
Metamodeling the Structure and Interaction Behavior of

Cooperative Component-based User Interfaces

Luis Iribarne, Nicolás Padilla, Javier Criado

(Applied Computing Group, University of Almeria, Spain

{luis.iribarne, npadilla, javi.criado}@ual.es)

Cristina Vicente-Chicote

(Department of Information Technology and Communications

Technical University of Cartagena, Spain

cristina.vicente@upct.es)

Abstract: In Web-based Cooperative Information Systems (WCIS), user groups with
different roles cooperate through specialized interfaces. Cooperative interaction and
user interface structures are usually rather complicated, and modeling has an impor-
tant part in them. Model-Driven Engineering (MDE) is a software engineering discipline
which assists engineers in abstracting system implementations by means of models and
metamodels. This article describes an interactive, structural metamodel for user in-
terfaces based on component architectures as a way to abstract, model, simplify and
facilitate implementation. The paper also presents a case study based on an Environ-
mental Management Information Systems (EMIS), where three actors (a politician, a
GIS expert, and a technician) cooperate in assessing natural disasters.

Key Words: MDE, component-based development, user interfaces, user interaction,
cooperative systems

Category: D.2, H.4, H.5

1 Introduction

In a more open and changing world, where information globalization and the

knowledge society are spread on the Internet, modern Web-based Cooperative In-

formation Systems (WCIS) must be flexible and easily adaptable and extendable.

They must also be accessible and manipulable at runtime by different people or

groups of people with common interests located in different places. There has

recently been special interest in information globalization by providing systems

with a common vocabulary through ontologies and Web semantics. Much atten-

tion has also focused on standardizing the way in which information is retrieved

from the Web using powerful search engines based on ontologies and intelligent

software agents. Nevertheless, WCIS user interfaces (as well as the knowledge

they manage) are still being built based on traditional software development

paradigms without taking into account the main criteria of globalization: they

have to be distributed, open and changeable.

In this scenario, our research interest lies in providing a solution for coopera-

tive user interfaces that operate in Web-based collaborative information systems.

Journal of Universal Computer Science, vol. 18, no. 19 (2012), 2669-2685
submitted: 30/3/12, accepted: 6/9/12, appeared: 1/11/12 J.UCS

There are many different reasons. Firstly, Web-based information systems are

the most widespread and commonly used systems in distributed social inter-

action (for instance, social networks). Secondly, they allow non-compiled Web

user interfaces, easily interchangeable at runtime. Thirdly, and particularly, our

methodological proposal gives a Component-Based Development (CBD) solution

to cooperative component-based gadget/widget-type user interfaces. iGoogle1

gadgets are a good example of interface-components, and Environmental Man-

agement Information Systems (EMIS) [El-Gayar and Fritz, 2006] [Iribarne, 2010]

are a good example of social interaction. For instance, a wide range of final users

and actors (such as politicians, technicians or administrators) cooperate with

each other and interact with the system for decision-making, problem-solving,

etc. In this kind of system, user groups (who often have different roles) cooperate

through distributed user interfaces, where interaction between different elements

involved in the system (e.g., actors, roles, tasks, interaction rules, etc.) is usually

highly complex. Due to the variety of social interaction, interfaces must adapt

to the needs of users and/or groups of users who cooperate. Cooperative user in-

terfaces must be able to be dynamically regenerate at runtime depending on the

type (individual or collective) and the purpose (management, technical purpose,

etc.) of interaction.

Furthermore, our methodology pursues evolutionary user interfaces: change-

able and adaptable to user needs at runtime2. Such evolution is caused by co-

operative interaction between users (and/or groups) and the user interface (UI).

As a solution to this approach (i.e., cooperative, evolutionary Web component-

based user interfaces), our proposal is inspired by Model-Driven Engineering

(MDE) principles [Schmidt, 2006], especially runtime models, model evolution

and model transformation. It uses models and metamodels to abstract the dy-

namic behavior of user interfaces and user interaction. Interaction is one of the

metamodels used by the methodology, where the elements of the cooperative

user interface are defined at a high level (i.e., mainly groups, actors, roles, chore-

ographies, tasks and interface-components).

But this methodology is appropriate only for certain types of user-interfaces:

(a) Component-based interfaces. We consider the UI a collection of interface-

components with dependencies (functional, interaction, visual or temporal de-

pendences, among others). An example of component interface is the iGoogle in-

terface, made up of interface portions (or “gadgets”) that together form the UI;

(b) COTS (commercial off-the-shelf) UI components: commercial UI compo-

nents developed by third-parties, available in public repositories and accessible

by traders [ISO, 2004] [Iribarne et al., 2004] for UI architecture configuration.

Here, the UI is considered component architecture; (c) Interfaces should be self-

1 http://code.google.com/apis/gadgets/
2 http://www.ual.es/acg/soleres/jism

2670 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

reconfigurable. The UI should be able to adapt itself to the user. Our aim is

therefore not to work with complex UI or interface-components. We use only

WIMP interfaces, simple UI made up of graphical elements such as Windows,

Icons, Menus and Pointers (WIMP) [Almendros and Iribarne, 2008]; and finally,

(d) our methodology is suitable for WIS interfaces, i.e., Web-based information

system interfaces. WIS user interfaces do not need to be compiled environments,

which justifies even more specifically the suitability of this solution to these

(Web) interfaces.

The rest of the article is structured as follows. Next section introduces back-

ground research work used by our approach. Section 3 describes an example as

a guideline used throughout the article. Section 4 describes the interaction and

structural metamodels, and an example of their use. Section 5 describes some

related studies, and finally, some conclusions and future work are presented.

2 Background

The work presented in this paper is based on previous research work for au-

tomatic composition of user interfaces [Iribarne et al., 2010]. In this sense, the

proposed methodology is based on an model-driven engineering (MDE) approach

to model evolution [Mens, 2008] by considering the interface architectural

models able to evolve at runtime [Blair et al., 2009]. We do this in two stages

[Criado et al., 2010]: (a) model transformation and (b) regeneration (by trading).

The starting user interface is treated like a set of models. A model is an instance

of a metamodel, which sets the rules and elements describing the system. Our

system is built on the basis of two metamodels (Figure 1): the architectural

metamodel (AMM), and the runtime component metamodel (RTCMM). The

former defines the component architecture by describing component structure

and behavior, while the latter models the user interface element composition

and their concrete component references.

The architectural metamodel is divided into three subsets: the structural

metamodel (SM), the visual metamodel (V M) and the interaction metamodel

(IM). The former metamodel describes composition dependencies between com-

ponents through connection ports (i.e., provided and required interfaces). The

visual metamodel models visual component behavior (open, close, show, hide

components, etc.) by means of a state machine. The interaction metamodel

models user-interaction behavior and describes the structure of interaction tasks

that users may execute in the system (roles, tasks associated with those roles,

choreography, etc.). The architectural model is used as input for the transforma-

tion process, and the transformer implements evolution. As input, it uses a set

of rules that define transformer behavior, and the current architectural model

(AMi), including the interaction model (IMi). As output, the transformer cre-

ates a new architectural model (AMj) with its corresponding interaction models.

2671Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

The transformation process operates when certain events occur in the system.

Such events report on changes that have been made (for instance, interaction

between user interfaces, time interval fulfillment, interaction with a component,

etc.), affecting the component architecture.

The runtime component models are regenerated from the new architectural

models obtained as previously stated. In this vein, a trading service (trader)

[ISO, 2004][Iribarne et al., 2004] calculates the best configuration for satisfying

the architectural requirements, starting from abstract component requirements

and a set of concrete components in repositories linked to the trader. The result

is a runtime component model (RTCM) that will be processed to show the final

user interface. The regeneration process and the runtime component models are

out of the scope of this paper.
Transformation diagram

!"#$%&'"()"

*+",-+,"#. /)+#('0).

1,.)%

1,$+2() 3'(4'$)$+

/)+#('0).

1,$+2() 3'(4'$)$+

/'0).2

Transformation

Regeneration

 !"#$%&"'(!)

*#"%+(,#-)

.#/'!'"'(!)0$&1'"#&"2$#)*(,#-!))
3"$2&"2$%-)*(,#-')

 !"#$%&"'(!)

*(,#-')

42!"'+#)5(+6(!#!")

*#"%+(,#-)

42!"'+#)5(+6(!#!")

*(,#-7)

)
3"$2&"2$%-)*#"%+(,#-)

 !"#$%&"'(!)

*#"%+(,#-)

.#/'!'"'(!)0$&1'"#&"2$#)*(,#-!))
3"$2&"2$%-)*(,#-7)

 !"#$%&"'(!)

*(,#-7)

0$&1'"#&"2$%-)*#"%+(,#-)

0$&1'"#&"2$%-)*(,#-') 0$&1'"#&"2$%-)*(,#-7)

8'92%-)

*#"%+(,#-)

8'92%-)

*#"%+(,#-)

8'92%-)

*(,#-')

8'92%-)

*(,#-7)

%:9"$%&")

&("9;#")

$#6(9'"($<)

&(!&$#"#)

&("9;#")

$#6(9'"($<)

0$&1'"#&"2$%-)*#"%+(,#-)

Figure 1: A model transformation for user-interface evolution

This article only explains the interaction (IM) and structural (SM) meta-

models in the model evolution methodology (interface), using a case study as

an example of interaction based on an Environmental Management Information

System (EMIS), in which three actors (a politician, a GIS expert, and a tech-

nician) cooperate in assessing natural disasters. The interaction metamodels in-

clude groups of actors and their interaction choreographies (protocol) as defined

by activities and tasks. In the structural metamodel, the user interface is defined

by components, ports and connectors to describe user interface component archi-

tectures. More information about how the model evolution and transformation

are interrelated with their structure and interaction model, and how the run-time

component model (RTCM) is generated can be found at [Criado et al., 2010] and

[Iribarne et al., 2010].

2672 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

3 A simple running example

In this section we examine a simple example which we employ as a guide through-

out the article to assist in explaining the behavior of the interaction and struc-

tural metamodels. User actions in a cooperative task are identified. The case

study is related to a typical cooperative decision-making task in an EMIS for

assessing natural disasters. This cooperative task assesses damage caused by a

catastrophe in a particular land area (for instance, a wooded area). Three users

with three different roles take part in this task, a politician, a GIS expert, and

an evaluator.

Figure 2: User interfaces handled by actors

2673Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

sd User_Interaction

sd Politc_GUI sd Expert_GUI sd Evaluator_GUI

33: notify report finalization 32: send evaluation report

31: compose report

30: make evaluation report

28: return expert messages

29: return evaluator messages

27: write messages

25: write messages

26: exchange info

24: exchange info

23: notify expert to chat
22: start chat with expert

21: solicite chat with expert

20: examine damage assessment 19: show damage assessment

18: send analysis info

12: show histogram info

9: show map info

17: send analysis info

16: send analysis info 15: compose analysis

14: make damage analysis

13: examine histogram info

10: send image data

8: send analysis data

7: send analysis data

6: notify evaluator

5: start evaluation subtask

11: examine map info

4: notify expert

3: start analysis subtask
2: introduce analysis data

1: start damage evaluation

Politician

MapReportMa...DataMa...P_GUI ReportCr...DamageEva... ChatAnalysisMa... ChatHistogram Eva_GUIExp_GUI

EvaluatorExpertGIS

F
ig

u
re

3
:
U

ser
in

tera
ctio

n
seq

u
en

ce
d
ia

g
ra

m
(u

ser-in
tera

ctio
n

v
iew

)

2
6
7
4

Irib
a
rn

e L
., P

a
d
illa

 N
., C

ria
d
o
 J., V

icen
te-C

h
ico

te C
.: M

eta
m

o
d
elin

g
 ...

An example of the three user interfaces handled by each of the three ac-

tors (politician, expert and evaluator, in this order) is shown in Figure 2. The

politician’s interface (on the left) has two components, an information manager

(DataManager) and a report generator (ReportManager). The Expert’s interface

has four interface components, a geographic map viewer, a histogram viewer, an

analysis generator and online chat (used to communicate with the evaluator

for decision-making). The Evaluator’s interface has three more interface compo-

nents: a report generator, a damage evaluator and online chat. A flow diagram

of the interaction between users and between them and the user interface com-

ponents is shown in the Figure 3.

Briefly, the interaction sequence takes place in four steps. Firstly, there is

a politician (PoliticianRole) who is interested in making a damage assess-

ment and, therefore, he/she is the only user who can initiate the cooperative

task. To make the impact study, the politician needs two assessments, one by

a GIS expert who makes a technical evaluation, and the other an economic as-

sessment based on the technical evaluation. Secondly, there is a GIS technician

(ExpertGISRole) who is in charge of analyzing the affected areas in order to

classify the types of soil, damaged infrastructure, the size of each area affected

and so on. Thirdly, there is an administrator (EvaluatorRole) who makes an

economic estimate of the affected soil, damaged infrastructure, etc. based on the

information provided by the expert. Finally, the politician makes his final report

based on the information prepared and coordinated in the cooperative process

described above.

4 The interaction and structural metamodels

This section describes the cooperative user interface interaction and structural

metamodels. Figure 4 shows the proposal architectural metamodel (see Figure 1

again) with its three parts: (a) Interaction metamodel section (IM), (b) Struc-

tural metamodel section (SM), and (c) Visual metamodel section (V M). The

interaction models groups of actors and their interaction protocols through activ-

ities and tasks. The user interface structure is modeled using components, ports

and connectors. The visual metamodel is described by a state machine, which is

not explained here as it is out of the scope of this article. The interaction and

structural metamodel sections are described separately below.

4.1 Interaction metamodel

The interaction metamodel conceptually describes the structure of the cooper-

ative system, based on roles (Role) and groups (Group) of actors. The actors

interact with user interface components by means of the structural metamodel

Component concept (defined below).

2675Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

StructuralModel

InterfaceService

Component

ComplexComponet SimpleComponent

ConnectorPort

Provided

Required

SimpleComponentDefinition

InteractionBehaviour

VisualBehaviour StateMachine

InteractionActivity

InteractionModel

Artefact

Group

Actor

Role Task

TaskUnit

CooperativeTask

NonCooperativeTask

InfoExchangeObject

Choreography

Step

SubTask

TaskAction
TaskUnitStepTaskStep

-type : controlType

ControlStep

-InitialStep

-FinalStep

-ForkStep

-JoinStep

-MergeStep

-DecisionStep

<<enumeration>>

controlType

ArchitecturalModel

0..*

1

1..*

0..*
1..*

0..*

1..*
isPlayed

plays

0..*

1

1isDescribedIn

0..*

1..*

0..*

objectFlow

0..* 0..1

actorGUI

1 interface

1 endA

0..1

1

1..*0..*

0..*

controlFlow

source

1

0..* affect

1..*

1..*

0..*

0..*

subComponents

1

task

0..1

0..*

0..*

subTaskUnit

1 taskUnit

1..*

1 endB

1

definition

Visual metamodel

Structural metamodel

Interaction metamodel

Figure 4: The architectural metamodel

Each actor (Actor) has at least one associated role. Each role is made up

of a set of tasks which make it possible to identify the activities carried out by

actors who have the same system role. Any task can be interrupted by another

one at a specific time. There are two types of tasks, CooperativeTask and

NonCooperativeTask. Both are modeled similarly, considering that cooperative

tasks have some conceptual and implementation restrictions, such as that at least

two actors may take part (with the same or different role). Each task in turn, is

made up of task units (TaskUnit). A task unit can be a subtask or an action. A

SubTask is a set of task units (actions or new subtasks). The Action is an atomic

task, so, it cannot be decomposed into different actions. All these actions are

related to the actors who use such actions and to the artifacts which the actors

interact with. The artifacts used in our system are the interface components.

Each task and subtask always has a choreography associated. The choreog-

raphy models the steps necessary for task or subtask execution. There are three

different steps. Firstly, TaskUnitStep is used to model invocation of a task unit,

and consequently, it relates subtasks or actions within the same task or in dif-

ferent tasks. Secondly, TaskStep is used to model invocation of a new task, and

lastly, ControlStep is used to add control flow capacities, of which there are

several. On one hand, DecisionStep is used to implement a selection of steps

among a group of possible steps. MergeStep joins control flows (equivalent to OR

in logic), ForkStep creates several concurrent control flows starting from only

2676 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

one control flow, and JoinStep joins the control flows that are dependent on each

other (equivalent to AND in logic). Finally, InitialStep and FinalStep delimit

the sequence of steps to be followed in the choreography. Both TaskUnitStep

and TaskStep can use the InformationExchangeObject concept. This object

contains the information exchanged between activities.

We have also set up OCL constraints to improve interaction model construc-

tion. The main constraints specifically refer to the definition of choreography

steps and their relationships through ControlFlow and Source roles from the

reflexive association of the Step concept.

Rule #1 (Context Step): The following restriction operates on the “Step” con-

cepts and means that one step cannot be connected to another.

inv: self.controlFlow->forAll(c | c.id <> self.id) (1)

Rule #2 (Context ControlStep): This other restriction operates on “Control-

Step” concepts and means that a first step can only be connected to ForkStep,

TaskStep or TaskUnitStep:

inv: self.type = controlType::InitialStep implies(

self.controlFlow->forAll(c | c.oclAsType(ControlStep).type =

controlType::ForkStep or c.oclIsTypeOf(TaskStep) or

c.oclIsTypeOf(TaskUnitStep)))

(2)

Rule #3 (Context ControStep): Finally, the following restriction also functions

on concepts of the “ControlStep” type and means that a ForkStep has an input

connection and two or more outputs.

inv: self.type = controlType::ForkStep implies(

(self.source->size()=1) and (self.controlFlow->size() >=2))

(3)

Figure 5 shows a diagram describing the relationships between users as well

as their activities for cooperative task execution. The figure shows an instance

(or model) of the interaction metamodel as a guiding example. To draw the

model we have used a representation adapted from the UML activities diagram.

To help read it, each symbol has been stereotyped with the corresponding con-

cept (element) in the metamodel. The activity starts as soon as the politician

starts the DamageEvaluationTask task. As shown above, all tasks and subtasks

have a choreography, begin with the InitialStep control-flow, and finish with

FinalStep.

The DamageEvaluationTask choreography includes three steps (not count-

ing InitialStep and FinalStep). On one hand, a TaskUnitStep enables the

politician to introduce the basic data necessary for assessment, providing some

information about the study area, infrastructure, etc. Next is a ForkStep. This

2677Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

DamageEvaluation

<<CooperativeTask>>

DamageEvaluationTask <<SubTask>>

GeographicalAnalysisSubTask

<<SubTask>>

EvaluationSubTask

<<NonCooperativeTask>>

GeographicalAnalysisTask

<<NonCooperativeTask>>

EvaluationTask

<<InfoExchageObject>>

AnalysisData

<<InfoExchageObject>>

AnalysisInformation

<<InfoExchageObject>>

EvaluationData

<<InfoExchageObject>>

EvaluationReport

<<TaskAction>>

SendAnalysisData

<<TaskAction>>

ReceiveAnalysisInformation

<<TaskAction>>

SendEvaluationData

<<TaskAction>>

ReceiveEvaluationReport

<<TaskAction>>

ReceiveAnalysisData

<<TaskAction>>

AnalysisGIS

<<TaskAction>>

SendInformation

<<TaskAction>>

ReceiveEvaluationData

<<TaskAction>>

Evaluation

<<TaskAction>>

SendReport

<<TaskAction>>

InputData

<<TaskStep>>

<<TaskStep>>

<<Role>>

PoliticianRole

<<Role>>

ExpertGISRole

<<Role>>

EvaluatorRole

Figure 5: An instance scenario of the interaction metamodel

step allows two subtasks to be initiated, the GeographicalAnalysisSubtask,

which identifies appropriate actions for geographical analysis of the study area,

and the EvaluationSubtask, which identifies actions for damage assessment.

By initiating both subtasks, the two users affected are kept informed in a coop-

erative task. Both have their own choreography as described below.

Finally, JoinStep synchronizes the two subtasks initiated in the previous

step, and until both subtasks are executed, the following step in the choreogra-

phy, which finishes with the cooperative task in our example, cannot be carried

out. The choreography of the GeographicalAnalysisSubtask has three steps

(again not counting InitialStep and FinalStep). The first is execution of the

GeographicalAnalysisTask, which is done by a user in the GISExpert role.

This user has COTS gets components (not described here) that allow him to

manipulate or visualize maps to carry out his activity. The second step enables

the expert to send data (AnalysisData) so he can begin his activity. Finally,

the subtask choreography ends by executing ReceiveAnalysisInformation, al-

lowing the user to receive the analysis made by the GIS expert. As described

below, this information is necessary for the EvaluationSubtask.

The choreography of the EvaluationSubtask also has three steps. The first

one is used for the EvaluationTask, which pertains to the EvaluatorRole. The

second one sends the information necessary to make the appropriate assessment.

2678 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

The third receives the analysis made by the expert. The subtask finishes when

this action has been carried out. Finally, the model shows the specific choreogra-

phies of the non-cooperative GeographicalAnalysisTask and EvaluationTask

tasks. Without going into further detail, the first task is carried out by the

ExpertGISRole user to make the geographical analysis of the area affected by

the catastrophe. The second one is carried out by an EvaluatorRole user to

make a damage assessment from the information provided by the GIS expert.

4.2 Structural metamodel

The structural metamodel which describes the elements of a user interface com-

ponent architecture following the “component/port/connector” model is shown

in Figure 4. The main concept of the metamodel is the Component element,

which can be simple (SimpleComponent) or complex (ComplexComponent). The

functionality of a component is defined by its ports (Port), which are interfaces

from which the services are described. There are two types of ports, Provided

and Required. The first define the services the component provides (offers),

and the second the services which the component requires to be able to function

(together). The dependencies between components are set by the Connector con-

cept. A connector joins two components by two dual ports (provided/required).

A complex component (ComplexComponent) may be comprised of two or more

components (which in turn may be complex or simple). Complex components

are treated the same way as a simple component (with ports and connectors).

Furthermore, a component may have a defined interaction behavior in the inter-

action model associated with it through the InteractionBehaviour concept.

Figure 6 shows an instance of the structural metamodel for the guide ex-

ample. This figure shows the three user interfaces for the three actors in the

example (seen above in Figure 2), one for the politician (at the top), another for

the GIS expert (on the left) and another for the evaluator (on the right). The

diagram shows the internal dependencies between components in each user in-

terface and also between interface components. A UML component diagram was

used to draw the model of the instance in the figure, using a graphical notation

for the “capsule/port/connector” model. The components are drawn with a box

or capsule and labeled with the stereotype <<component>> which requires the

metamodel Component concept. At this level, only the name of the component

is shown inside a capsule (the box). For example, /datM:DataManager means

that datM is an instance of the base component DataManager. A port mediates

the interaction of the capsule with the outside world. Ports carry out proto-

cols, which indicate the order in which the messages are sent between connected

ports. For instance, the +datMProv:MapData notation is a port called datMProv

and a protocol called MapData. The MapData~ notation represents the dual pro-

tocol. Ports are provided with a mechanism for a capsule to specify the input

2679Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

 !"#$"%&%'((

Evaluator_GUI

 !"#$"%&%'((

ExpertGIS_GUI

 !"#$"%&%'((

Politician_GUI

 !"#$"%&%'((

/chatEv:Chat

 !"#$"%&%'((

/repCreator:ReportCreator

 !"#$"%&%'((

/dmgEv:DamageEvaluator

 !"#$"%&%'((

/chatExp:Chat

 !"#$"%&%'((

/analysisM:AnalysisMaker

 !"#$"%&%'((

/hist:Histogram
 !"#$"%&%'((

/map:Map

 !"#$"%&%'((

/repM:ReportManager

 !"#$"%&%'((

/datM:DataManager

 !"#$%$

 !"#$%$&

 '($%')*

 +$,-./)
 +$,-./)&

 '($%')* '($%')*

 !"#$%$

 '($%')*

 !"-./)&

 !"-./)&

 012%)-./)&

 012%)-./)&

 !"-./)

 +$,#$%$

 +$,#$%$

 !"#$%$&

 3.$45212-./)& 3.$45212-./)&

 3.$45212-./)

 3.$45212-./)

 '($%')*&

 !"678&

 !"678&

 012%-./)

 +$,-./)

 !"67,

 '($%')*& '($%')*&

 +$,#$%$& +$,#$%$&

 +$,-./)&

 !"67, 91.$467,& 91.$467,&

 '($%')*&

:;<3.$45212+$=7>

:;<+$,

:;<>7,'>7$%)>?>)"

:;<#$*$@7!"$4A$%)>

:;<B($%!"?>)"

:;<B($%!"678

:;<#$*$@7!"$4A$%)>

:;<'($%

:;<'($%

:;<B($%!C,678

:;<'($%

:;<012%)@>$*

:;<'($%

:;<B($%!C,?>)"

:;<$.$45212+

:;<(12%?>)"

:;<+$,

:;<012%)@>$*

:;<+$,

:;<#$%$+$.$@7>

:;<*$,?>)"

:;<*$,678

:;<#$%$+$.$@7>

:;<D*@!"
:;<67,)>%'>7$%)>

:;<D*@!"678

:;<>7,+?>)"

:;<D$%+?>)"
:;<#$%$+$.$@7>

:;<67,)>%+$.$@7>

:;<>7,+678

:;<67,)>%'>7$%)>

:;<D$%+678

:;<3.$45212+$=7>

:;<D$%+?>)" :;<#$%$+$.$@7>

:;<67,)>%+$.$@7>:;<67,)>%+$.$@7>

:;<#$%$+$.$@7>

 !"678&

 !"678&

:;<>7,'>7$%)>?>)"

:;<67,)>%'>7$%)>

 !"-./)&
:;<#$*$@7!"$4A$%)>:;<#$*$@7!"$4A$%)>

:;<D*@!"

:;<B($%!C,678:;<'($%

:;<#$%$+$.$@7>

 +$,-./)&
:;<*$,?>)"

Structural Model

Figure 6: An instance of the structural metamodel with three user interfaces

and output interfaces. In our approach, the output interface notation (the small

white box) is used to describe the component interfaces provided, and we use

the input interface notation (the small black box) to describe the component

interfaces required. Finally, connectors capture the key communication rela-

tionships between capsules. They are represented by means of lines that join

two dual ports (provided/required, white/black).

For component composition, the ports provided (white-box) by the result-

ing container “parent” component would be all those that internally provide

their contained components, and the required ports (black-box) would be those

required that are not internally covered by those provided. For example, the

Evaluator interface is a complex component made up of another three compo-

nents. As may be observed, the services provided by parent components (the

interface) are the same ones that are provided by the child components (with

a different name). In such cases, the connector between the ports is the “use”

type (shown in the diagram by a dashed line) denoting that one output port

“uses the behavior of another internal one.” Something similar occurs in the

2680 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

case of ports required by a complex component. Note that the required port,

+DamageEvaluator:Evinfo of the /dmgEv:DamageEvaluator component is al-

ready covered by the port offered by the /repCreator:ReportCreator compo-

nent through its port providing +DamageEvaluator:EvInfo.

As in the interaction metamodel, it has also been necessary to include OCL

rules for some of the structural metamodel elements to improve the semantics

not established by the metamodel itself. Thus, for example, it was necessary to

include a rule to preset the types of connectors between ports: dual connectors

(provided/required) and use connectors (provided/provided or required/required).

Rule #4 (Context Connector): The ends that connect a Connector are differ-

ent types (Provided-Required or Required-Provided) when they connect compo-

nents from the same parent, and they are the same type (Provided-Provided or

Required-Required) when they connect parent components with children and vice

versa.

inv: self.endA.oclIsTypeOf(Provided) and

self.endB.oclIsTypeOf(Provided) implies (

(self.endA.parent.parent.parent = self.endB.parent.parent)

or (self.endA.parent.parent = self.endB.parent.parent.parent))

inv: self.endA.oclIsTypeOf(Required) and

self.endB.oclIsTypeOf(Required) implies (

(self.endA.parent.parent.parent = self.endB.parent.parent)

or (self.endA.parent.parent = self.endB.parent.parent.parent))

inv: self.endA.oclIsTypeOf(Provided) and

self.endB.oclIsTypeOf(Required) implies (

self.endA.parent.parent = self.endB.parent.parent)

inv: self.endA.oclIsTypeOf(Required) and

self.endB.oclIsTypeOf(Provided) implies (

self.endA.parent.parent = self.endB.parent.parent)

(4)

Rule #5 (Context Connector): The interfaces pertaining to ports associated by

a connector have to be the same type.

inv: self.endA.port_interface = self.endB.port_interface (5)

Rule #6 (Context Component): The root element “StructuralModel” is the only

component that can be defined without any port; the rest have to have at least

a “Provided” port.

2681Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

inv: self.oclIsTypeOf(StructuralModel) implies

self.ports->size()>=0

inv: not(self.oclIsTypeOf(StructuralModel)) implies (

(self.ports->size()>=1)

and (self.ports->exists(p | p.oclIsTypeOf(Provided))))

(6)

5 Related Work

In Cooperative Information Systems (CIS), models play an important role, es-

pecially in the user-interface (UI) field. In this type of system, where groups

of users (with different roles) cooperate through distributed UI, and interac-

tion between different elements involved in the system (e.g., actors, roles, tasks,

interaction rules, etc.) is usually highly complex, Collaborative Software Engi-

neering (CSE) [Mistrik et al., 2010] and Model-Driven Engineering (MDE) could

represent a solution for modeling UI [Obrenovic and Starcevic, 2005] and coop-

erative interaction [Bourguin et al., 2001]. There are many model-based propos-

als for modeling UI in the literature (e.g., IDEAS, OVID, WISDOM, UMLi,

etc.); see [Pérez-Medina et al., 2010] for a survey. The use of models to repre-

sent UI assists designers in their construction, conceptualization and visualiza-

tion [Clerck et al., 2005]. Some references use an MDE perspective for Web-based

UI, as in [Chavarriaga and Macia, 2009] and [Angelaccio et al., 2009], although

they do not consider cooperative interaction models. Other proposals, such as

in [Guerrero et al., 2008] present a metamodel for designing the various UI in

a workflow information system which integrates some different interaction ele-

ments, such as process, task, domain, job, among others. However, that proposal

does not define an interaction metamodel for cooperative Web UI either.

On the other hand, there are model-based approaches for user interface de-

velopment depending on interaction models. For example, in [Engel 2010] the

author describes a task model-based framework for the automatic user interface

creation and code generation. In [Bodgan et al., 2008] authors present a inter-

action metamodel based on human communication called discourse metamodel.

Furthermore, the discourse models are used to facilitate the automatic user in-

terface generation and their associated behaviour. These proposals are different

from ours because we focus on task interaction between actors and components

with the goal of modeling this information about the cooperative system, which

is used as part of the adapting and evolutionary methodology.

Component-Based Software Development (CBSD) approaches for the design

and implementation of GUIs are also increasing quickly. Some articles present a

combined MDE and CBSD approach for modeling both structure and behavior

of component-based software architectures [Alonso et al., 2008], which is what

2682 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

we have done for the development of our GUI architectural models. MDE also

plays an important role in collaborative systems. In [Gallardo et al., 2008] the

authors propose an awareness metamodel that conceptualizes collaborative sys-

tems for modeling activities. The proposal distinguishes five metamodel views:

(a) work group view, (b) actions view, (c) workspace view, (d) domain view,

and (e) awareness mechanisms view. Cooperation among users takes place in the

“workspace” view, which represents the user interface. [Hawryszkiewycz, 2005]

proposes a collaborative metamodel for defining collaborative work practices.

Nevertheless, none of the aforesaid proposals considers an interaction model for

cooperative interfaces or choreographies among groups of users. In our case, we

model them through state machines defined in the metamodel itself.

6 Conclusions and future work

Globalization of information and the knowledge society involve the use of varied

(and sometimes complicated) social interaction which requires more collabo-

rative Information Systems. Environmental Management Information Systems

(EMIS) [El-Gayar and Fritz, 2006] [Iribarne, 2010] are a good example of social

interaction, in which a wide range of final users and actors (such as politicians,

technicians and administrators) cooperate with each other and interact with

the system for decision-making, problem-solving, etc. In this type of system,

groups of users (who often have different roles) cooperate through distributed

user interfaces, where interaction between different elements involved in the sys-

tem (e.g., actors, roles, tasks, interaction rules, etc.) is usually highly complex.

Due to the variety of social interaction, interfaces must adapt to the needs of

users and/or groups of users who cooperate. Cooperative user interfaces must be

able to dynamically regenerate at runtime depending on the type of interaction

(individual or collective) and the purpose of interaction (management, techni-

cal purpose, etc.). However, cooperative user interfaces (especially in Web-based

Cooperative Information Systems (WCIS), such as some EMIS) (as well as the

knowledge they manage) are still being built based on traditional software devel-

opment paradigms without taking into account the main criteria of globalization:

they have to be distributed, open and changeable. This implies that WCIS user-

interfaces should be modeled according to the type of cooperative interaction,

purpose (political, management, technical purpose, etc.) and structure.

In this article we present interaction and structural metamodels as part of

an evolutionary model methodology for cooperative user interfaces. This pro-

posal is inspired by basic principles of Model-Driven Engineering (MDE), par-

ticularly runtime models, model evolution and model transformation. The pro-

posed interaction metamodel uses six basic concepts: groups, actors, rules, chore-

ographies, tasks and components, and the structural metamodel is based on

2683Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

a component/port/connector” model. We also present an interaction scenario

for decision-making in environmental impact assessment, common in GIS (Geo-

graphical Information Systems), to explain the main concepts of both metamod-

els and some instances obtained from them. The example scenario models the

interaction of three users with three different roles (a politician, an expert and

an evaluator) in a cooperative task. The interaction and structural metamodels,

and the example described in this paper are a part of the SOLERES system, an

Environmental Management Information System (EMIS) [Iribarne, 2010].

In our future work, we want to develop a graphical tool using the Eclipse

Graphical Modeling Framework (GMF, www.eclipse.org/gmf/) for easy cre-

ation of new scenarios, such as instances (models) of the interaction metamodel.

Our models are currently written directly in XMI and manually drawn as activity

and object diagrams using Visual Paradigm for Eclipse. We are also interested in

studying possible change detection and variability in the interaction and struc-

tural metamodels by means of automated co-evolution mechanisms and meta-

model adaptation [Cicchetti et al., 2008] [Wachsmuth, 2007]. We are presently

working on development of a simulation tool for reproducing user interaction

behavior with user interface components by generating random or programmed

events to check the models and metamodels.

Acknowledgments

This work was funded by the EU (ERDF), the Spanish Ministry of Science and

Innovation (MICINN) under the TIN2010-15588 and TRA2009-0309 Projects

(http://www.ual.es/acg), the JUNTA de ANDALUCÍA (proyectos de exce-

lencia) under grant the TIC-06114 project, and also by Ingenieros Alborada,

(http://www.ingenierosalborada.es).

References

[Almendros and Iribarne, 2008] Almendros, J., Iribarne, L.: “An extension of UML for
the modeling of WIMP user interfaces”; J. Vis. Lang.&Comp., 19(6):695–720, 2008.

[Alonso et al., 2008] Alonso, D., Vicente-Chicote, C., Barais, O.: “V3Studio: A
component-based architecture modeling language”; In 15th IEEE Int. Conf. and
Work. on the Eng. of Comp. Based Systems, pages 346–355. IEEE, 2008.

[Angelaccio et al., 2009] Angelaccio, M., Krek, A., D’Ambrogio A.: “A model-driven
approach for designing adaptive Web GIS interfaces”; LNGC, pp 137–148, 2009.

[Blair et al., 2009] Blair, G., Bencomo, N., France, R.B (eds.): “Models@Run.Time”;
Special Issue, Computer, IEEE Computer Society, 2009.

[Bodgan et al., 2008] Bogdan, C., Falb, J., Kaindl, H., Kavaldjian, S., Popp, R., Ho-
racek, H., Arnautovic, E., Szep, A.: “Generating an abstract user interface from a
discourse model inspired by human communication”; In 41st Hawaii Int. Conf. on
System Sci., pages 36–45. IEEE, 2008.

[Bourguin et al., 2001] Bourguin, G., Derycke, J.C., Tarby, J.C.: “Beyond the inter-
faces, co-evolution inside interactive systems: A proposal founded on the activity
theory”; In Proc. of the Human Computer Interaction 2001, Springer, 2001.

2684 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

[Chavarriaga and Macia, 2009] Chavarriaga, E., Macia, J.A.: “A model-driven ap-
proach to building modern semantic Web-based user interfaces”; Advan. in Eng.
Soft. 40, 1329–1334, 2009.

[Cicchetti et al., 2008] Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: “Au-
tomating co-evolution in model-driven engineering”; EDOC, pp. 222-231, 2008.

[Clerck et al., 2005] Clerck, T., Luyten, K., Coninx, K.: “DynaMo-AID: A design pro-
cess and a runtime architecture for dynamic model-based user interface develop-
ment”; Eng. Human Computer Inter. and Interactive Systems, pages 7795, 2005.

[Criado et al., 2010] Criado, J., Vicente-Chicote, C., Padilla, N., Iribarne, L.: “A
Model-driven approach to graphical user interface runtime adaptation”; Mod-
els@Run.Time, CEUR-WS Vol 641, pages 49-59, 2010.

[El-Gayar and Fritz, 2006] El-Gayar, O., Fritz, B.D.: “Environmental management in-
formation systems (EMIS) for sustainable development: A conceptual overview”;
Comm. of the Assoc. for Inf. Syst. 17(1):34, 2006.

[Engel 2010] Engel, J.: “A model-and pattern-based approach for development of user
interfaces of interactive systems”; In 2nd ACM Symp. on Eng. Interactive Comp.
Systems, pages 337–340. ACM, 2010.

[Gallardo et al., 2008] Gallardo, J., Crescencio, B., Redondo, M.A.: “Developing col-
laborative modeling systems following a model-driven engineering approach”; OTM
2008 Workshops, LNCS 5333, pp. 442–451, 2008.

[Guerrero et al., 2008] Guerrero, J., Lemaigre, C., Gonzalez J.M., Vanderdonckt, J.:
“Model-driven approach to design user interfaces for workflow information systems”;
Journal of Universal Computer Science 14(19):3160–3173, 2008.

[Hawryszkiewycz, 2005] Hawryszkiewycz, I.T.: “A metamodel for modeling collabora-
tive systems”; Jour. of Comp. Inf. Systems, 5(3):63–72, 2005.

[Iribarne et al., 2004] Iribarne, L., Troya, J.M., Vallecillo, A.: “A trading service for
COTS components”; The Computer Journal. 4, 3, pp. 342–357, 2004.

[Iribarne et al., 2010] Iribarne, L., Padilla, N., Criado, J., Asensio, J.A., Ayala, R.:
“A Model Transformation Approach for Automatic Composition of COTS User
Interfaces in Web-Based Information Systems”; Information Systems Management.
27, 3, pp. 207–216, 2010.

[Iribarne, 2010] Iribarne, L.: “SOLERES project: A spatio-temporal information sys-
tem for the enviromental management based on neural-networks, agents and soft-
ware components”; TR, jspTIN2010; http://www.ia.urjc.es/jspTIN2010/.

[ISO, 2004] ISO: “Information Technology — Open Distributed Processing — Trading
Function: Specification”; ISO/IEC 13235-1, ITU-T X.950.

[Mens, 2008] Mens, T.: “Introduction and roadmap: History and challenges of software
evolution”; Software Evolution, pp. 1–11, Springer, 2008.

[Mistrik et al., 2010] Mistrik, I., Grundy, J., Hoek, A., Whitehead, J.: “Collaborative
software engineering”; Springer book, ISBN: 978-3-642-10293-6, 2010.

[Obrenovic and Starcevic, 2005] Obrenovic, Z., Starcevic, D.: “Model-driven develop-
ment of user interfaces: Promises and challenges”; Eurocon (1-2):1259–1262, 2005.

[Pérez-Medina et al., 2010] Pérez-Medina, J.L., Dupuy-Chessa, S., Front, A.: “A sur-
vey of model driven engineering tools for user interface design. Task models and
diagrams for user interface design”; LNCS 4849, pp. 84–97, 2010.

[Schmidt, 2006] Schmidt, D.: “Model-driven engineering”; Comp. 39(2):25–31, 2006.
[Wachsmuth, 2007] Wachsmuth, G.: “Metamodel adaptation and model co-

adaptation; ECOOP 2007, LNCS 4609, pp. 600–624, 2007.

2685Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

