
Success Rate of Remote Code Execution Attacks
Expert Assessments and Observations

Hannes Holm
(Royal Institute of Technology, 100 44 Stockholm, Sweden

hannesh@ics.kth.se)

Teodor Sommestad
(Royal Institute of Technology, 100 44 Stockholm, Sweden

teodors@ics.kth.se)

Ulrik Franke
(Royal Institute of Technology, 100 44 Stockholm, Sweden

ulrikf@ics.kth.se)

Mathias Ekstedt
(Royal Institute of Technology, 100 44 Stockholm, Sweden

mathiase@ics.kth.se)

Abstract: This paper describes a study on how cyber security experts assess the importance of
three variables related to the probability of successful remote code execution attacks: (i) non-
executable memory, (ii) access and (iii) exploits for High or Medium vulnerabilities as defined
by the Common Vulnerability Scoring System. The rest of the relevant variables were fixed by
the environment of a cyber defense exercise where the respondents participated. The
questionnaire was fully completed by fifteen experts. These experts perceived access as the
most important variable and availability of exploits for High vulnerabilities as more important
than Medium vulnerabilities. Non-executable memory was not seen as significant. Estimates by
the experts are compared to observations of actual attacks carried out during the cyber defense
exercise. These comparisons show that experts’ in general provide fairly inaccurate advice on
an abstraction level such as in the present study. However, results also show a prediction model
constructed through expert judgment likely is of better quality if the experts’ estimates are
weighted according to their expertise.

Keywords: Cyber security, Remote code execution, Software vulnerabilities
Categories: K.6.5, K.6.3, D.2.9

1 Introduction

Exploits which can provide administrator privileges of systems are attractive to
attackers, particularly if they can be executed remotely. Various types of
vulnerabilities can be used to achieve this. One example is to take advantage of
vulnerabilities in the memory management of a system in order to execute the
attacker’s own programming instructions.

Many conditions influence whether an attacker can manage to successfully
execute remote code on a target. A few examples include the type of vulnerabilities

Journal of Universal Computer Science, vol. 18, no. 6 (2012), 732-749
submitted: 15/10/11, accepted: 15/2/12, appeared: 28/3/12 © J.UCS

present in the targeted machine, the competence of the attacker and the quality of any
protective measures that are in place. Clearly, it is valuable to know under which
circumstances such attacks are likely to succeed and under which circumstances they
are not. Data regarding this would be useful when prioritizing protective measures,
e.g. mitigation options, or as input to security analysis frameworks, e.g. [Homer, 09]
and [Sommestad, 10]. This is especially true for enterprise decision makers - decision
support which does not require extensive data collection would be valuable even if it
is only approximate.

However, little such observational data currently exist in the domain. One
explanation for this is that most enterprises do not want to share their cyber security
incidents, often due to the potential adverse economic effects [Campbell, 03]
[Cavusoglu, 04]. It is also a field where measurement can be difficult. For instance, it
is virtually impossible to assert that confidential business data have not been read by
unauthorized individuals.

Use of expert judgment, i.e. to elicit knowledge from domain experts based on
their experience, is a commonly applied technique to obtain data when observations
are difficult to perform. Many security researchers have turned to this methodology as
a viable option (e.g. [Haimes, 03] [Madan, 02] [Taylor, 02]). Expert judgment has for
instance been used to assess the importance of attributes that are related to critical
infrastructure risks [Cooke, 04], and to quantify parameters in security risk models
[Ryan, 10].

This paper presents judgments made by 15 cyber security experts participating in
an international cyber defense exercise. The experts estimated the probability of
successful remote exploitation of software vulnerabilities given different scenarios, all
from a viewpoint of use towards practical enterprise decision making.

In addition to surveying expert assessments actual remote code executions carried
out during the cyber defense exercise were observed. These results are compared to
the estimations by the experts to measure the quality of their predictions. A limitation
with this comparison is that only one out of eight scenarios estimated by the experts
could be observed.

The rest of the paper unfolds as follows: Sect. 2 describes related work. Sect. 3
explains the variables studied in this paper. Sect. 4 describes the methodology of the
expert assessment study. Sect. 5 presents the results and analysis of the expert
assessments. Sect. 6 describes how the observations of the actual attacks were
collected and compares these to the estimates by the experts. Sect. 7 present a critical
discussion of the results of the study and Sect. 8 concludes the paper.

2 Related work

This paper focuses on vulnerabilities that enable attackers to execute arbitrary code on
a targeted machine from a remote location. A common class of vulnerabilities that
make this possible is buffer overflows [Cowan, 03] [One, 96].

Since buffer overflow vulnerabilities are severe security problems, a number of
techniques and tools have been developed to eliminate them or make exploitation of
them more difficult. Common countermeasures include authorization, authentication
control, vulnerability management (removing vulnerabilities due to software flaws),
and measures focusing explicitly on hardening computers or source code against

733Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

arbitrary code attacks [Mell, 07]. Younan [Younan, 08] divides measures that hardens
computers or source code into ten different types. Seven of these focus on the
software product itself and how to decrease its vulnerability, viz.: (i) safe languages
(e.g. Cyclone [Jim, 02]), (ii) bound checkers (e.g. Cash [Chiueh, 05]), (iii) hardened
libraries (e.g. FormatGuard [Cowan, 01]), (iv) separation and replication of
information countermeasures (e.g. Libverify [Baratloo, 00]), (v) runtime taint trackers
(e.g. TaintCheck [Newsome, 05]), (vi) dynamic analysis and testing (e.g. Purify
[Joyce, 92]), and (vii) static analysis such as [Dor, 01]. These measures will help
removing vulnerabilities in the code or decrease their severity. However, they are not
designed to influence the difficulty of exploiting the high-severity vulnerabilities that
may remain in the code. As this study focuses on the latter, the following three types
of measures are of particular relevance:

(i) Probabilistic countermeasures. This category includes address space layout
randomization (ASLR) [PaX, 03] which changes the machines memory’s layout
between executions or user sessions to make memory referencing difficult for an
attacker during buffer overflows; instruction set randomization [Kc, 03] which
obscures the execution language to make it difficult for the attacker to invoke
meaningful machine instructions in a buffer overflow; StackGuard which places a
“canary” in memory which must be correctly guessed by the attacker during a buffer
overflow [Cowan, 98].

(ii) Paging-based countermeasures. This category includes non-executable
memory [Younan, 08] which flag parts of memory containing data to make the
machine ignore machine instructions placed there during a buffer overflow; guard-
page-based [Perens, 11] which places data next to pages which will terminate the
program if they are changed.

(iii) Execution monitors. This category includes policy enforcers, such as SASI
[Erlingsson, 99], that regulates an executable’s access to resources on the machine,
for instance, to make it difficult for attackers to invoke system calls which are not
needed in normal operation; fault-isolation measures, such as MiSFIT [Small, 97],
that limit the consequences of a successful attack, for instance, by separating
executable’s address spaces; anomaly detectors, such as work by Forrest et al.
[Forrest, 96], that detect unusual behavior if this is created during an code execution
attack.

 More detailed descriptions of these three types of measures can be found in
[Erlingsson, 99] [Frykholm, 00] [Xenitellis, 03] [Younan, 08]. These references
contain discussions on the effectiveness of different measures. Also, the descriptions
of the techniques and tools come with a qualitative or theoretic evaluation of their
effectiveness.

The number of empirical evaluations, however, is small. The study performed by
[Wilander, 03] is an exception. This study focuses on measures that remove or
degrade the software product’s vulnerabilities and tests seven different techniques for
thwarting buffer overflow attacks. It accurately describes the exploits these measures
work against. However, it does not capture the competence of attackers or show the
exploits they apply in practice. Therefore, it cannot be used to infer probabilities of
success in general. This also applies to studies focusing on the effectiveness of
specific run-time techniques, for example [Shacham, 04]. In [Shacham, 04] the
effectiveness of address space layout randomization is tested under different

734 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

conditions and weaknesses that are exploitable under specific condition, but how
often these conditions apply in practice is not discussed (or known to the community
at large).

3 Studied variables

As can be seen in Sect. 2, there are many variables which influence the possibility of
successfully perform arbitrary code execution attacks. However, most defense
mechanisms are not widely used in practice. Because the aim of this research is to
construct a model that is useful for enterprise decision makers, such as network
administrators, the focus is placed on variables that are common in practice. This also
means that any countermeasure that is deployed during the development phase of
software is ruled out. As such, three types of countermeasures discussed in Sect. 2 are
of importance: probabilistic countermeasures, paging-based countermeasures and
execution monitors (cf. Sect. 2). Of these, probabilistic countermeasures are by some
thought not to prevent, but rather delay code execution attacks [Shacham, 04] (as the
exploit does not need to be rewritten, but rather tested enough times). Execution
monitors are not as common as the other two in practice. The topic of this paper is
thus to study the significance of perhaps the most commonly used paging-based
countermeasure (and defense mechanism in general) against code execution attacks,
namely, non-executable memory. Non-executable memory is an easily implemented
countermeasure which is available for most operating systems (e.g. all Windows
operating systems since XP). It is important to study the effectiveness of this
countermeasure in the context of any significant conditions related to the success rate
of remote code executions in practice. The two arguably most important conditions
for this purpose is the severity of the vulnerability in question and if the attacker has
access to the targeted service as a legitimate user or not [Mell, 07]. As such, these two
conditions were included in the study. Naturally, there are numerous other variables
that influence the probability of succeeding with remote code execution attacks –
even on abstraction level such as the present study. Some common examples of other
protective measures were provided in Sect. 2. In this study, only the security measures
depicted in Fig. 1 were evaluated. However, the states of all other relevant measures
were fixed by the environment of a cyber defense exercise. Sect. 4 describes this in
more detail. How non-executable memory, vulnerability severity and service access
were handled in the present study is detailed below.

Non-executable memory (NX). This is a paging-based countermeasure [Younan,
08] that marks the data segment of a computer memory as non-executable. This is
done to make it more difficult for an attacker to execute code that has been injected
into the data segment. NX is a feature that is available as an option for most operating
systems and has implementations without costs in computational power or memory
usage [Younan, 08]. It is for example used in products such as Windows XP Service
Pack 2, Windows 7, and a number of Linux distributions.

Access. In all scenarios considered in this study it is assumed that the attacker can
connect to the vulnerable service. The access variable involves whether the attacker
can access the service and its resources as a user of it. Some vulnerabilities which
exist in the inner-logic of a service could require access as an authorized user to the
service to be exploited. As such, access to the targeted service should generally

735Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

decrease the effort required for successful injection . For example, if the service is the
SMB service on a machine and access has state true, it would mean that the attacker is
a part of the Windows domain. If it has the state false the attacker is not in the domain
but can still send requests to the service as an external entity. Vulnerabilities that are
only exploitable from within the Windows domain would be impossible to exploit is
the state us false.

Severity of the exploited vulnerability. In all scenarios considered there is an
exploit available to the attacker corresponding to a vulnerability on the targeted
machine. In this investigation, exploits for High and Medium severity vulnerabilities
as defined by the Common Vulnerability Scoring System (CVSS) [Mell, 07] are
distinguished. The CVSS is a set of metrics used to quantitatively compare and
describe different vulnerabilities using attributes such as ease of exploitation and the
consequence of successful exploitation. The characteristics of a High vulnerability
were informally translated to “There is full impact on confidentiality, integrity and
availability”. The characteristics of a Medium vulnerability were informally translated
to “There is partial impact on confidentiality, integrity”. As such, a High severity
vulnerability should in general provide a greater opportunity for successful code
injection attacks then a Medium severity vulnerability.

NX, access and the severity of the vulnerability exploited are all believed to affect
the probability that successful arbitrary code execution is in the state yes, i.e. how
probable it is to succeed with executing code remotely on a machine with the chosen
defense mechanisms.

An overview of the chosen variables and their possible states is shown in Fig. 1.

Figure 1: Studied variables and their possible states.

4 Expert assessment methodology

This section describes the respondents of the study, the cyber defense exercise, and
the carried out questionnaire.

4.1 The respondents and the cyber defense exercise

The preferred population for assessing this type of data is IT security practitioners
(such as professional pen-testers) or security researchers. Respondents of this type
should be able to give assessments regarding how important the studied variables are
as they have practical experience from performing the cyber attack in question under
different conditions.

736 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

This study describes a survey which was handed out before the start of a cyber
defense exercise named Baltic Cyber Shield. The exercise was managed at the
Cooperative Cyber Defense Centre of Excellence in Tallinn, Estonia. Its virtual
battlefield was designed and hosted by the Swedish Defence Research Agency with
the support of the Swedish National Defence College. The environment was set to
mimic a typical critical information infrastructure with elements of supervisory
control and data acquisition. The exercise included a sixteen person strong red team
(i.e. attackers), six blue teams (i.e. defenders) of 6-10 people per team, a white team
(i.e. game management), a green team (i.e. technical infrastructure management) and
one white observer per team. The majority of the exercise’s participants were
computer security specialists and some were computer security researchers. They
were affiliated with various northern European governments, military, private sector
and academic institutions. The interested reader is referred to [Geers, 10][Holm, 11]
for more thorough descriptions of the exercise.

The survey was distributed to all blue team and red team members. A sample of
fifteen respondents from the cyber defense exercise fully completed the survey and
thus provides the empirical data for this study. Members from all teams except one
blue team and the red team answered the survey. Respondent ages ranged from 26 to
53 years, with a mean of 33 years. The respondents were asked to grade their general
expertise in the IT-security domain from 1 = no expertise to 5 = very high expertise.
The respondents’ self-assessed expertise ranged from no expertise (1 respondent) to
very high expertise (3 respondents), with a mean of 3.33.

4.2 The questionnaire

The respondents were asked to specify the probability of carrying out successful
arbitrary code execution attacks given all possible combinations of the three examined
variables. The probability that successful arbitrary code execution is in the state yes
was assessed through a discrete scale of 0-100 percent. Hence, the answer 0 percent
means that there is no possibility of a successful attack and the answer 100 percent
means that the attack is certain to succeed. Due to the complexity of the question
format each question was, as recommended by [Garthwaite, 05], accompanied by a
figure describing the scenario. Respondents were also required to state the confidence
of their answers on a scale from 1 (very low confidence) to 5 (very high confidence).

The survey was composed of five main parts: (i) introductory letter, (ii)
respondent background, (iii) respondent training, (iv) probability assessments, and (v)
importance of other variables. In the final part of the survey, (v), the respondents were
asked whether there were any additional important factors, not in the study. Survey
training is something of particular importance when trying to assess information for
complex questions, to ensure that respondents have correctly interpreted the topic of
interest [Garthwaite, 05]. This survey included a training section, familiarizing the
respondents with several concepts: the question format and the scales used, the overall
scenario and the CVSS.

4.3 Implicitly defined variables

As stated in Sect. 3, there are numerous variables that are of importance to the
probability of successful remote code execution attacks. The survey only explicitly

737Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

defined the state of three variables. However, the questions were formulated in a way
that implicitly fixed other relevant variables. The exact formulation was “For the
coming questions, assume that you are to carry out an arbitrary code execution attack
against a service running on a machine in one of the blue team’s networks. Also
assume that you can connect the machine and the service in question, i.e. you have
access to the service’s LAN.”

As all respondents had been given previous access to the network architecture,
had equal knowledge of the scenario and therefore should have pictured the same
general network and defense mechanisms, this overall description effectively fixed
the states of all variables of importance.

4.4 Method for analysis of expert assessments

A designed experiment in the shape of a complete factorial design [Montgomery, 08]
was employed as main means of gathering data. Designed experiments concern
extraction of a maximum amount of unbiased information regarding the factors
affecting a process from as few observations as possible [Montgomery, 08]. This is a
method that is traditionally employed in observational studies but which is equally
potent when eliciting information through questionnaires [Gable, 94].

A complete experimental design means that every possible variable-state
combination is tested. In the context of the present study with three variables, each
with two states, there are 23 possible combinations to consider (cf. Figure 1). Studying
all possible combinations enables analysis on how different combinations of variables
and states affect the outcome. Such analysis is very important as the outcome in most
cases depend on combinations of factors. For example, in the context of detecting
SQL injection vulnerabilities [Antunes, 10]: If white-box testing in general detects
23% and black-box testing detects a mean of 63% of the existing vulnerabilities then
the combination of these approaches are not likely to detect a mean of 89% of the
existing vulnerabilities. It is more likely that running two such static based detection
techniques finds roughly the same security issues, or perhaps, that one detects a subset
of the other approach (detection rate by black-box tools is a subset of detection rate by
white-box tools). As such it is naturally very valuable to study the importance of a
variable when it is coupled with other variables.

When analyzing results gained through designed experiments it is important to
use sound methodology and statistical techniques [Montgomery, 08]. That is, to
analyze the results critically in terms of e.g. distribution assumptions (potential lack
of fit) and strength of formulated hypotheses. Recommended such statistical tools
include QQ-plots, ANOVA and regression analysis [Montgomery, 08]. These tools
are described below.

QQ-plots are used to assess the distribution of data sets, e.g. to make sure that
statistical methods used are applicable to the distributions at hand [Warner, 08].

Analysis of variance, ANOVA, is a collection of tools used for statistical tests to
assess the significance of relations between variables. The null hypothesis of an
ANOVA, H0, is true if the differences between observed groups of data can be
described by chance and false if there are systematic differences large enough to
justify rejection of H0. The boundary associated with rejecting a null hypothesis is
generally described using a probability, p. Datasets containing groups of observed
data with differences large enough to reject the null hypothesis are statistically

738 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

significant. A commonly used probabilistic boundary is p < 0.05, which implies that
there is less than 5% probability for H0 to be true [Warner, 08].

A regression analysis provides an equation that models the expected outcome on
a quantitative variable Y from data on one or more variables X1, X2… Xn [Warner,
08]. A key task in regression analysis is to determine how well the identified equation
actually models the variation in a dataset. The measure of the spread of points around
the regression line can be presented using the coefficient of determination, R2, where
0 < R2 ≤ 1 [Warner, 08] . In other words, R2 measures how well the regression model
explains the variation in the dataset. An R2 of 1 (100%) means the model explains all
variation. The adjusted R2 is a version of R2 which also compensates for the number
of degrees of freedom [Montgomery, 08], and is therefore generally to be preferred
over the traditional R2.

5 Results and analysis of expert assessments

An overview of the survey responses regarding the probability of successful remote
code execution is given in Table 1. As can be seen, access seems to be the most
influential variable, while presence of non-executable memory (NX) seems to be of
minor importance. The normal distribution of the eight studied scenarios was
determined using QQ-plots.

Table 1: Studied scenarios and their results (in probability of success (%)). LCI: 95%
Lower Confidence Interval. UCI: 95% Upper Confidence Interval.

Scenario NX Access Exploit Mean Stdev LCI UCI Samples

1 Yes Yes High 85.6 8.3 81.4 89.8 15

2 Yes Yes Medium 74.6 11.5 68.6 80.7 15

3 No Yes High 81.2 14.5 73.9 88.6 15

4 No Yes Medium 65.7 14.3 58.5 72.3 15

5 Yes No High 54.7 25.4 41.8 67.5 15

6 Yes No Medium 42.9 21.7 31.9 53.9 15

7 No No High 52.3 30.2 37.0 67.6 15

8 No No Medium 43.7 28.5 29.2 58.1 15

As all possible combinations (23) between the studied variables (non-executable

memory (NX), access and available exploits) were evaluated it was possible to
analyze the results using traditional experimental design techniques [Montgomery,
08] (cf. Sect. 4.4), treating the respondents’ answers as the experiment’s outcome.
The experimental design was as described in Sect. 4.4 analyzed through QQ-plots,
ANOVA, regression analysis and evaluation of model assumptions through an
analysis of residuals. No problems regarding residual lack of fit (e.g. faulty

739Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

distribution assumptions) were found, and the model assumptions should thus not be
rejected.

A statistical analysis of the experts’ assessments (cf. Table 2) shows that both
access (p < 0.0001) and the severity of the exploited vulnerability (p = 0.055) are of
importance for successful remote code executions value. However, non-executable
memory is not seen as important by the respondents (p = 0.32). Furthermore, there are
no seemingly important relations between any of the studied variables (NX, access
and exploit), suggesting that the influence of these variables on successful remote
code execution are in fact independent from one another. Equation 1 describes how
the most important variables; Access (A) and the Severity of the exploited
vulnerability (E), relate to the probability of successful remote code execution (P).

P = 62.59 + 14.21 * A + 3.69 * E (1)

The value of A is {No access, Access} = {-1, 1} and the value of E is {Medium,
High} = {-1, 1}. The chosen regression model (cf. Equation 1) has an adjusted R2 of
0.32 which can be considered decent but not great. The regression model suggests that
it will be quite likely to succeed with a remote code execution, even if there only is an
exploit for a Medium vulnerability available and the attacker does not have access
(44.7% probability), and highly probable if there is an exploit for a High vulnerability
available and the attacker has access (80.5% probability).

Table 2: Results from the designed experiment.

Source p-value

NX 0.32

Access < 0.0001

Exploit 0.055

NX-Access 0.44

NX-Exploit 0.32

Access-Exploit 0.13

NX-Access-Exploit 0.11

Table 3 describes how certain the experts were for the different scenarios (on a

scale from 1 to 5). The experts are overall fairly certain: no confidence interval goes
below 2.5 (out of 5). Furthermore, all confidence intervals in Table 3 largely overlap
and there is thus no reason to believe that the importance of any scenario or variable
is more difficult to assess than another.

740 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

Table 3: How certain the experts were for the different scenarios (on a scale from 1 to
5). LCI: 95% Lower Confidence Interval. UCI: 95% Upper Confidence Interval.

Scenario NX Access Exploit Mean Stdev LCI UCI Samples

1 Yes Yes High 3.5 1.5 2.8 4.3 15

2 Yes Yes Medium 3.4 1.3 2.7 4.1 15

3 No Yes High 3.6 1.2 3.0 4.2 15

4 No Yes Medium 3.2 1.1 2.7 3.8 15

5 Yes No High 3.1 1.2 2.5 3.7 15

6 Yes No Medium 3.1 1.1 2.5 3.6 15

7 No No High 3.3 1.0 2.8 3.9 15

8 No No Medium 3.3 1.3 2.6 4.0 15

6 Observations of actual attacks

An important aspect when using expert judgment is to evaluate the reliability of the
provided information. One such method is to use the validity-based approach, to
compare an actual outcome to an expert’s assessment [Hoenig, 85]. This method is
appealing in its simplicity. However, this approach is often impractical as experts are
needed in situations where correct answers seldom exist [Gigerenzer, 99].

The exercise featured observations of actual attacks against the systems which
were the focus of the expert study. However, the systems in the exercise were
identical in terms of the variable states in the prediction model. As such, it is possible
to use the validity based approach to study the accuracy of the expert prediction
model – however, only a single scenario (scenario 3, cf. Table 1) could be studied.

6.1 Methodology and data collection for observations of attacks

Actual observations of attacks were collected through three sources of data captured
during the exercise: network data, red team attack logs and white team observer logs.
This chapter describes these sources of data.

Only successful compromises in one of network zone types, the demilitarized zone
(DMZ), were captured. This was done due to that the DMZ environment was static in
terms of what services (and versions of them) that were required to be operated.
Furthermore, services on systems in the DMZ were directly reachable by attackers,
making these systems good candidates for the present study. Table 4 describes the
seven systems in the DMZ in terms of operating systems and which services that were
needed to be operational and externally accessible

Also, one of the blue teams configured their firewall to block all traffic to and
from the DMZ (due to a misunderstanding of the exercise reward system). These data
points are excluded to increase the overall data quality.

741Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

Table 4: Studied systems in terms of observations of actual code injection attacks.

System Operating System Services

External
Firewall Debian 5.04 (lenny/stable) HTTP, SSH

DNS + NTP Debian 4.0r1 DNS, FTP, NTP, SSH

E-mail Debian 4.0r1
HTTP, IMAP, POP3, SMTP,
SSH

Customer Portal Debian 4.0 etch/oldstable HTTP, HTTPS, SMTP, SSH
Public Website Win Server 2003 FTP, HTTP, HTTPS, RFB, SSH

Historian Win Server 2000 SP4 FTP, HTTP, RFB, SMTP, SSH

News CentOS 5.4 HTTP, SSH

TCP-dump sniffers were placed in all blue team networks in such a fashion that

all network traffic in and out of all the different network zones was captured. The
resulting .pcap files were then run through the intrusion detection system Snort
[Sourcefire, 11] to assess all malicious traffic, resulting in approximately 3,000,000
alarms. Attackers used dynamic IPs to hide their identities but as all utilized IPs were
uniquely mapped to the attackers it was possible to identify the attackers through their
corresponding static MAC addresses. Due to the possibility of false alarms generated
by network traffic of the blue teams’ only traffic originating from attacker MAC
addresses was studied. Thus, the possibility of assessing attacks from compromised
machines was lost in order not to compromise the data quality. However, as the large
majority of attacks originated from attacker MACs this is estimated to be a minor
issue. Of the 3,000,000 original alarms approximately 100,000 corresponded to traffic
from attacker MAC addresses. Of these 100,000 alarms approximately 19,000
corresponded to Snort signatures for arbitrary code execution attempts. As Snort
generally give multiple alarms for a single exploit an algorithm was used to elicit
unique arbitrary code execution attacks. This algorithm involved checking if there
were multiple alarms originating from a specific MAC address against a specific
destination IP and a specific destination port (e.g. 21 - FTP) within less than 30
seconds. If yes, these alarms were aggregated to unique attacks. This resulted in a set
of 169 attempted code injection attacks.

While probing and attempted intrusions could be derived from the network data,
successful attacks could not. This due to that it is very difficult to differentiate
attempted intrusions from successful intrusions through Snort. For example, one
reason it that successful attacks often carried payloads (e.g. terminals) that used
encrypted means of communication. Successful attacks were instead identified from
logging by the red team and observers. As part of the exercise an important objective
for the red team was to take a screen capture every time they managed to compromise
a system. Additionally, observers with the objective to log successful attacks were
present at the location of the red team to log any successful intrusions. Both of these
datasets were used to identify successful attacks. Also, a single system could be
compromised several times as the blue teams often were able to regain control over

742 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

previously compromised systems. The data set includes a total of 56 successful
intrusions in the DMZ, not counting the successful intrusions against the blue team
with the misconfigured firewall.

Unfortunately, as the red team and observers sometimes did not note which
particular service and vulnerability that was exploited observations could only be
assessed on a system level rather than a service level as was the viewpoint presented
in the survey to the respondents (cf. Sect. 4). If each exploited service and
vulnerability had identical properties this would not be an issue – the probability of
success against a system would simply correspond to a mean of a set of representative
attacks against services and vulnerabilities on a particular system.

While all services in the DMZ had CVSS high severity vulnerabilities, not all
were accessible by the attackers as regular users of them. As such, there could be
slight reliability issues if one would simply regard the observed success rates as
strictly representative of the topic of the present study; any interpretation of the
comparisons between observations and estimations by respondents need take this fact
into account. However, we believe that while this clearly is an issue, the systems were
fairly similar in terms of the studied variables and any reliability problems regarding
comparisons between actual and perceived attack rates should as such be limited.

6.2 Observed attacks

An overview of the results regarding variable states for the systems in the DMZ, and
the observed success rates of code injection attacks against these systems, can be seen
in Table 5. The success rates for attacks against the systems were highly varied,
ranging from 5.6% (DNS + NTP) to 77.8% (External Firewall). This suggests that
there are variables of great importance that are not modeled in Table 5.

Table 5: Variable states and observed success rates of code injection attacks against
the systems in the DMZ.

System NX Access* Exploit
Attempted

attacks
Successful

attacks

Probabilit
y of

success
External
Firewall

No Yes/No High 9 7 77.8%

DNS + NTP No Yes/No High 18 1 5.6%

E-mail No Yes/No High 23 8 34.8%

Customer
Portal

No Yes/No High 16 9 56.3%

Public Website No Yes/No High 40 17 42.5%

Historian No Yes/No High 42 9 21.4%

News No Yes/No High 21 5 23.8%

*Variable state not known.

743Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

6.3 A comparison of expert assessments and observations

The regression model elicited by the respondents of the study (cf. Equation 1) predicts
an 80.49% probability of success given the variable states in Table 5, a number out of
bounds for the range of the observed success rates. There are many possible reasons
behind this, with four likely being: (i) The experts had another view of what is
comprised by an ‘attack’. (ii) The experts in general pictured the External Firewall as
the target in question. Given such a scenario, the prediction model is of high quality –
at least for this particular scenario. (iii) Some would-be experts were not experts after
all. (iv) There are other variables than the three evaluated in this study that are of
great importance towards the success rate of code injection attacks.

The scope of the attempted arbitrary code execution attack was not thoroughly
detailed in the questionnaire (cf. Sect. 4.3). As such, some respondents might have
viewed an attack as a set of exploits (or a single exploit which is tested several times
with different tunings) rather than an individual run of a single exploit. Given such a
viewpoint, the actual success rate against each system in the DMZ was in fact 100%
(i.e., all systems were compromised at least once).

Assuming that the respondents did view an attack as a single run of an exploit;
the estimates by the 15 respondents for the tested scenario show that their
approximations range from 50% to 99%. As such, it is likely that each expert had
different experiences from code injection attacks given systems with properties such
as those in the DMZ. This supports the simple logic that the experts most likely did
not all picture the External Firewall as the target of the attack. More likely, the experts
pictured a more general system representative of the exercise as a whole, as depicted
in the questionnaire (cf. Sect. 4.3) Furthermore, some experts were closer to the mean
of the actual success rates, 33.1%, than others. The most accurate expert, which
perceived a success rate of 50% for the compared scenario, had 13 years of
professional experience from working with IT security and had a self-assessed
competence score of 3 out of 5. There were many respondents that were better experts
according to these simple metrics – something which perhaps says something of their
usefulness. This hint towards that some experts indeed are more accurate than others
and as such, that the best result is gained through the usage of more potent expert
scoring methods.

The most significant result of the study however lies in the variance given by both
the experts’ and the observational data. It is clear that several significant variables
were not modeled in this study. In other words, there is a need to detail more variables
in order to get a satisfactory prediction model. This is elaborated in Sect. 7.

7 Discussion

This section involves a critical discussion of the results obtain in this study. The first
section includes a discussion of the variables tested in the study; the second section
features a discussion on the topic of reliability and validity.

744 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

7.1 Variables and their importance

Both access and the severity of the exploited vulnerability are seen as important by
the experts. However, non-executable memory is not seen as relevant. This can be due
to respondents being able to tune the exploits to counter this defense mechanism. That
is, a stack-smashing exploit can quite easily be tuned into an arc-injection (i.e. return-
into-libc) [Pincus, 04] exploit, and if this is the case any non-executable memory
defense is rendered next to useless. However, it is frequently pointed out that non-
executable memory is a potent defense if combined with other countermeasures, such
as address space layout randomization [PaX, 03] [Shacham, 04] or canaries such as
Stackguard [Cowan, 98]. Thus, the reason why non-executable memory did not turn
out as significant during this study could be that the states of the numerous other
important variables in place during the cyber defense exercise were fixed in such a
way that enabling non-executable memory would not make any difference.

The respondents were also asked to detail any missing variables they perceived as
important to the probability of successful remote code execution, both in the survey
(cf. Table 6), and through informal discussions after the cyber defense exercise. It is
notable that no respondents listed the same missing variables. However, the
discussions and variance in estimations made it clear that several variables of great
practical importance should be evaluated further, for example address spaced layout
randomization. This is also contingent to the findings gained from observations of
actual attacks (cf. Sect. 6) – there is a need to detail more variables in order to reach
satisfactory data quality.

Table 6: Missing variables.

Variable Frequency

System monitoring 1

System updates 1

Application sandboxing 1

Unknown vulnerability 1

Service misconfiguration 1

As such a very important result gained through this study is that the variables

studied are perceived to be fairly independent from each other. This suggests that it
might be possible to reduce the number of studied scenarios without decreasing the
data quality of the resulting prediction model. In other words, it might not be
necessary to study the dependencies between each and every variable – especially not
those in the present study. It could be useful to qualitatively estimate any
dependencies beforehand and use such knowledge when gathering quantitative data;
giving a means to collect information on significantly more variables and/or variable
states.

745Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

7.2 Validity and reliability

While there were no formal quantitative ways of capturing the reliability of the
questionnaire tool, no respondent had any major issue answering any survey question.
However, one thing that came up during the informal discussions was that
respondents requested the possibility to answer through probability distributions
instead of point estimates. Also, the survey was based on a network which the
respondents had practical experience from. Numerous variable states were therefore
not specified in the survey but were instead known through the respondents’
familiarity with the scenario. While this might increase the reliability of the study (by
giving all respondents a common understanding of the scenario) it has negative
impact on the external validity. Several important variables were static and it is
therefore difficult to generalize the results to a more general case, e.g. another
enterprise environment. Thus, while the results might be valid and reliable for a cyber
defense exercise of this type and the computer network used in it they are not likely to
maintain validity for a more general case. We believe, however, that these results
should give a clear hint about the relative importance of the studied variables, even
for a more general case.

The comparisons between estimations and observations for the scenario
represented by access to the service, an exploit for a high vulnerability available, and
without NX, show that the prediction model’s estimation differs significantly from the
mean of the observations (80.49% compared to 33.1%). As-is, the prediction quality
is as such likely not very reliable. However, results also show that a better prediction
model could be gained if one would select the best expert(s) or weight the quality of
their judgment according to some well-defined scoring system. Two such models
which could provide adequate results are Cochran-Weiss-Shanteau [Weiss, 03] and
Cooke’s classical method [Cooke, 91]. Both methods however require more details
than what is available in this study, and are thus not applicable to this particular case.
It would however be very interesting to conduct future studies according to such a
scheme and evaluate if greater prediction model data quality is obtained.

Additionally, the comparisons show that there likely is a need to detail more
variables in order to reach satisfactory data quality. One such variable could be
ASLR, as discussed in Sect. 7.1. Another such variable is a more thorough definition
of an attack (cf. Sect. 6.2).

8 Conclusions and future work

Among the variables addressed in this study, experts perceive user access to the
service that is to be exploited as the most important studied factor for successful
remote code execution. A readily available exploit for a High severity vulnerability as
defined by the CVSS gives a greater success rate than a readily available exploit for a
Medium severity vulnerability. The presence of non-executable memory is not
perceived as important by the experts, presumably due to lack of other related
countermeasures such as address space layout randomization.

This study shows that it is possible to obtain approximate estimates from security
experts on issues that are difficult to evaluate through experiments. The experts tend
to agree with each other, indicating that they are experts in the domain [Einhorn, 74].

746 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

Comparisons between estimates and observations of actual code injection attacks
however show that there is a need to value the judgment of more competent experts
higher than those with lower competence, perhaps through the usage of a proper
scoring function such as Cooke’s classical method [Cooke, 91]. The results also show
that there is a need to detail more variables then the ones studied in this paper to
assess sufficient prediction quality.

Furthermore, the studied variables are perceived to have independent effect on the
likelihood of successful code injection attacks which could enable analysis of a
greater number of variables without significantly increased data collection costs or
decreased quality of the resulting prediction model. As such, future studies involving
expert judgment should apply a proper scoring system and include more variables in
the study, and dependencies do perhaps not need to be studied.

Finally, we believe that there is a great need for more quantitative studies
assessing the importance of different countermeasures, not only for arbitrary code
execution attacks, but for any cyber attack.

References

[Antunes, 10] Antunes, N. and Vieira, M. Benchmarking Vulnerability Detection Tools for
Web Services. IEEE, 2010.

[Baratloo, 00] Baratloo, A. and Singh, N. Transparent run-time defense against stack smashing
attacks. Proceedings of the annual conference on USENIX, (2000).

[Campbell, 03] Campbell, K., Gordon, L.A., Loeb, M.P., and Zhou, L. The economic cost of
publicly announced information security breaches: empirical evidence from the stock market.
Journal of Computer Security 11, 3 (2003), 431–448.

[Cavusoglu, 04] Cavusoglu, H., Mishra, B., and Raghunathan, S. The effect of internet security
breach announcements on market value: Capital market reactions for breached firms and
internet security developers. International Journal of Electronic Commerce 9, 1 (2004), 70–104.

[Chiueh, 05] Chiueh, L.-chung L.T.-cker. Checking Array Bound Violation Using
Segmentation Hardware. 2005 International Conference on Dependable Systems and Networks
(DSN’05), (2005), 388-397.

[Cooke, 91] Cooke, R.M. Experts in uncertainty: opinion and subjective probability in science.
Oxford University Press, USA, 1991.

[Cooke, 04] Cooke, R. and Goossens, L. Expert judgement elicitation for risk assessments of
critical infrastructures. Journal of Risk Research 7, 6 (2004), 643–656.

[Cowan, 98] Cowan, C., Pu, C., Maier, D., et al. StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. Proceedings of the 7th conference on USENIX Security
Symposium-Volume 7, Usenix Association (1998), 5–5.

[Cowan, 01] Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., and
Lokier, J. FormatGuard: Automatic protection from printf format string vulnerabilities.
Proceedings of the 10th conference on USENIX Security Symposium-Volume 10, USENIX
Association (2001), 15–15.

[Cowan, 03] Cowan, C., Wagle, P., Pu, C., Beattie, S., and Walpole, J. Buffer Overflows :
Attacks and Defenses for the Vulnerability of the Decade. Foundations of Intrusion Tolerant
Systems, 2003 [Organically Assured and Survivable Information Systems], (2003), 227-237.

747Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

[Dor, 01] Dor, N. Cleanness checking of string manipulations in C programs via integer
analysis. Static Analysis, (2001).

[Einhorn, 74] Einhorn, H. Expert judgment: Some necessary conditions and an example.
Journal of Applied Psychology, (1974).

[Erlingsson, 99] Erlingsson, U. and Schneider, F.B. SASI enforcement of security policies: A
retrospective. Proceedings of the 1999 workshop on New security paradigms, ACM (1999),
87–95.

[Erlingsson, 07] Erlingsson, U. Low-level Software Security : Attacks and Defenses Low-level
Software Security : Attacks and Defenses. Redmond, WA, USA, 2007.

[Forrest, 96] Forrest, S., Hofmeyr, S.A., Somayaji, A., and Longstaff, T.A. A sense of self for
unix processes. In Proceedings of the IEEE Symposium on Security and Privacy, Published by
the IEEE Computer Society (1996), 120-128.

[Frykholm, 00] Frykholm, N. Countermeasures against buffer overflow attacks. RSA Tech
Note, (2000), 1-9.

[Gable, 94] Gable, G.G. Integrating case study and survey research methods: an example in
information systems. European Journal of Information Systems 3, 2 (1994), 112–126.

[Garthwaite, 05] Garthwaite, P.H., Kadane, J.B., and O’Hagan, A. Statistical methods for
eliciting probability distributions. Journal of the American Statistical Association 100, 470
(2005), 680-701.

[Geers, 10] Geers, K. Live Fire Exercise: Preparing for Cyber War. (2010).

[Gigerenzer, 99] Gigerenzer, G. and Todd, P.M. Simple heuristics that make us smart. Oxford
University Press, USA, 1999.

[Haimes, 2011] Haimes, Y.Y. Accident Precursors, Terrorist Attacks, and Systems
Engineering. NAE Workshop, (2003).

[Hoenig, 85] Hoenig, M. Drawing the Line on Expert Opinions. J. Prod. Liab. 8, (1985), 335–
336.

[Holm, 11] Holm, H., Sommestad, T., Almroth, J., and Persson, M. A quantitative evaluation of
vulnerability scanning. Information Management & Computer Security, 19, 4 (2011).

[Homer, 09] Homer, J., Manhattan, K., Ou, X., and Schmidt, D. A Sound and Practical
Approach to Quantifying Security Risk in Enterprise Networks. Citeseer, Citeseer (2009).

[Jim, 02] Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang, Y. Cyclone:
A safe dialect of C. USENIX, (2002), 275-288.

[Joyce, 92] Joyce., R.H. and B. Purify: Fast detection of memory leaks and access errors.
Winter USENIX Conferenc, (1992), 125--136.

[Kc, 03] Kc, G., Keromytis, A., and Prevelakis, V. Countering code-injection attacks with
instruction-set randomization. Proceedings of the 10th ACM conference on Computer and
communications security, (2003), 280.

[Madan, 02] Madan, B.B., Gogeva-Popstojanova, K., Vaidyanathan, K., and Trivedi, K.S.
Modeling and quantification of security attributes of software systems. International
Conference on Dependable Systems and Networks, IEEE Computer Society (2002).

748 Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

[Mell, 07] Mell, P., Scarfone, K., and Romanosky, S. A complete guide to the common
vulnerability scoring system version 2.0. Published by FIRST-Forum of Incident Response and
Security Teams, (2007), 1-23.

[Montgomery, 08] Montgomery, D.C. Design and analysis of experiments. John Wiley & Sons
Inc, 2008.

[Newsome, 05] Newsome, J. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. Network and Distributed System
Security, May 2004 (2005).

[One, 96] One, A. Smashing the stack for fun and profit. Phrack magazine 7, 49 (1996).

[PaX, 03] PaX Team. PaX address space layout randomization (ASLR). 2003.

[Perens, 11] Perens, B. Electric fence 2.0.5. 2011. http://perens.com/FreeSoftware/.

[Pincus, 04] Pincus, J. and Baker, B. Beyond stack smashing: Recent advances in exploiting
buffer overruns. Security & Privacy, IEEE 2, 4 (2004), 20–27.

[Ryan, 10] Ryan, J.J.C.H., Mazzuchi, T.A., Ryan, D.J., Lopez de la Cruz, J., and Cooke, R.
Quantifying information security risks using expert judgment elicitation. Computers &
Operations Research, (2010).

[Shacham, 04] Shacham, H., Page, M., Pfaff, B., and Goh, E. On the effectiveness of address-
space randomization. ACM conference on, (2004), 298.

[Small, 97] Small, C. A tool for constructing safe extensible C++ systems. Proceedings of the
3rd conference on USENIX Conference on Object-Oriented Technologies, USENIX
Association (1997), 175-184.

[Sommestad, 10] Sommestad, T., Ekstedt, M., and Johnson, P. A probabilistic relational model
for security risk analysis. Computers & Security 29, 6 (2010), 659–679.

[Sourcefire, 11] Sourcefire. Snort. 2011. An intrusion-detection model.

[Taylor, 02] Taylor, C., Krings, A., and Alves-Foss, J. Risk analysis and probabilistic
survivability assessment (RAPSA): An assessment approach for power substation hardening.
Proc. ACM Workshop on Scientific Aspects of Cyber Terrorism,(SACT), Washington DC,
Citeseer (2002).

[Warner, 08]Warner, R.M. Applied statistics: From bivariate through multivariate techniques.
Sage Publications, Inc, 2008.

[Weiss, 03] Weiss, D.J. and Shanteau, J. Empirical assessment of expertise. Human Factors:
The Journal of the Human Factors and Ergonomics Society 45, 1 (2003), 104.

[Wilander, 03] Wilander, J. and Kamkar, M. A comparison of publicly available tools for
dynamic buffer overflow prevention. Proceedings of the 10th Network and Distributed System
Security Symposium, Citeseer (2003), 149–162.

[Xenitellis, 03] Xenitellis, S.D. Identifying security vulnerabilities through input flow tracing
and analysis. Information Management & Computer Security 11, 4 (2003), 195-199.

[Younan, 08] Younan, Y. Efficient countermeasures for software vulnerabilities due to memory
management errors. status: published, 2008.

749Holm H., Sommestad T., Franke U., Ekstedt M.: Success Rate ...

