ports are responsible for communication with neighboring switches and

one is for local communication with the resource. The switches are considered

bufferless using no virtual channels. The network topology is a two dimension

mesh, as shown in Fig 1. The switching technique adopted was the wormhole. In

this method, packets are divided into smaller units called flits (flow-units). It is

assumed that each communication channel has a width of a flit. The transmission

of flits is performed in a pipeline way, as seen in Fig. 4.

f0 f2

1 3 4 52 6 7 8

Destination node

Source node

0

f1 f2

f1

f0

f2

f1

f0

f2

f1

f0

f2

f1 f2

f0

Intermediary 

nodes

Time (cycles)

Figure 4: Transmission of 3 flits in wormhole switching.

The latency of a packet sent trough the network in wormhole switching is

given by Equation 1, where tflit is the transmission time of a flit in a channel,

D is the number of switches in a path, L is the total length of a packet (in bits),

W is the length of a channel, and Ldelay is the number of bits that would have

been transmitted in a period of congestion.

Tpacket = tflit ·

(

D +

[

L

W

]

+

[

Ldelay

W

])

(1)

4 Ant Colony Optimization

Ant algorithms [Dorigo et al. 1996], also known as Ant Colony Optimization

(ACO), are a class of heuristics search algorithms, that have been successfully

922 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



applied to solving NP hard problems [Bonabeau et al. 1999]. Ant algorithms

are biologically inspired in the behavior of colonies of ants, and in particular

how they forage for food. One of the main ideas behind this approach is that

the ants can communicate with one another through indirect means by making

modifications to the concentration of highly volatile chemicals called pheromones

in their neighbor environment. As it has been shown [Goss et al. 1989], indirect

communication among ants via pheromone trails enables them to find shortest

paths between their nest and food sources. The most emphatic and best known

example of the use of pheromones by ants is the double bridge experiment. An

ant nest is connected to a food source by two bridges with different lengths.

This configuration is shown in Fig. 5. Initially, ants choose equally both ways.

However, opting for shorter path are able to go back to the food supply before

the ants that follow the long way. Thus, also the concentration of pheromone on

the shortest path will be greater from the moment the ants complete the round

trip. This capability of real ant colonies has inspired the definition of artificial ant

colonies that can find approximate solutions to hard combinatorial optimization

problems.

Food Food Food

T = 1 T = 2 T = 3

Figure 5: Pheromone concentration in the double bridge experiment.

The core ideas of ACO are (i) the use of repeated simulations carried out by

a population of artificial agents called “ants” to generate new solutions to the

problem, (ii) the use by the agents of stochastic local search to build the solutions

in an incremental way, and (iii) the use of information collected during past

923Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



simulations (artificial pheromones) to direct future search for better solutions.

Several ant algorithms make use of the structure shown in the Algorithm 1

[Dorigo et al. 2006], the ACO meta-heuristics.

Algorithm 1 ACO meta-heuristic

1: initialize parameters and pheromone trails;

2: while termination condition not met do

3: construct ant solutions;

4: local search (optional);

5: update pheromone trails;

6: end while;

In the artificial ant colony approach, each ant builds a solution by using two

types of information locally accessible: problem-specific information, and infor-

mation added by ants during previous iterations of the algorithm. In fact, while

building a solution, each ant collects information on the problem characteristics

and on its own performance, and uses this information to modify the represen-

tation of problem, as seen locally by the other ants. The representation of the

problem is modified in such a way that information contained in past good so-

lutions can be exploited to build new and hopefully better ones. This form of

indirect communication mediated by the environment is called stigmergy, and is

typical in social insects.

5 ACO based routing

The Ant Colony Optimization, with the ability to search for paths, emerging as

a powerful solution for routing problems. Thus, this paper presents the use of

the ACO meta-heuristic in the construction of routing algorithms. Two models

of static routing for NoCs are proposed. These algorithms were called REAS

(routing based on EAS [Dorigo et al. 1996]) and RACS (routing based on ACS

[Dorigo and Gambardella 1997]). Both algorithms search paths in an architec-

ture characterization graph that represents the network 2D mesh topology. These

algorithms make use of multiple ant colonies, where each colony is responsible

for searching the route of a package. In this approach, each colony has its own

pheromone and ants. However, the colonies must exchange information in order

to minimize the latency of their respective packages. Thus, the route found by an

ant from a given colony is visible to the ants from other colonies, because these

packets are being transmitted simultaneously and in the same network. In the

proposed algorithms, ants in a network node knows only two things. The first is

924 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



the pheromone concentration in the surrounding nodes. The second is the load

on a node, the waiting time in each of the four possible transmission directions.

5.1 REAS algorithm

The Elitist Ant System is directly inspired by the Ant System, the first or ant

algorithms [Dorigo et al. 1996]. The EAS is characterized mainly by the use of

elitism, in order to differentiate the best ants. A simplified pseudo-code of REAS

is shown in Algorithm 2.

Algorithm 2 REAS algorithm

Require: network parameters;

Require: EAS parameters;

Require: packets parameters;

1: while total of cycles do

2: for k = 1→ number of ants do

3: for g = 1→ number of packets do

4: while nodeactual 6= nodedestination do

5: Antk,g select the nodenext;

6: calculates the load of Antk,g in nodeactual;

7: nodeactual ← nodenext
8: end while

9: calculates Antk,g pheromone;

10: end for

11: calculates the elitist pheromone;

12: accumulate the pheromone of ants in k iteration;

13: end for

14: update the global pheromone;

15: end while

16: return best solution;

In the REAS algorithm, ants build paths through the network selecting the

next node with base in Equation 2, where pkij is the probability of the ant k go

from the node i to the node j.

pkij(t) =











τj(t)
α
·ηij

β

∑

k∈allowedk

τk(t)
α
·ηik

β

if j ∈ allowedk

0 otherwise

(2)

The probability of selecting a particular direction is a function of pheromone

concentration and network load in this direction. These two parameters are

925Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



weighted by their importance constant α and β. The network load is used indi-

rectly by ηij , defined by:

ηij =
1

Cij

(3)

where Cij is the load in transmission from i to j.

At the end of each iterative cycle, the pheromone of all colonies is updated

according to Equation 4. Part of the pheromone of the previous iteration is

reduced by evaporation rate ρ, and then reinforced by the contribution of all

m ants in the current cycle. The pheromone also receives the reinforcement of

elitist ants: those that achieve the best solutions deposit their pheromone in

every cycle, directing the search in subsequent cycles.

τt+1 = (1− ρ) · τt +

m
∑

k=1

∆τk + τelite (4)

The pheromone in the path find by a single ant k is defined by:

∆τk =
Q

Lk

(5)

where Q is a constant and Lk represents the total latency of the solution. It

is easy to see that the ants with the worst results provide a smaller amount of

pheromone.

5.2 RACS algorithm

The second ant algorithm used in this work is described below. The RACS is

very similar to REAS, with the same structure of multiple colonies being used.

The algorithm on which the RACS was inspired, called Ant Colony System

[Dorigo and Gambardella 1997], differs from others ant algorithms by:

– the selection method of next nodes in solutions building, and

– the use of a different pheromone update.

Because these two mechanisms, ACS improves over AS by increasing the

importance of exploitation of information collected by previous ants with respect

to exploration of the search space. The pseudo-code of RACS algorithm is shown

in Algorithm 3.

Thus, the RACS uses the so-called pseudo-random proportional rule.

j =

{

argmaxj∈[1,4]

{

τj · η
β
ij

}

if q ≤ q0,

S otherwise
(6)

As shown in Equation 6, the probability for an ant to move from node i

to node j depends on a random variable q, uniformly distributed over [0, 1],

926 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



Algorithm 3 RACS algorithm

Require: network parameters;

Require: ACS parameters;

Require: packets parameters;

1: while total of cycles do

2: for k = 1→ number of ants do

3: for g = 1→ number of packets do

4: while nodeactual 6= nodedestination do

5: Antk,g select the nodenext;

6: calculates the load of Antk,g in nodeactual;

7: update the local pheromone in nodeactual;

8: nodeactual ← nodenext
9: end while

10: calculates Antk,g pheromone;

11: end for

12: if solution of ants in k iteration is the best then

13: τbest ← pheromone of ants in k iteration;

14: end if

15: end for

16: update the global pheromone with τbest;

17: end while

18: return best solution;

and a parameter q0. If q ≤ q0, then the next node is directly selected by

argmaxj∈[1,4]{τj · η
β
ij}, i.e., the direction with the largest value of τj · η

β
ij . Other-

wise, the next node is defined by S, that uses a selection method similar to that

employed by EAS (Equation 2).

The RACS algorithm also uses a double pheromone update. The offline up-

date is applied at the end of each iteration only by the best-so-far ant.

τ jt+1 =

{

(1 − ρ) · τ jt + ρ ·∆τj if j belongs to best path

τ jt otherwise
(7)

The offline update is given by Equation 7, where ∆τj is the reinforcement

of the best ant pheromone. As said, the offline update perform a strong elitist

strategy. The best ant can be the iteration-best ant, that is, the best in the

current iteration, or the global-best ant, that is, the ant that made the best tour

from the start of the trial.

The local update is performed by all ants in each step of construction of a

solution.

τt+1 = (1− ρ) · τt + ρ · τ0 (8)

927Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



This local update is defined by Equation 8, where ρ is the evaporation con-

stant, and τ0 is the initial pheromone at each node. In practice ACS ants “eat”

some of the pheromone trail on the edges they visit. This has the effect of de-

creasing the probability that a same path is used by all the ants (i.e., it favors

exploration, counterbalancing this way the above-mentioned modifications that

strongly favor exploitation of the collected knowledge about the problem).

6 Evaluation experiments and results

A cycle-accurate network simulator was implemented in Matlab, supporting 2D

mesh networks with wormhole switching. To estimate the performance of the

proposed methods, networks were simulated with four different routing algo-

rithms: REAS, RACS, XY and Odd-Even (OE). The efficiency of each type of

routing is evaluated through latency/packet× injection rate curves. The time

unit adopted is the simulator cycle, where one cycle is the transmission time of

one flit. The performed tests uses synthetic patterns of packet generation, which

vary the number of packets, the packet injection rate and the spatial arrangement

of the nodes of origin and destination.

All algorithms were executed with Matlab Version 7.7.0.471 (R008b). The

simulations were performed on PCs with Intel Core i7 950 3GHz, 8Gb RAM and

Microsoft Windows 7 Home Premium operating system.

6.1 Tests with synthetic traffic patterns

The network was simulated with size of 5 × 5, a square of 25 nodes. The set

of simulation tests were performed varying the network routing algorithm, the

pattern of traffic generation, the rate of injection and the number of packets.

These parameters are shown in Table 1.

Table 1: Simulation parameters.

Routing algorithms REAS, RACS, XY, OE

Traffic pattern Uniform, Hots-pot, Local, Complement, Trans. 1, Trans. 2

Injection rate 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%

Number of packets 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

According to [Duato et al. 2002], the evaluation of interconnection networks

requires the definition of representative workload models. This is a difficult task

because the behavior of the network may differ considerably from one archi-

tecture to another and from one application to another. Moreover, in general,

928 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



performance is more heavily affected by traffic conditions than by design pa-

rameters. Up to now, there has been no agreement on a set of standard traces

that could be used for network evaluation. Most performance analysis used syn-

thetic workloads with different characteristics. These models can be used in the

absence of more detailed information about the applications. Workload models

are basically defined by three parameters: distribution of destinations, injection

rate, and message length.

6.1.1 Packet distribution

The source-destination pairs are generated following six different distribution

patterns, as shown in Fig. 6. These patterns are based on models widely used

in the evaluation of communication in multiprocessor and distributed systems

[Duato et al. 2002]. The uniform, hot-spot and local were called random patterns,

because both the source and destination nodes are chosen in a randomly way.

In the uniform pattern, all nodes have the same probability of being selected.

The hot-spot pattern is similar to uniform. However, for the destination nodes,

a particular node has a higher probability of selection. In local pattern, only

nodes around the source node can be selected as a destination.

The complement, matrix transpose 1 and matrix transpose 2 were called de-

terministic patterns. Although the selection of source nodes is random (following

the uniform distribution), the destination nodes are selected according to the po-

sition of the source nodes. In the complement pattern, for a source node in the

position (x, y), the destination node is in the position (size−x+1, size−y+1),

where size is the number of nodes in a column or row of the mesh. For patterns

matrix transpose 1 and 2, the destination nodes are respectively in the positions

(size− y + 1, size− x+ 1) and (y, x).

6.1.2 Injection rate

The packet injection rate relates the transmission time of flits (from resource to

switch) and idle time between the end of the transmission of a packet and the

beginning of the transmission of next packet. The injection rate is a fraction of

the network channel total bandwidth.

Two different injection rates are shown in Fig. 7. It is assumed that each flit is

transmitted in one cycle, and that the period between the start of transmission of

two consecutive packets is fixed. At the rate of 50%, a 5 flit size packet is injected

into the network; only after a idle time of 5 cycles, the next packet starts to be

injected. In this situation, only half of the total transmission capacity is used.

At the rate of 100%, there is no idle time between packets. The use of injection

rates lower than 100% is interesting in situations of network congestion, since

the late flits can be sent during idle time between packets.

929Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



(2,3)

(3,1) (3,2) (3,3)

(1,1) (3,1)(2,1)

(2,2)(2,1)

(a) Uniform

(2,3)

(3,1) (3,2) (3,3)

(1,1) (3,1)(2,1)

(2,2)(2,1)

(b) Hot-spot

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(c) Local

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(d) Complement

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(e) Matrix Transpose 1

(3,1) (3,2) (3,3)

(2,2) (2,3)

(1,1) (3,1)(2,1)

(2,1)

(f) Matrix Transpose 2

Figure 6: Possible communication pairs in a 3× 3 mesh.

930 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



f0 f1 f2 f3 f4

Packet 1 Packet 2idle time idle time

f0 f1 f2 f3 f4

(a) 50 %

f6f5 f7 f8 f9f0 f1 f2 f3 f4

Packet 1 Packet 2

f6f5 f7 f8 f9f0 f1 f2 f3 f4

(b) 100 %

1 3 4 5

Time (cycles)

2 6 8 9 107 11 13 14 1512 16 18 19 2017

Figure 7: Two different injection rates.

6.1.3 Packet size

The packet size can also be shaped in various ways. Two values must be dis-

tinguished: the size of a packet and its amount of flits. The size L of a package

is the value of its total length in bits. In turn, the amount of flits defined by

Equation 9 is the largest integer value obtained by dividing the packet size by

W , the size of a phit (physical unit, width of channel bits).

#flits =

⌈

L

W

⌉

(9)

Generally, packet length is defined as a constant in simulations. Alternatively,

the length may be made variable in simulations, when studying the effects of

different packet sizes on network [Duato et al. 2002]. In this situation, the size

can be chosen at random according to a specific probability distribution, such

as the spatial distribution of packets.

In this work, the amount of flits is associated with the injection rate. The

number of cycles from the start of transmission of a packet and the start of the

next is defined as the fixed value of 20 cycles. Thus, the amount of flits varies

according to desired injection rate as seen in Table 2.

Table 2: Amount of flits in each injection rate.

Injection rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flits 02 04 06 08 10 12 14 16 18 20

Idle cycles 18 16 14 12 10 08 06 04 02 00

931Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



6.2 Simulation results

For each simulation, we obtained the total latency and the average latency per

packet. The total latency is the sum of the individual latency of all packets being

transmitted on the network. The individual latency is the amount of simulation

cycles that have elapsed since the injection of the first flit of a packet until

the beginning of injection of the next packet of the same message. The average

latency is the latency value obtained divided by the total number of packets.

Results are shown in the Fig. 8. The general purpose of these tests is to

verify the variation of latency under different injection rates. The curves of

latency/packet × injection rate are, in fact, a mean of the values obtained

for different quantity of packets. Each graph illustrates these curves for the four

routing algorithms adopted.

The latency values (obtained in simulations) can be also arranged as func-

tion of number of packets. In Fig. 9, for each traffic pattern, latency/packet×

number of packets curves are shown. For these curves, the value latency/packet

is the average (of obtained values for a same number of packets), for different

injection rates.

For all traffic patterns, the latency curve of REAS is located below the curves

of the other methods, indicating its ability to search for routes that provide a

shorter transmission time. This performance is slightly better than the others at

low injection rates, becoming more evident in rates above 50%. The RACS has a

latency curve similar to the obtained by XY and OE algorithms for the uniform

and hot-spot traffic patterns. For Local and Complement patterns these curves

differ, with RACS getting lower latency values compared to the XY and OE. In

matrix transpose patterns, the RACS achieved similar results to those obtained

by REAS.

7 Conclusions

Static routing is an efficient solution in NoCs designed to run always the same

set of applications. This is because the communication paths need only be de-

fined one time. In this paper we propose the use of ACO-based algorithms in

the optimization of paths in the static routing step in NoC design. The REAS

and RACS algorithms proved to be effective in search of routes. Results of sim-

ulations with the network under different synthetic traffic patterns show the ant

algorithms being able to find routes with latency less than that obtained with

XY and OE algorithms. Future work may study the behavior of ant algorithms

in packet routing for applications mapped on the network, showing its use in

examples closer to real world NoCs.

932 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



0% 20% 40% 60% 80% 100%
20

25

30

35

40

45

50

55

REAS

OE

XY

RACS

Injection rate

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(a) Uniform

0% 20% 40% 60% 80% 100%
20

25

30

35

40

45

50

55

REAS

OE

XY

RACS

Injection rate

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(b) Hot-spot

0% 20% 40% 60% 80% 100%
20

22

24

26

28

30

32

34

36

38

40

REAS

OE

XY

RACS

Injection rate

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(c) Local

0% 20% 40% 60% 80% 100%
20

30

40

50

60

70

80

90

100

110

REAS

OE

XY

RACS

Injection rate

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(d) Complement

0% 20% 40% 60% 80% 100%
20

30

40

50

60

70

80

90

100

REAS

OE

XY

RACS

Injection rate

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

)

(e) Matrix Transpose 1

0% 20% 40% 60% 80% 100%
20

25

30

35

40

45

50

55

60

65

70

REAS

OE

XY

RACS

Injection rate

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

)

(f) Matrix Transpose 2

Figure 8: Results for the network under six different traffic patterns.

933Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



0 20 40 60 80 100
20

25

30

35

40

45

REAS

OE

XY

RACS

Number of packets

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(a) Uniform

0 20 40 60 80 100
20

25

30

35

40

45

REAS

OE

XY

RACS

Number of packets

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(b) Hot-spot

0 20 40 60 80 100
20

22

24

26

28

30

32

34

36

REAS

OE

XY

RACS

Number of packets

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(c) Local

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

110

REAS

OE

XY

RACS

Number of packets

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

s)

(d) Complement

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

110

REAS

OE

XY

RACS

Number of packets

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

)

(e) Matrix Transpose 1

0 20 40 60 80 100
20

30

40

50

60

70

80

REAS

OE

XY

RACS

Number of packets

L
at

en
c
y
 /

 p
ac

k
et

 (
c
y
c
le

)

(f) Matrix Transpose 2

Figure 9: Results for the network under six different traffic patterns.

934 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



Acknowledgment

We are grateful to FAPERJ (Fundação de Amparo à Pesquisa do Estado do

Rio de Janeiro, www.faperj.br), CNPq (Conselho Nacional de Desenvolvi-

mento Cient́ıfico e Tecnológico, www.cnpq.br) and CAPES (Coordenação de

Aperfeiçoamento de Pessoal de Ensino Superior, www.capes.gov.br) for their

continuous financial support.

References

[Benini and Micheli 2002] Benini, L., Micheli, G. D.: “Networks on chips: A new soc
paradigm”; COMPUTER, Published by the IEEE Computer Society, p. 7078, 2002.

[Bonabeau et al. 1999] Bonabeau, E., Dorigo, M., and Theraulaz, G.: “Swarm Intelli-
gence From Natural to Artificial Systems”; Oxford University Press, New York NY,
1999.

[Chiu 2000] Chiu, G.: “The odd-even turn model for adaptive routing”; Parallel and
Distributed Systems, IEEE Transactions on, IEEE, v. 11, n. 7, p. 729738, 2000.

[Da Silva et al. 2009] Da Silva, M.V.C., Nedjah, N., and Mourelle, L.M.: “Optimal ip
assignment for efficient noc-based system implementation using nsga-ii and mi-
croga”; IJCIS, 2(2):115–123, 2009.

[Dorigo et al. 1996] Dorigo, M., Maniezzo, V., Colorni, A.: “Ant system: optimization
by a colony of cooperating agents”; Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, v. 26, n. 1, p. 29 41, 1996.

[Dorigo and Gambardella 1997] Dorigo, M., Gambardella, L.: “Ant colony system: A
cooperative learning approach to the traveling salesman problem”; Evolutionary
Computation, IEEE Transactions on, IEEE, v. 1, n. 1, p. 5366, 1997.

[Dorigo et al. 2006] Dorigo, M., Birattari, M., Sttzle, T.: “Ant colony optimization -
Artificial ants as a computational intelligence technique”; Computational Intelli-
gence Magazine, IEEE, v. 1, n. 4, p. 2839, 2006.

[Duato 1993] Duato, J.: “A new theory of deadlock-free adaptive routing in wormhole
networks”; IEEE Trans. Parall. Distrib. Syst. 4, 12 (Dec.) 13201331.

[Duato et al. 2002] Duato, J., Yalamanchili, S., Lionel, N.: “Interconnection Networks:
An Engineering Approach”; San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002.

[Edwards et al. 1997] Edwards, S., Lavagno, L., Lee, E., Sangiovanni-Vincentelli, A.:
“Design of embedded systems: Formal models, validation, and synthesis”; Proceed-
ings of the IEEE, IEEE, v. 85, n. 3, p. 366390, 1997.

[Esser and Knecht 1993] Esser, R., Knecht, R.: “Intel paragon xp/s - architecture and
software environment”; Springer-Verlag, Berlin, p. 121–141, 1993.

[Glass and Ni 1992] Glass, C.J., Ni, L.M.: “The turn model for adaptive routing”; In:
Proceedings of the 19th annual international symposium on Computer architecture.
New York, NY, USA: ACM, 1992. (ISCA 92), p. 278287.

[Goss et al. 1989] Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: “Self-organized
shortcuts in the argentine ant”; Naturwissenschaften, 76:579–581, 1989.

[Intel 1991] Intel Corporation: “A Touchstone delta system description”; Supercom-
puter Systems Division, Intel Corporation, Beaverton, OR, v. 97006, 1991.

[Jóźwiak et al. 2010] Jóźwiak, L., Nedjah, N., Figueroa, M.: “Modern development
methods and tools for embedded reconfigurable systems: A survey”; Integration,
the VLSI Journal, 43(1):1–33, 2010.

[Moraes et al. 2004] Moraes, F., Calazans, N., Mello, A., Moller, L., Ost, L.: “Her-
mes: an infrastructure for low area overhead packet-switching networks on chip”;
Integration, the VLSI Journal, Elsevier, v. 38, n. 1, p. 6993, 2004.

935Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...



[Mourelle et al. 2010] Mourelle, L.M., Ferreira, R.E., Nedjah, N.: “Migration selection
of strategies for parallel genetic algorithms: implementation on networks on chips”;
International Journal of Electronics, 97(10):1227–1240, 2010.

[Nedjah et al. 2011] Nedjah, N., Da Silva, M.V.C., Mourelle,L.M.: “Customized
computer-aided application mapping on noc infrastructure using multi-objective op-
timization”; Journal of Systems Architecture: the EUROMICRO Journal, 57(1):79–
94, 2011.

[Ni and McKinley 1993] Ni, L.M. and McKinley, P.K.: “A survey of wormhole routing
techniques in direct networks”; IEEE Tran. on Computers, 26:62-76, 1993.

[Seitz et al. 1988] Seitz, C.L., Athas, W.C., Flaig, C.M., Martin, A.J., Seizovic, J.,
Stelle, C.S., Su, W.K.: “The architecture and programming of the ametek series 2010
multicomputer”; In: Proceedings of the third conference on Hypercube concurrent
computers and applications: Architecture, software, computer systems, and general
issues - Volume 1. New York, NY, USA: ACM, 1988. (C3P), p. 33–37.

[Seitz et al. 1993] Seitz, C.L., Boden, N.J., Seizovic, J., Su, W.K.: “The design of the
caltech mosaic c multicomputer”; In: Proceedings of the 1993 symposium on Re-
search on integrated systems. Cambridge, MA, USA: MIT Press, 1993. p. 1–22.

[Zeferino and Susin 2003] Zeferino, C.A., Susin, A.A.: “Socin: A parametric and scal-
able network-on-chip”; In: Proceedings of the 16th symposium on Integrated circuits
and systems design. Washington, DC, USA: IEEE Computer Society, 2003. (SBCCI
03), p. 169174.

936 Silva Junior L., Nedjah N., de Macedo Mourelle L.: ACO-based Algorithms ...


