
RESTifying a Legacy Semantic Search System: Experience

and Lessons Learned

Guillermo Vega-Gorgojo, Eduardo Gómez-Sánchez

Miguel L. Bote-Lorenzo, Juan I. Asensio-Pérez

(School of Telecommunications Engineering, University of Valladolid

Paseo de Belén 15, 47011 Valladolid, Spain

{guiveg, edugom, migbot, juaase}@tel.uva.es)

Abstract: The REST architectural style pursues scalability and decoupling of applica-
tion components on target architectures, as opposed to the focus on distribution trans-
parency of RPC-based middleware infrastructures. Ongoing debate between REST and
RPC proponents evidences the need of comparisons of both approaches, as well as case
studies showing the implications in the development of RESTful applications. With this
aim, this paper presents a revamped RESTful version of a legacy RPC-based search
system of educational tools named Ontoolsearch. The former version suffers from re-
duced interoperability with third-party clients, limited visibility of interactions and has
some scalability issues due to the use of an RPC-based middleware. These limitations
are addressed in the RESTful application as a result of applying REST constraints and
using the Atom data format. Further, a benchmarking experiment showed that scal-
ability of the RESTful prototype is superior, measuring a ∼3 times increase of peak
throughput. In addition, some lessons learned on RESTful design and implementation
have been derived from this work that may be of interest for future developments.

Key Words: RESTful web services, remote procedure call, semantic search, educa-
tional tools

Category: C.2.4, H.3.3, K.3.1

1 Introduction

Over the past few years, the Web has evolved into a computing platform with

the advent of websites providing search, shopping, auction or encyclopedia ser-

vices to name a few [Raman, 2009]. These services rely on Representational

State Transfer (REST) [Fielding, 2000], the architectural style underlying the

Web. REST defines a set of constraints that induce some desirable properties on

target architectures. More specifically, REST attempts to minimize latency and

network communication, while at the same time maximizing the independence

and scalability of application components [Fielding and Taylor, 2002]. As a re-

sult, REST enables the development of highly flexible, decoupled and scalable

distributed applications as exemplified by the Web itself.

Conversely, much of the work in the distributed systems research field has

focused on hiding the complexity of distribution as much as possible from ap-

plication programmers [Coulouris et al., 2005, ch. 1]. This hiding is referred to

Journal of Universal Computer Science, vol. 18, no. 2 (2012), 286-311
submitted: 23/3/11, accepted: 16/1/12, appeared: 28/1/12  J.UCS



as transparency and is typically achieved through the use of a middleware in-

frastructure [Bernstein, 1996]. Some remarkable middleware examples are the

Common Object Request Broker Architecture (CORBA) [OMG, 1991], Enter-

prise Java Beans [Sun, 1999] and Web Services [Curbera et al., 2002]; all of them

are based on the remote procedure call (RPC) abstraction which aims to make

local and remote invocations indistinguishable from the programmer’s point of

view. Since the middleware infrastructure hides all the network communication,

it allows developers to write exactly the same code for either type of call.

Despite programmer convenience of RPC-based middleware, [Waldo et al.,

1994] and others convey that such attempts lead to the development of sys-

tems that are fragile, prone to errors and restricted in scale due to the differ-

ences between local and distributed computing. Remarkably, [Vinoski, 2008a]

and [Richardson and Ruby, 2007] claim that these limitations can be addressed

applying REST constraints. While the debate between RPC and REST pro-

ponents remains vivid [Pautasso et al., 2008], specially in the blogosphere, the

number of RESTful web services follows a steady growth led by major Web

players such as Google or Amazon.

Although REST claims seem to be accepted nowadays, there are some in-

dications that the industry have not yet fully adopted – or even understood –

REST principles. For instance, [Maleshkova et al., 2010] presents a recent survey

of Web APIs on the Web, finding that only one third can be considered REST-

ful, almost half of the Web APIs are RPC-based, while the remaining 20% are

considered hybrid – i.e. RESTful in purpose, but failing to comply with HTTP

semantics. Furthermore, [Pautasso and Wilde, 2011, p. 5] warns that the current

landscape of REST is still in development, so more research efforts are required

to facilitate the design and implementation of truly RESTful systems, as well as

to test their design qualities in a systematic way. As a result, there is a need to

assess in practice the intended benefits of REST, as well as to provide more pre-

cise guidelines for the development of RESTful web services. With this aim, the

authors present here a revamped RESTful web version of an existent search sys-

tem of educational tools named Ontoolsearch [Vega-Gorgojo et al., 2010]. This

system was conceived to allow teachers to discover tools for supporting their

learning scenarios. Note that search systems like Ontoolsearch are specially ap-

pealing with the increasing use of technology in learning and teaching activi-

ties [Richardson, 2010], specially with the emergence of the Web 2.0 movement

[O’Reilly, 2005] and the proliferation of Web-based applications.

The original Ontoolsearch system is implemented as a client-server applica-

tion using the well-known Java Remote Method Invocation (Java RMI) [Sun,

2004], an RPC-based object-oriented middleware. Although this prototype of

Ontoolsearch has proved to be reliable for searching educational tools, there are

also some drawbacks due to the use of an RPC-based middleware. In particular,

287Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



the custom Java RMI server interface severely restricts the use of third-party

clients since these should be specifically designed for this purpose. Moreover,

there are some scalability issues of this version, thus limiting future plans of

using Ontoolsearch at a larger scale. In this regard, the REST architectural

style was considered a suitable alternative since it promotes both the interop-

erability and scalability of application components [Fielding and Taylor, 2002].

Therefore, this proposal can serve as an insightful case study to illustrate the

transition from a legacy application to a RESTful one, highlighting the techni-

cal merits and the encountered limitations. It should be noted that developing

a REST system entails the use of different abstractions and assumptions from

traditional RPC-style systems; consequently, a major contribution of this work is

to provide some guidelines and recommendations for REST design and develop-

ment based on the authors’ experience of refactoring a legacy RPC-based search

system, presented here as a case study. In addition, intended benefits of REST

are assessed in a feature evaluation and a benchmarking study by comparing the

RESTful version and the legacy RPC-based search system. Note that research

works aiming to assess REST benefits tackle this issue at a rather abstract level,

e.g. [Pautasso et al., 2008] and [Adamczyk et al., 2011]; in contrast, this work is

novel in the sense that REST benefits are assessed empirically in the context of

the presented case study.

The rest of this paper is organized as follows: section 2 briefly describes the

REST architectural style and the former version of Ontoolsearch, outlining its

limitations. Section 3 presents the new RESTful version of Ontoolsearch, includ-

ing some discussions and reflections about REST design and implementation.

Next, both versions are compared in a feature analysis study and a benchmark-

ing experiment in section 4. Then, section 5 draws some lessons learned derived

from this study. Finally, the main conclusions of the study are shown as well as

current research work.

2 Background

This section begins with an overview of the REST architectural style. Then, the

former version of the Ontoolsearch system is succinctly described, as well as the

limitations that have been identified.

2.1 The Representational State Transfer architectural style

Representational State Transfer (REST) [Fielding, 2000] is a software architec-

tural style consisting of components, connectors and data elements constrained

in their relationships in order to achieve a desired set of properties. Components

are processing elements that provide a transformation of data, while connec-

tors mediate communication among components by transferring data elements

288 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



without changes. In REST the main data element is the resource, the intended

conceptual target (e.g. a book) of a request, which has an addressable identifier

(e.g. a URL) and whose state can be exchanged among components through

representations (e.g. a PDF document).

The set of constraints defined in REST are: client-server architectural style,

stateless communication, cacheable, uniform interface, layered system and op-

tionally code on demand (see [Fielding, 2000, ch. 5] for a thorough discussion).

The rationale of these constraints is to minimize latency and network communi-

cation, while at the same time achieving scalability, independent deployment of

components and visibility of interactions. The key constraint for achieving those

goals is the uniform interface that is enforced to be the same in all component

interfaces. As a result of applying the principle of generality, the overall archi-

tecture is simplified and more decoupled, thus allowing clients and servers to

evolve independently.

A realization of the REST architectural style is the World Wide Web, demon-

strating the validity of REST pursued benefits for an Internet-scale, multi-

organization and anarchically scalable information system. In this regard, the

core architectural standards for the Web are Uniform Resource Identifier (URI)

[Berners-Lee et al., 2005] and Hypertext Transfer Protocol (HTTP) [Fielding

et al., 1999]: a URI is a sequence of characters that univocally identifies a re-

source, while HTTP is a stateless application protocol designed specifically for

the transfer of resource representations in the Web. Noteworthy, HTTP exem-

plifies the uniform interface constraint, defining a balanced set of methods –

primarily GET, PUT, POST and DELETE – for accessing resources.

With the success of the Web, a new breed of applications have appeared

using the Web as platform and following REST principles [Raman, 2009]; some-

times called RESTful web services [Richardson and Ruby, 2007], examples in-

clude mapping services, e.g. Google Maps1, blog publishing services, e.g. Word-

Press2, or online storage services, e.g. Amazon S33.

2.2 Former version of Ontoolsearch

Ontoolsearch [Vega-Gorgojo et al., 2010] is a search system of educational tools

specifically designed for teachers. In stark contrast to conventional search fa-

cilities, a novel feature of Ontoolsearch is the formulation of semantic searches

[Guha et al., 2003] for requesting tools, using the concepts defined in the On-

toolcole ontology [Vega-Gorgojo et al., 2008]. This way, it is possible to look for

tools with a specific functionality, either referring to a particular tool type, e.g. a

1 http://maps.google.com/
2 http://wordpress.org/
3 http://aws.amazon.com/s3/

289Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



Figure 1: Snapshot of the search user interface of Ontoolsearch during the for-

mulation of a query in which the user wants to find tools that can be employed

by groups to synchronously write a document and exchange text messages.

concept map tool, or specifying a set of tasks that should be supported, e.g. any

tool that allows a group to synchronously communicate exchanging text messages.

In order to meet teachers’ needs, the user interface was devised following a

participatory design strategy [Muller and Kuhn, 1993]. The agreed design offers

an innovative graphical direct manipulation interface, enabling the formulation of

semantic searches referred to the concepts defined in Ontoolcole (using tool and

task graphs for query formulation). With this approach, the aim is to simplify

the process of query construction, hiding the formalism and the implementation

details of the underlying ontology to teachers. Moreover, the representation of

visual elements in the user interface should allow the rapid communication of the

abstractions modeled in Ontoolcole, since humans are highly attuned to images

and visual information [Larkin and Simon, 1987]. Figure 1 shows a snapshot of

the search user interface during a query formulation process.

A prototype of Ontoolsearch was implemented in Java, following the well-

known client-server architectural style. The client component includes all the

290 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



user interface functionality for constructing queries and showing the results; in

addition, the client communicates with the server component to request tools

compliant with submitted queries. The server handles incoming requests ex-

tracting the query element, computes the results and sends them back to the

client component. The actual query processing is performed by a Description

Logics [Baader et al., 2003] reasoner attached with the tool dataset. Required

client-server communication is supported with the Java RMI object-oriented

middleware, encapsulating queries as Java objects and using HTTP tunneling

to bypass firewalls.

To evaluate this system, a group of 18 teachers was engaged in a formal

comparison study of Ontoolsearch with a keyword search facility based on the

well-known text search engine Lucene4. The main goal of the study was to as-

sess whether semantic searches with Ontoolsearch could be preferable to conven-

tional keyword-based searches in this context. Noteworthy, retrieval performance

was 31% better with Ontoolsearch in spite of participants’ previous experience

with keyword searches. Indeed, typical problems of keyword searches were de-

tected (specially synonymity), while teachers succeeded in formulating semantic

searches with Ontoolsearch. In this sense, they pointed out that graph brows-

ing facilitates the discovery of unknown tools and allows them to easily assess

tool functionalities. In contrast, this capability is difficult to achieve with key-

words since a search facility does not give clues about the constitution of the tool

database. Overall, these results suggest teachers are likely to adopt Ontoolsearch

for conducting tool searches (see [Vega-Gorgojo et al., 2010] for more details of

this study).

Beyond this evaluation, the Ontoolsearch system was made freely available

to the teacher community in November 2008, being sparsely employed to search

tools for educational settings. During this time, users have requested some new

features, namely, support keyword-based queries and tool browsing, that are

included in the RESTful version (see section 3).

2.3 Limitations of the former version of Ontoolsearch

Although the Ontoolsearch system has proved to be reliable during its operation

time, there are also some limitations that should be tackled:

1. Limited interoperability with third-party clients. RPC-based middlewares

are grounded on the definition of service interfaces composed of a set of op-

erations and their parameters. However, resulting interfaces inhibit general

reuse since only purpose-built clients can invoke them [Vinoski, 2008b]. For

this reason the authors offer a specific Ontoolsearch client to access the ser-

vice functionality. Nevertheless, Ontoolsearch client and server are tightly

4 http://lucene.apache.org/

291Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



coupled to a Java RMI interface, so a small change would require the re-

placement of deployed clients. Moreover, some teachers could prefer the use

of an existing client application for posing queries or visualizing the results,

instead of the provided Ontoolsearch client.

2. Performance and scalability issues. Since Ontoolsearch requires to operate

in an Internet environment, HTTP tunneling is employed to communicate

through firewalls and proxies. However, tunneling in Java RMI has a pro-

found impact on performance; [Juric et al., 2004] reports about an order

of magnitude worse. With respect to scalability, the fact that communi-

cation is stateful in Java RMI poses a bottleneck for scalability since the

server has to manage session state. While a performance boost is always

appreciated by users, scalability gains are of great importance to accom-

modate increases of the workload in the mid-term. In this regard, future

plans for Ontoolsearch include its deployment in Virtual Learning Envi-

ronments for supporting the discovery and integration of third-party tools

[Alario-Hoyos and Wilson, 2010], so scalability is a desired architectural prop-

erty to achieve.

3. Limited visibility of interactions. Keeping session state in the server makes

specially difficult to assess the nature of a request through the inspection of

interactions in Java RMI. Therefore, mediation, e.g. via a shared cache, and

monitoring of interactions in a communication exchange are extremely dif-

ficult to achieve [Vinoski, 2008a]. Moreover, limited visibility of interactions

precludes the creation of tool or search bookmarks in Ontoolsearch.

Since all these limitations are due to the use of an RPC-based middleware, an

architectural change was considered. Remarkably, some of the intended benefits

of REST apply to these limitations: (1) independent evolvability and enhanced

interoperability by means of REST uniform interface, (2) improved performance

and scalability through caching and stateless communication, and (3) visibility

of interactions, again due to the uniform interface and stateless communication

constraints. Therefore, all these limitations could be addressed by RESTifying

the Ontoolsearch system, which implied an architectural redesign and the devel-

opment of a new prototype.

3 A RESTful version of the Ontoolsearch system

In this section, the design of the RESTful version of Ontoolsearch is presented.

It follows a discussion of REST design, stressing its principles and implications.

Then, the new prototype of Ontoolsearch is presented, illustrating the transition

from a resource design to a RESTful system. This section finishes with some

reflections about the implementation of RESTful applications.

292 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



3.1 RESTful design of Ontoolsearch

The new version of Ontoolsearch has been designed to support the following

functionalities:

F1 Semantic search. As in the former version, the client component is in charge

of composing semantic queries, submitting them to the server component,

retrieving the results and performing the rendering. Correspondingly, the

server extracts the query for each request, computes the results and sends

them back to the client.

F2 Semantic search browsing. Teachers should be able to gather their submitted

searches and associated results, as well as allowing to share obtained results

with other users of the system. Therefore, the server has to maintain a record

of submitted searches that should be browsable. Note, however, that clients

are not allowed to delete previous searches.

F3 Keyword search. A set of keywords can be submitted to the server which

obtains the tool descriptions that match the query terms and sends the

results back. In this case support for browsing is not required, so the server

does not have to keep previous keyword searches.

F4 Tool browsing. Besides searching, browsing the tool dataset should be sup-

ported, allowing clients to browse the members of a tool category or the full

list.

Note that former version of Ontoolsearch only supported functionality F1,

while the remaining three are new. Moving to the design of the RESTful version,

the procedure defined in [Richardson and Ruby, 2007, ch. 4–6] has been followed;

it consists of a series of steps marked in bold face in the subsequent paragraphs,

together with the discussion of the design decisions that they involved in the

case of Ontoolsearch.

In the design process, Step 1 is figuring out the data set and Step 2

is splitting it into resources. According to this, the data model includes se-

mantic queries, keyword queries, tools, tool types and corresponding collections.

The resulting arrangement of resources can be shown pictorially in Figure 2,

grouping resources by their functionality. This same diagram illustrates Step 3,

naming the resources with URIs and Step 4, exposing a subset of the

uniform interface of the followed procedure; more details are given next for

each resource.

The Root resource is the main entry point of the application, returning a

welcome HTML page to web browsers accessing the service through a GET re-

quest. Note that the chosen URI of this resource is http://www.gsic.uva.

293Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



GETRoot

http://www.gsic.uva.es/ontoolsearch

GETSearchResults

/search?{query}

GET, POSTSemQueryList

/semsearch/queries

GETSemQuery

/{queryid}

GETSemResults

/results

GETToolList

/tools

GETTool

/{toolName}

GETToolTypeList

/tooltypes

GETToolType

/{toolType}

Semantic 
search

& semantic 
search 

browsing

Keyword 
search

Tool 
browsing

Figure 2: Resource design of the RESTful version of Ontoolsearch, including the

URI design and exposed HTTP methods for each resource type.

es/ontoolsearch and it contains hyperlinks to the core functionalities of On-

toolsearch: semantic search, semantic search browsing, keyword search and tool

browsing.

With respect to semantic search and semantic search browsing, the entry

point is the SemQueryList resource that represents the collection of the semantic

queries submitted to the system. This collection can be gathered by means of

a GET request, thus allowing users to browse the semantic queries and their

results in compliance with functionality F2. The creation of a new member of

the collection is handled by this resource through a POST request encapsulating

294 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



the submitted query. Success of this request triggers the creation of a SemQuery

resource as well as its subordinate SemResults with the results of the submitted

query. Again, the actual value of a semantic query or its results can be obtained

through a GET request to the target resource.

For handling keyword-based queries, SearchResults is the unique resource

employed, corresponding to a list of search results. Note that the query is an

integral part of the URI of SearchResults (see Figure 2), since the concep-

tual target of this resource is the set of tools that match the search criteria.

Such encapsulation of queries in URIs is an established practice in RESTful web

services5 [Richardson and Ruby, 2007, pp. 121–123]; however, heed that the ap-

proach taken in the precedent case is different, modeling semantic searches as

SemQuery resources. The rationale of this decision is to support semantic search

browsing, while keyword searches are not recorded (see the functional require-

ments above).

Concerning the functionality of tool browsing, it is achieved exposing the

resources ToolList, Tool, ToolTypeList and ToolType. ToolList corresponds

to the list of all the tools available in the dataset and each member of this set is a

Tool. Similarly, tool types, e.g. ConceptMapTool or VideoconferenceTool, can

be browsed by means of the ToolTypeList resource whose members correspond

to ToolType. Note that only the GET method is available for retrieving the value

of these resources, since users are not allowed to create new tools or tool types

(thus requiring POST or PUT requests).

At this stage the set of resources exposed by the RESTful version of On-

toolsearch is defined, Step 5 is deciding the representations that should

be accepted and served. Adhering to an existent and proven representation

format is specially important since it can reduce the design effort and, at the

same time, it facilitates the use of the application by third-party clients. In

this regard, one of the formats considered was the Atom Syndication Format

[Nottingham and Sayre, 2005], an IETF standard that defines an XML vocab-

ulary for describing lists of related information – known as feeds – composed of

a number of items which are called entries. Atom defines an extensible set of

elements for describing associated metadata of feeds and entries, e.g. title. As

a measure of the popularity of Atom, this representation format is extensively

employed in the Web, specially in blogs and news sites, and, more importantly,

there are many available Atom clients including Google Reader6 and browsers

such as Firefox7 and Safari8.

Given the extensive use of lists in Ontoolsearch – specifically, collections of

semantic searches, query results, tool types and tools are employed – Atom seems

5 For example: http://www.google.com/search?q=Ontoolsearch
6 http://www.google.com/reader/
7 http://www.firefox.com/
8 http://www.apple.com/safari/

295Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



a suitable representation format. Since Atom is conceived for syndication, it is

possible to subscribe to a feed with the performed queries, which may be of

special interest to a system administrator. There are other cases of Atom syndi-

cation that should be useful to teachers; for instance, they can subscribe to the

tool feed http://www.gsic.uva.es/ontoolsearch/tools or to a specific tool

type feed, in order to discover new tool entries incorporated to the tool dataset.

Moreover, associated metadata of Ontoolsearch resources can be easily mapped

to Atom elements such as author, title or summary; indeed, the category el-

ement is specially convenient to include tool type information. To illustrate the

mapping of Atom to Ontoolsearch resources, Figure 3 shows the visualization

in Firefox of the BulletinBoard feed that includes some instances of that tool

type as entries9. Likewise, semantic searches can be codified in Atom, using the

content element of an entry to include the actual semantic query. Therefore,

the benefits of using Atom can be summarized as follows: 1) improved interoper-

ation with third-party clients, thus enabling the reuse of existing Atom clients;

2) facilitate the discovery of new resources to users through web syndication,

such as new tools to teachers and submitted queries to system administrators;

and 3) avoid the effort to develop a customary representation by adhering to an

existent, proven and widely-employed representation format such as Atom.

To conclude this subsection, some remarks are given about the remaining

steps in the followed procedure.

Step 6, modeling resource relations with hyperlinks, refers to the “hy-

permedia as the engine of application state” principle [Fielding, 2000, ch. 5], i.e.,

resource representations should include hypermedia controls (e.g. links) to drive

the transition to new application states, thus freeing clients from having to know

about the resource URIs of a RESTful service [Parastatidis et al., 2010]. In this

regard, the relationships shown in Figure 2 are modeled using the capabilities

of Atom. For instance, every feed includes an entry to the Root resource (see

last item in Figure 3). Another example of connectedness is the use of the link

element to point to other related resources, e.g. every tool entry has (a) link(s)

to its tool type(s). Moreover, both keyword and semantic search results feeds

contain an entry for each tool obtained. Finally, Step 7 is to consider typ-

ical course of events and error conditions. Thus, the flow of interactions

has been analyzed for each functionality of Ontoolsearch, checking the HTTP

requests and responses needed to fulfill a petition. Further, possible errors, e.g.

submitting a semantic search in an unsupported format, have been considered

including the HTTP status codes [Fielding et al., 1999] to be returned.

9 Note, however, that Firefox does not render all the information included in an Atom
feed; in this particular case metadata of authors, categories and hyperlinks typed as
alternate are not shown.

296 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



Figure 3: Visualization of the BulletinBoard tool type Atom feed with Firefox.

3.2 RESTful design discussion

Designing a RESTful web application is very different to an RPC-style applica-

tion. In the latter case, the focus concentrates on the definition of the service

interface, composed of a set of operations and their parameters. In this way, a

remote call looks no different than a local one to programmers, since the RPC

middleware aims to hide the complexity of distribution as much as possible. In

contrast, the fact that the application is distributed becomes evident in REST-

ful design, so a different perspective is required. Therefore, the designer has to

deal with the resource abstraction, since resources are the “visible” elements of a

RESTful application. Moreover, resources are accessed through HTTP methods

(an exemplification of the uniform interface constraint), so an understanding of

HTTP semantics is required.

It should be taken into account that resource design must be done with

care; resources should represent the objects of interest of the application. De-

pending on the domain they can differ in many ways – see for example the

resource design of Ontoolsearch in Figure 2. However, it is important not to

297Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



expose actions as resources [Richardson and Ruby, 2007, p. 117]: an operation

of unknown purpose will be made when called, thus breaking the semantics of

the employed HTTP method and the uniform interface constraint. Note that

in some cases the result of exposing an action as a resource would be acci-

dentally RESTful as in the following example: /doSearch?q=whiteboard is a

valid URI that can be bookmarked and doing a GET on this resource com-

plies with the semantics of this HTTP verb. Unfortunately, adding other “non-

read” functionalities would break this illusion, e.g. trying to delete a semantic

search through a GET /semsearch/queries/123/delete request. Due to this,

resources should always represent data elements – whichever the application do-

main is – and never operations. A related pitfall is the so-called overloaded POST

[Richardson and Ruby, 2007, p. 101], i.e. sending POST requests to perform any

processing, while the actual method information may be in the URI, the HTTP

headers or the entity-body. As in the precedent case, the overall effect is to

break the semantics of the uniform interface, so the use of overloaded POST is

discouraged.

Another important decision to be taken is the representation formats to be ac-

cepted and served. Choosing an existing format can avoid the effort of designing

a purpose-built one and may broaden the audience of the service. For these rea-

sons creation of ad hoc representations such as XML documents is discouraged,

while available formats for the application domain should be checked, e.g. micro-

formats10. Note that the decision of employing the Atom format in Ontoolsearch

enables the use of an extensive list of third-party clients to access this system,

in contrast to the former Java RMI version. In addition to this, a nice feature

of HTTP to reduce data coupling is content negotiation [Fielding et al., 1999]

which allows serving alternative representations of a resource to clients depend-

ing on their preferences. Though Atom is the only format supported in Ontool-

search, a new one could be easily incorporated in the future without impact on

Atom clients, e.g. a JSON format for use in an eventual AJAX client running

on a browser.

A final remark is made about the hypermedia principle of REST. Resource

representations should contain hyperlinks to other resources in order to provide

feedback to clients about available transitions to new application states. For

instance, a semantic query feed in Ontoolsearch contains an entry that points to

the results of this query, thus allowing clients to follow this link in order to present

retrieved tool instances. Note that the hypermedia principle reduces client-server

coupling, since clients do not have to know beforehand the resource URIs exposed

by a service. Accordingly, the flow of events of a RESTful application should

be carefully designed through hyperlinks to avoid undesired application state

transitions.

10 http://microformats.org/

298 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



3.3 RESTful implementation of Ontoolsearch

So far, the resource design of the RESTful version of Ontoolsearch has been com-

pleted. Moving to the implementation phase, a RESTful web framework should

be chosen in order to ease the development process as much as possible. Specifi-

cally, the Restlet Java framework11 has been employed to develop the RESTful

version of Ontoolsearch. Restlet aims to provide a lightweight and comprehen-

sible web framework that sticks close to REST constraints. Another key goal

of Restlet is to provide a unified framework for web applications, removing the

distinction of client- and server-side APIs. This way, it is possible to create a

single component in Restlet that acts both as a client and as a server. Moreover,

Restlet includes extensions for the Atom representation format and the Apache

Solr12 text search system that have been employed in the development of the

prototype.

Developing a RESTful application with Restlet is simplified by the fact that

the terminology employed matches the elements of REST, defining classes such

as component, connector, resource or representation. To illustrate this, Fig-

ure 4 shows the resulting physical architecture of the RESTful web version of

Ontoolsearch using Restlet. At the core there is a Component that hosts the

Ontoolsearch Application, a coordinated set of objects that provide the de-

sired functionalities. This component has attached an HTTP Server Connector

that transfers all requests to the application. Then, the Router is in charge of

dispatching incoming calls to resources. This is done by specifying a set of routes

that maps URI templates to target resources (see these routes in Figure 4).

The resources held by the application correspond to the resources designed

in subsection 3.1; indeed, they are subclasses of the ServerResource Restlet

class and implement the HTTP methods defined in Figure 2. Using the Atom

extension, resources transfer feed representations back and forth on response to

client requests, e.g. ToolList responds to a GET /tools call with the feed of

available tools. Note, however, that resources rely on other application-specific

objects to obtain their actual value. In this regard, the ToolRegistry loads the

tool dataset available as a set of RDF dump files at http://www.gsic.uva.es/

ontologies/, while ToolList, Tool, ToolTypeList and ToolType resources

get their values from the ToolRegistry. Moreover, this registry has attached

an off-the-self OWL Reasoner that is in charge of processing semantic queries

as requested by SemQueryList when a POST /semsearch/query call arrives,

thus resulting on the creation of a query and its results. Correspondingly, the

collection of submitted semantic queries and obtained results are gathered by

SemQuery and SemResults to handle incoming requests.

With respect to the keyword search functionality, a Solr server is set up

11 http://www.restlet.org/
12 http://lucene.apache.org/solr/

299Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



Ontoolsearch Application

FILE client 
connector

SOLR client 
connector

FILE 
server

SOLR 
server

/search?{query}

/semsearch/queries

/semsearch/queries/{queryid}

/semsearch/queries/{queryid}/results

/tools

/tools/{toolName}

/tooltypes

/tooltypes/{toolType}

Directory

SearchResults 
Resource

SemResults 
Resource

SemQuery 
Resource

SemQueryList 
Resource

ToolType 
Resource

ToolTypeList 
Resource

Tool 
Resource

ToolList 
Resource

/{fileName}

ToolRegistry

OWLReasoner

HTTP 
request

(uniform, 
stateless)

HTTP server 
connector

Router

Restlet Component

Tool 
dataset

Semantic 
queries & 

results

Figure 4: Physical architecture of the RESTful version of Ontoolsearch.

to index the tool dataset and to respond to keyword queries. Therefore, a re-

quest such as GET /search?q=whiteboard is dispatched to SearchResults re-

source which forwards the query to the Solr server through the Solr client

connector provided with Restlet; obtained responses are then handled by Search

Results returning a feed to the client. Finally, Directory is a Restlet class that

serves static files. It has been configured to dispatch the index.html file and

other resources (Ontoolsearch images and tutorials basically), thus fulfilling the

role of the Root resource in Figure 2.

The new RESTful prototype of Ontoolsearch can be accessed at http://

www.gsic.uva.es/ontoolsearch/. As regards the client side, existing third-

party Atom readers can be employed without changes to browse Ontoolsearch

exposed resources, thus greatly improving the potential audience of the system.

In addition, the root index.html file includes a simple HTML form with a text

box for submitting keyword queries to the system. However, posing a semantic

query directly in an Atom feed is an arduous task since Atom serves as a mere

envelope in this case. To overcome this limitation, former version of the Ontool-

search client has been modified to communicate with the new RESTful version

of the server. Noteworthy, changes did not involve much effort since the user in-

terface was maintained (see Figure 1) and Restlet facilitates the development of

clients that consume and manipulate resources by means of the ClientResource

300 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



class.

3.4 RESTful implementation discussion

Implementing a RESTful system from scratch can be a daunting task, so the

use of a framework may be considered. In this regard, there are REST frame-

works in many languages, e.g. Ruby on Rails13 for the Ruby language. In the

particular case of Ontoolsearch, only Java-based frameworks were analyzed in

order to reuse some code from the former version and to easily integrate ex-

isting semantic- and text-based search engines that are typically available in

Java. Besides Restlet, Jersey14 and Apache CXF15 frameworks were consid-

ered. Jersey and Apache CXF are implementations of the JAX-RS specification

[Hadley and Sandoz, 2008] that defines a set of Java APIs for the development of

RESTful web services. Jersey is the reference implementation of JAX-RS, while

Apache CXF is an open source services framework with a broader scope that

has recently added support for JAX-RS. Though there are neither conceptual

nor technological differences of some relevance, Restlet comes with a number

of handy extensions for the development of the target application. Moreover,

Restlet provides an extension for JAX-RS in case of required compatibility.

Reflecting on the development process, a REST framework such as Restlet

helps to speed the translation into code of an abstract resource design. Indeed,

the arrangement of routes and resources through URI templates in the imple-

mentation is almost straightforward. While URI templates can be very helpful

to better organize resources and to simplify the handling of requests, they may

introduce undesired coupling if employed in the client side [Webber et al., 2010,

pp. 98–99], so client applications should treat URIs as opaque and rely instead

on hypermedia to discover new links that make advance through the application

state. It should be noted that resources act as mere façade elements, while the

actual processing is performed by the business layer. In this regard, there are

no constraints on using plain classes, a database backbone or other alternatives.

What matters is to comply with the HTTP uniform interface semantics, e.g.

sending back a representation of the target resource in case of a GET request. As

a result, the tool registry class and the OWL reasoner were reused from former

version of Ontoolsearch.

In comparison with RPC-based middlewares, supporting representation for-

mats such as Atom involves more effort in order to encapsulate the information

in the appropriate fields. In contrast, serialized objects are transferred between

clients and servers in Java RMI without requiring any translation. However,

this has a profound impact on interoperation due to tight data coupling. Note

13 http://rubyonrails.org/
14 http://jersey.java.net/
15 http://cxf.apache.org/

301Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



that the combination of a standardized representation format plus the HTTP

uniform interface allows the use of not purpose-built third-party clients. For in-

stance, Firefox can be used to browse tool categories in Ontoolsearch (see Figure

3).

4 Comparison of Java RMI vs RESTful Ontoolsearch versions

In this section, former Java RMI version of Ontoolsearch is compared with the

RESTful one depicted in section 3; in doing so, a feature analysis is performed

to assess whether identified limitations in RMI Ontoolsearch are overcome in

the RESTful version. The comparison is completed with a performance and

scalability study through a benchmarking experiment.

4.1 Feature analysis

Feature analysis is an evaluation method of software tools and software develop-

ment procedures [Kitchenham, 1996] that is typically employed to decide which

product to choose in a structured and systematic way [Kitchenham, 1997]. Fea-

ture analysis is normally performed by an individual providing the assessment to

a list of properties in candidate products. The main advantage of this evaluation

method is its great flexibility since it does not impose many prerequisites upon

the tools or methods to be evaluated and it can be performed to any required

level of detail. Feature analysis is not without limitations, though; produced

assessments inevitably carry some degree of subjectivity and there is a risk of

inconsistency if different assessors have different interpretations.

In this case, a feature analysis evaluation was chosen with the aim of assessing

whether identified limitations of the former RMI version of Ontoolsearch were

tackled in the RESTful version. Note that performance and scalability are not

considered here, but in subsection 4.2 with a benchmarking experiment. Thus,

Table 1 shows the features enabled by the RESTful version of Ontoolsearch.

Features F1, F2 and F3 correspond to the new functionalities incorporated

to the RESTful version (see section 3). Remarkably, the browsing functionality

was easily achieved by exposing collections as resources. With respect to keyword

queries, the well-known practice of encapsulating the query as part of the URI

has been followed, while the actual processing is made by an existing text search

engine.

Feature F4 is specially important to spread the user base of Ontoolsearch. In

this regard, choosing a popular format such as Atom and adhering to HTTP’s

uniform interface enables the use of an extensive list of clients for accessing the

functionalities of Ontoolsearch. In contrast, former version requires the usage of

a special-purpose client as a result of the custom Java RMI interface.

302 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



Id Feature Comment

F1 Semantic search browsing New functionalities

F2 Keyword-based queries

F3 Tool browsing

F4 Facilitate the use of third-party clients Due to uniform interface and Atom

F5 Bookmarking of tools, searches. . . Due to uniform interface and

F6 Cacheable responses stateless communication

F7 Mashup capability

Table 1: New features enabled by the RESTful version of Ontoolsearch.

With respect to features F5 and F6, resources such as tools and searches can

be bookmarked and shared, e.g. by e-mail. Moreover, a resource representation

such as a query result can be cached, thus improving efficiency by potentially

avoiding some network interactions. These capabilities are due to the stateless

communication constraint, i.e. the result of a call does not depend on previous

requests, and to the uniform interface constraint since resources are univocally

identified by URIs and expose an HTTP interface with standard semantics. In

comparison, RPC-style infrastructures such as Java RMI only allow access to

data elements through a remote interface. This fact along with the use of a

stateful protocol severely limits the visibility of interactions, thus precluding the

use of caching or bookmarking actions.

Finally, feature F7 refers to the creation of so-called web mashups [Bensli-

mane et al., 2008]. As in the precedent case, the uniform interface and the state-

less communication constraints enable, for instance, the integration (“mashing

up”) of the results provided by RESTful Ontoolsearch and other web searchers.

Note that features F4, F6 and F7 can be combined in novel ways as illustrated

in the following real example: an Atom reader such as Google Reader can be

employed to add a subscription to the SemQueryList feed16, thus serving to

monitor semantic searches submitted to RESTful Ontoolsearch without writing

a single line of code.

4.2 Benchmarking experiment

Beyond the feature analysis of subsection 4.1, the comparison of the former RMI

version of Ontoolsearch versus the RESTful version is completed with a bench-

marking experiment [Kitchenham, 1996]. The goal of this study is to compare

the performance and scalability of these systems with respect to semantic search,

16 http://www.gsic.uva.es/ontoolsearch/semsearch/queries (see Figure 2)

303Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



the basic functionality of Ontoolsearch and, at the same time, the most compu-

tationally demanding. In doing so, the methodology defined in [Jain, 1991, pp.

22-28] has been followed.

The experimental setup consists of a server and a client computers connected

via a LAN. The client is a regular PC laptop while the server is a Linux virtual

machine with 2 CPUs and 2 GB RAM virtualized with Eucalyptus17, a soft-

ware infrastructure for implementing private cloud computing. In this regard,

it is possible to provision a dedicated machine with the desired configuration

in a flexible and cost-effective way. Both Java RMI and RESTful versions of

Ontoolsearch were deployed in the server machine along with the tool dataset

composed of 103 instances. It should be noted that RMI Ontoolsearch requires

HTTP tunneling to cope with firewalls, although it has a profound impact on

performance ([Juric et al., 2004] reports an order of magnitude worse). Thus, in

this study HTTP tunneling was disabled in order to facilitate the comparison of

RPC-based middlewares versus RESTful approaches18.

With respect to the metrics employed in the study, the response time and

the rate of queries served were chosen. Response time is defined as the interval

between a request and the system response; it is a common metric of raw perfor-

mance that reflects the user’s point of view. The second metric is defined as the

rate of queries that can be serviced by the system; it is a throughput metric of

special interest to administrators in order to assess the capacity and scalability

of a system. The workload consisted of a simple program generating semantic

queries of similar complexity, e.g. “any tool that supports communication tasks”.

The only workload parameter is the number of concurrent requests, implemented

with threads. Thus, this program constitutes the client-side component of the

experimental setup and is in charge of logging the measured results.

Measuring the response time of sequential requests, i.e. with no concurrency,

RMI Ontoolsearch achieves 0.5 seconds versus 0.9 with RESTful Ontoolsearch.

Such difference is due to the use of a binary protocol in the RMI case instead

of a text protocol like HTTP plus the Atom encapsulation overhead. Moreover,

network payload is smaller in RMI, since the binary RMI representation of a

semantic query is ∼3 times smaller than the Atom representation.

When dealing with concurrency, Figure 5 shows that RESTful Ontoolsearch

attains a better throughput than the RMI version; RESTful Ontoolsearch achie-

ves a nominal capacity of 28.1 queries served per second versus 7.8 with RMI.

Indeed, the RMI version collapses when more than 100 concurrent requests are

submitted to the system. Analysing the mean response time, RESTful Ontool-

search evolves gracefully: 1.4 seconds for 25 requests, 2.2 for 50, 3.4 for 100 and

5.5 for 200 (see Figure 6). In contrast, the RMI version exhibits correspondingly

17 http://www.eucalyptus.com/
18 For this reason the experiments were run in a LAN with no firewalls involved.

304 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



0 50 100 150 200 250 300
0

5

10

15

20

25

30

Number of concurrent requests

Q
u
e
ri
e
s
 s

e
rv

e
d
 p

e
r 

s
e
c
o
n
d

REST

RMI

Figure 5: Rate of semantic queries served per second.

higher mean response times: 3.4 seconds for 25 requests, 8.0 for 50 and 41.3 for

100.

These results evidence that the scalability of RESTful Ontoolsearch is con-

siderable better than in the RMI case. This is attributable to the stateless com-

munication constraint of REST that allows the server component to quickly free

resources. Although response time in sequential requests is better in RMI, it

should be noted that the situation would be reversed if HTTP tunneling was

enabled, as discussed above. Moreover, this study does not show the effect of

caching because semantic queries involves the creation of resources and are thus

not cacheable. Note, however, that all requests associated to the new function-

alities of RESTful Ontoolsearch can be cached; given that caching is specially

difficult to achieve with RPC-based middlewares [Vinoski, 2008a], significant

REST performance improvements can be expected if cacheable requests were

considered.

305Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

Number of concurrent requests

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
g

)
REST

RMI

Figure 6: Mean response time as a function of the load.

5 Summary of lessons learned

The precedent sections presented the case study of developing a RESTful version

of the Ontoolsearch system. Throughout this paper the implications of REST

design and implementation have been thoroughly discussed. Furthermore, this

case study have evidenced a number of REST benefits in comparison with RPC-

style infrastructures. As a wrap-up of the previous discussions, Table 2 distills a

set of lessons learned that may be useful for distributed systems designers.

The REST design block stresses the need of adopting a resource-centric view-

point (lesson L1), with special care to the representation formats to be supported

(lesson L2) and the connectedness of resources (lesson L3). In this regard, an un-

derstanding of REST constraints is recommended to avoid design pitfalls such as

breaking the uniform interface by exposing an operation as a resource. Neverthe-

less, the authors found no big difficulties when developing RESTful Ontoolsearch

in spite of their background on RPC-style systems.

Within the REST implementation block, lesson L4 recommends the use of a

306 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



Block Id Lesson learned

RESTful design L1 Resources have to be designed with care,

do not expose operations

L2 Consider existing representation formats,

taking into account your clients’ needs

L3 Connect resources with hyperlinks

and check the course of events

RESTful L4 A RESTful framework may speed implementation

implementation L5 When RESTifying a legacy application

the business layer may be reused

L6 Supporting one (or more) representation

format(s) requires some development effort

RPC vs REST L7 RPC performance may be better

architectural L8 Scalability gains expected in RESTful architectures

styles L9 Increased interoperability in RESTful architectures

L10 RESTful architectures enable caching, resource

bookmarking and web mashups

Table 2: Summary of lessons learned.

REST framework; programming language, standards support, extensibility and

documentation are some important criteria to be considered here. In the case of

RESTful Ontoolsearch, the Restlet framework definitely contributed to speed up

the development of the prototype by facilitating the translation of design to code

and providing a number of useful extensions, e.g. Atom support. Furthermore,

part of the business layer was reused from the previous RMI version, leading

to lesson L5 which applies to the RESTification of legacy applications. To end

this block, lesson L6 reminds that some development effort is required to comply

with a representation format.

With respect to the comparison of REST and RPC architectural styles, lesson

L7 warns that performance may be better with an RPC middleware as evidenced

in the previous benchmarking study (see subsection 4.2). In this regard, a binary

protocol usually performs better than a text protocol and the stateless commu-

nication constraint of REST may decrease network performance since repetitive

data have to be sent again in a series of requests. Despite this, the use of caches

has the potential to lessen the aforementioned effects in performance by elim-

inating some interactions. Considering scalability, a significant improvement is

expected in RESTful architectures (lesson L8) since the server component does

not have to store state between requests and caching also contributes to scal-

307Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



ability. Indeed, this lesson is supported by the significant improvement of the

scalability of RESTful Ontoolsearch in the benchmarking study. Finally, lessons

L9 and L10 point out some benefits of RESTful architectures that are specially

difficult to achieve with RPC approaches. As regards interoperability, standard

data formats and the uniform interface constraint enable the use of application

components provided by external independent organizations. Moreover, REST

promotes the visibility of interactions by means of stateless communication and

the uniform interface constraints, thus enabling caching, resource bookmarking

and web mashups.

6 Conclusions and Future Work

The evolution of the Web into a computing platform has led to the emergence

of a new breed of web applications ranging many different domains. What dis-

tinguishes them is the REST architectural style that enables the development of

highly flexible, decoupled and scalable distributed applications. The disruptive

nature of REST contrasts with the traditional RPC approach of the distribu-

tion systems community, leading to heated debates between REST and RPC

proponents. However, there is a lack of comparisons of both approaches in the

literature, as well as case studies exemplifying the development of a RESTful

application.

This paper presented a revamped RESTful version of a legacy RPC-based

search system of educational tools named Ontoolsearch. When designing the new

system, differences between RPC and REST became evident; in this regard, re-

sources are directly exposed to clients using the generic HTTP uniform interface

that has standard semantics. In contrast, RPC enforces the exposure of custom

interfaces, thus leading to restricted interoperability with third-party clients.

Furthermore, limited visibility of interactions in RPC precludes monitoring or

bookmarking submitted searches to the former version, hence the feature analy-

sis that was carried out served to assess that all these limitations were overcome

in the RESTful version. The comparison was completed with a benchmarking

study, showing that response time is better in the RPC case, attributed to the

use of a binary protocol instead of a text protocol and Atom encapsulation. De-

spite this, the scalability of RESTful Ontoolsearch is superior, measuring a peak

throughput of 28.1 queries served per second versus 7.8 with the former version.

A further outcome of this work is the set of lessons learned derived from this

work that may be of special interest for redesigning legacy RPC-based systems

suffering from similar limitations.

Future work includes the development of new functionalities for the anno-

tation of tools with the aim of extending the tool dataset and spreading the

creation of a community of teachers interested in the use of educational tools in

308 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



the classroom. Furthermore, the integration of Ontoolsearch within the GLUE!

architecture [Alario-Hoyos and Wilson, 2010] is planned to support the discovery

and integration of external tools in Virtual Learning Environments. In addition,

new case studies with different requirements should be carried out to further

assess the benefits of the REST architectural style.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and

Innovation projects TIN2008-03023, TIN2011-28308-C03-02 and IPT-430000-

2010-054, and the Autonomous Government of Castilla and León, Spain, projects

VA293A11-2 and VA301B11-2.

References

[Adamczyk et al., 2011] Adamczyk, P., Smith, P., Johnson, R., and Hafiz, M. (2011).
REST and Web Services: In Theory and in Practice. In [Wilde and Pautasso, 2011],
pages 35–57.

[Alario-Hoyos and Wilson, 2010] Alario-Hoyos, C. and Wilson, S. (2010). Comparison
of the main alternatives to the integration of external tools in different platforms. In
Proceedings of the third International Conference of Education, Research and Inno-
vation(ICERI 2010), pages 3466–3476, Madrid, Spain.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and
Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, Cambridge, UK.

[Benslimane et al., 2008] Benslimane, D., Dustdar, S., and Sheth, A. (2008). Ser-
vices mashups: The new generation of web applications. IEEE Internet Computing,
12(5):13 –15.

[Berners-Lee et al., 2005] Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uni-
form resource identifier (URI): Generic syntax. Standard RFC 3986, The Internet
Engineering Task Force (IETF).

[Bernstein, 1996] Bernstein, P. (1996). Middleware: a model for distributed system
services. Communications of the ACM, 39(2):86–98.

[Coulouris et al., 2005] Coulouris, G., Dollimore, J., and Kindberg, T. (2005). Dis-
tributed systems: concepts and design. Addison-Wesley, Harlow, UK, fourth edition.

[Curbera et al., 2002] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and
Weerawarana, S. (2002). Unraveling the Web Services Web. IEEE Internet Comput-
ing, 6(2):86–93.

[Fielding, 2000] Fielding, R. (2000). Architectural styles and the design of network-
based software architectures. PhD thesis, University of California, Irvine.

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T. (1999). Hypertext Transfer Protocol - HTTP/1.1.
Draft Standard RFC 2616, The Internet Engineering Task Force (IETF).

[Fielding and Taylor, 2002] Fielding, R. T. and Taylor, R. N. (2002). Principled de-
sign of the modern web architecture. ACM Transactions on Internet Technology,
2(2):115–150.

[Guha et al., 2003] Guha, R., McCook, R., and Miller, E. (2003). Semantic search. In
Proceedings of the Twelfth International World Wide Web Conference (WWW2003),
pages 700–709, Budapest, Hungary. ACM.

309Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



[Hadley and Sandoz, 2008] Hadley, M. and Sandoz, P. (2008). Java API for RESTful
Web Services. Specification JSR-000311, Sun Microsystems, Inc.

[Jain, 1991] Jain, R. (1991). The art of computer systems performance analysis. Tech-
niques for experimental design, measurement, simulation and modeling. John Wiley,
New York, NJ, USA.

[Juric et al., 2004] Juric, M. B., Kezmah, B., Hericko, M., Rozman, I., and Vezocnik,
I. (2004). Java RMI, RMI tunneling and Web services comparison and performance
analysis. ACM SIGPLAN Notices, 39:58–65.

[Kitchenham, 1996] Kitchenham, B. A. (1996). Evaluating software engineering meth-
ods and tools. Part 1: the evaluation context and evaluation methods. SIGSOFT
Software Eng. Notes, 21(1):11–15.

[Kitchenham, 1997] Kitchenham, B. A. (1997). Evaluating software engineering meth-
ods and tools. Part 5: The influence of human factors. SIGSOFT Software Eng.
Notes, 22(1):13–15.

[Larkin and Simon, 1987] Larkin, J. and Simon, H. (1987). Why a diagram is (some-
times) worth ten thousand words. Cognitive Science, 11(1):65–100.

[Maleshkova et al., 2010] Maleshkova, M., Pedrinaci, C., and Domingue, J. (2010). In-
vestigating Web APIs on the World Wide Web. In Proceedings of the 8th IEEE
European Conference on Web Services (ECOWS2010), pages 107–114, Ayia Napa,
Cyprus.

[Muller and Kuhn, 1993] Muller, M. J. and Kuhn, S. (1993). Participatory design.
Communications of the ACM, 36(6):24–28.

[Nottingham and Sayre, 2005] Nottingham, M. and Sayre, R. (2005). The Atom Syn-
dication Format. Standards Track RFC 4287, The Internet Engineering Task Force
(IETF).

[OMG, 1991] OMG (1991). Common Object Request Broker: Architecture and Spec-
ification. Technical Report 1991/91-08-01, The Object Management Group.

[O’Reilly, 2005] O’Reilly, T. (2005). What is Web 2.0. Design pat-
terns and business models for the next generation of software. URL:
http://oreilly.com/web2/archive/what-is-web-20.html, last visited March 2011.

[Parastatidis et al., 2010] Parastatidis, S., Webber, J., Silveira, G., and Robinson, I.
(2010). The Role of Hypermedia in Distributed System Development. In Pautasso,
C., Wilde, E., and Marinos, A., editors, Proceedings of the First International Work-
shop on RESTful Design (WS-REST 2010), co-located with the 19th International
World Wide Web Conference (WWW2010), pages 16–22. Raleigh, NC, USA.

[Pautasso and Wilde, 2011] Pautasso, C. and Wilde, E. (2011). Introduction. In
[Wilde and Pautasso, 2011], pages 1–18.

[Pautasso et al., 2008] Pautasso, C., Zimmermann, O., and Leymann, F. (2008). Rest-
ful web services vs. big web services: making the right architectural decision. In Pro-
ceedings of the 17th International World Wide Web Conference (WWW2008), pages
805–814, Beijing, China. ACM.

[Raman, 2009] Raman, T. (2009). Toward 2W, beyond web 2.0. Communications of
the ACM, 52(2):52–59.

[Richardson and Ruby, 2007] Richardson, L. and Ruby, S. (2007). RESTful web ser-
vices. O’Reilly Media, Inc., Sebastopol, CA, USA.

[Richardson, 2010] Richardson, W. (2010). Blogs, wikis, podcasts, and other powerful
web tools for classrooms. Corwin Press, Thousand Oaks, CA, USA, third edition.

[Sun, 1999] Sun (1999). Enterprise JavaBeans Specification. Technical report, Sun
Microsystems Laboratories, Inc.

[Sun, 2004] Sun (2004). Java Remote Method Invocation Specification. Technical
report, Sun Microsystems Laboratories, Inc.

[Vega-Gorgojo et al., 2010] Vega-Gorgojo, G., Bote-Lorenzo, M. L., Asensio-Pérez,
J. I., Gómez-Sánchez, E., Dimitriadis, Y. A., and Jorŕın-Abellán, I. M. (2010). Se-
mantic search of tools for collaborative learning with the Ontoolsearch system. Com-
puters & Education, 54(4):835–848.

310 Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...



[Vega-Gorgojo et al., 2008] Vega-Gorgojo, G., Bote-Lorenzo, M. L., Gómez-Sánchez,
E., Asensio-Pérez, J. I., Dimitriadis, Y. A., and Jorŕın-Abellán, I. M. (2008). On-
toolcole: Supporting educators in the semantic search of CSCL tools. Journal of
Universal Computer Science (JUCS), 14(1):27–58.

[Vinoski, 2008a] Vinoski, S. (2008a). Convenience over correctness. IEEE Internet
Computing, 12(4):89–92.

[Vinoski, 2008b] Vinoski, S. (2008b). Serendipitous reuse. IEEE Internet Computing,
12(1):84–87.

[Waldo et al., 1994] Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. (1994). A
note on distributed computing. Technical Report SMLI TR-94-29, Sun Microsystems
Laboratories, Inc.

[Webber et al., 2010] Webber, J., Parastatidis, S., and Robinson, I. (2010). REST in
Practice: Hypermedia and Systems Architecture. O’Reilly Media, Inc., Sebastopol,
CA, USA.

[Wilde and Pautasso, 2011] Wilde, E. and Pautasso, C., editors (2011). REST: From
Research to Practice. Springer, New York, NY, USA.

311Vega-Gorgojo G., Gomez-Sanchez E., Bote-Lorenzo M.L., Asensio-Perez J.I. ...


