

Towards Model-Driven Engineering Support for
Service Evolution

Juan M. Vara
(Kybele Research Group, Rey Juan Carlos University

Madrid, Spain
juanmanuel.vara@urjc.es)

Vasilios Andrikopoulos

(Institute of Architecture of Application Systems, University of Stuttgart
Stuttgart, Germany

vasilios.andrikopoulos@iaas.uni-stuttgart.de)

Michael P. Papazoglou
(European Research Institute in Service Science (ERISS)

Tilburg University, Tilburg, The Netherlands
m.p.papazoglou@uvt.nl)

Esperanza Marcos

(Kybele Research Group, Rey Juan Carlos University
Madrid, Spain

esperanza.marcos@urjc.es)

Abstract: In the field of Service-Oriented Architecture (SOA) evolution is a key issue given
the non-trivial nature of updating widely distributed and heterogeneous systems. With this in
mind, in this work we used some of the technologies developed in the context of the Eclipse
Modeling Framework (EMF) to provide a proof of concept of the possible synergy between
Model-Driven Engineering (MDE) and Service Orientation. In particular, we present a DSL
toolkit for modeling the structural part of Abstract Service Descriptions (ASDs) and the
reasoning mechanism that assesses whether two versions of a service are compatible with
respect to its consumers.

Keywords: Service Evolution, Model-Driven Engineering, Compatibility, Type Theory
Categories: D.2.1, D.2.2, D.2.6, D.3.1, H.1.1, F.4.3

1 Introduction

Model Driven Engineering (MDE) is a recent trend in software engineering; its main
proposal is to focus on models rather than on computer programs [Selic 03]. The basic
assumption in MDE is to consider models as first class entities, just as classes are the
basic construction block in object-oriented programming, or software components are
the basic unit in component-based software engineering. Indeed, MDE is a natural
step in the historical tendency of software engineering towards raising the abstraction
level at which software is designed and developed. Although models have always
been considered in software development, they have been traditionally used simply as

Journal of Universal Computer Science, vol. 18, no. 17 (2012), 2364-2382
submitted: 16/1/12, accepted: 29/8/12, appeared: 1/9/12 © J.UCS

documentation, and in the best case, they have served to generate a reduced skeleton
of the final code. With the advent of MDE the landscape has changed, at least for
MDE practitioners that have shifted their focus from coding to modelling.

During the last years, MDE started to have a direct influence in other research
fields. Under the light of the premise that everything is a model [Bézivin 04],
practitioners from other software development areas have discovered that they are
able to express their SE problems in MDE terms and take advantage of MDE
techniques to solve them – or at least simplify them, by leveraging the level of
automation in the development process. The scope varies widely from more generic
domains, like Web Engineering [Koch et al. 08] or Service Orientation [Bell 08] to
more specific ones, like DB schema matching [Bernstein 03] or domotics [Jimenez et
al. 09]. In order to express their SE problems in terms of MDE, they need
metamodelling frameworks, model transformation languages and the like. Following
this line, our work focuses on providing methods and modelling languages to assist
Service-Oriented Development. In particular, it aims at showing how MDE tools and
techniques are applied to provide support for a service evolution framework.

Service evolution is the disciplined approach of managing service changes and is
defined as the continuous process of development of a service through a series of
consistent and unambiguous changes [Andrikopoulos 10]. The evolution of a service
is expressed through the creation and decommissioning of different service versions
during its lifetime. These versions must be aligned with each other in such a way as to
allow a service developer to track the various modifications introduced over time and
their effects on the original service. To control service development, a developer
needs to know why a change was made, what its implications are, and whether the
resulting service version is compatible with existing consumers. A service version is
compatible if it does not render its consumers inoperable (i.e., it does not break them
in the sense that consumers are still able to use the same type of data they used as
inputs and get back the say type of data they got as outputs).

Several approaches for controlling service evolution like [Becker et al. 08; Brown
and Ellis 04] depend on a set of empirical guidelines in order to enforce service
compatibility. These guidelines prescribe the type of changes that can occur to the
description of a service interface (usually a WSDL document). This dependence on
guidelines however is limited in expressivity and portability to other technologies
since it relies on the specifics of a particular version of WSDL. For this purpose,
[Andrikopoulos 10] proposes a theoretical framework that allows the formal
definition of the conditions under which the evolution of service interfaces respects
service compatibility. The proposed framework depends on formal models for the
representation of service interfaces that draw from a common metamodel. This
property makes it ideal for applying MDE techniques and serving as a proof of
concept for the synergy between MDE and Service Orientation.

The rest of this article is structured as follows: Section 2 briefly presents the
formal framework for compatible service evolution developed in [Andrikopoulos 10]
in order to provide the theoretical background for this work. Section 3 demonstrates
the synergy between MDE and SOA by discussing how the theoretical framework can
be implemented by means of MDE techniques and tools. Section 4 validates our work
through the use of a case study. Finally, Section 0 discusses related work and Section
6 concludes and presents our intentions with respect to future work.

2365Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

2 Compatible Service Evolution Framework

[Andrikopoulos 10] presents a rigorous formal framework based on type safety
criteria and algorithms which controls and delimits the evolution of services. The
framework extends and applies theories and methods of controlling evolution from
object-oriented programming languages like subtyping and co- and contra-variance of
input and output [Meyer 97]. Based on these principles a reasoning mechanism is
presented that allows deciding when a change to the service interface leads to a
compatible version of the service for the consumers.

More specifically, the framework is based on a technology-agnostic notation for
the representation of service interfaces in the form of Abstract Service Descriptions
(ASDs) as introduced in [Andrikopoulos et al. 08]. Each ASD represents a particular
version of a service and can be defined as the set S of all its versioned records

VjNisS j
i ,,,1},{ , where V is the set containing the version identifiers vid

for all records s. S therefore contains one particular version for each of its constituent
records. Each ASD respects a particular metamodel, expressed in UML class diagram
notation in 0, which divides ASD records in three layers: a structural, a behavioural
and a non-functional one. For the purposes of this discussion, we focus on the
structural layer.

The structural layer of the ASD, depicted in the lower part of 0, contains the
method signatures and their message parameters required for the interaction of the
clients with the service. In particular, it includes the following concepts:
 Information Type is a wrapper for the XML Schema complex and simple data

types that are used as parts of the message exchange. For representing simple
data types, each Information Type contains the valueType and valueRange
properties. valueRange expresses the allowed range of values for each
Information Type (or N/A if one is not defined). valueType belongs to the
DataType property domain which contains the usual simple data types from
XML Schema like int, double, string, etc. The document value is used for
complex data types. Since complex types may contain both simple and other
complex types, the actual content of the complex types is expressed through the
(optional) reflexive association relationship with other Information Types. No
information is explicitly stored about the particular structure of the type (e.g. the
sequence of the nested elements inside a complex type).

 Message corresponds to the WSDL message and message part elements. It is the
container of the message payload and for that purpose, its property role draws
values from the MessageRole property domain. MessageRole contains the three
basic roles that a message can play in an interaction with a consumer: input,
output and fault (that is, an exception-like output). A Message must contain at
least one Information Type for “storing" the message content.

 Operation represents the basic interaction point of the clients with the service in
the form of a discrete functionality to be performed. It contains one or more
Messages, as defined by the semantics of its pattern. The MessagePattern
property do main in Fig. 4.1 contains the four interaction patterns with a service
(one-way, notification, request-response and solicit-response) as defined in
WSDL 1.* Each interaction pattern binds the number and properties of the

2366 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

Messages it is related to. request-response for example would mean that the
Operation would be connected to (at least) two Messages, one with property
input and one with output (and optionally one with property fault). More
powerful interaction patterns, or even customly defined ones, as provided by
WSDL 2.0 and discussed in the Adjuncts section of the specification can also be
used here, as long as their semantics are reflected accordingly in the relationship
of the Operation with its Messages. A 'robust-in-only' message pattern for
example would have signified that there will be exactly one Message of with
property input and so on.

Figure 1: The ASD metamodel

The theoretical aspect of the ASD notation uses a formal specification of the ASD
notation based on type theory [Cardelli 98]. A structural ASD consists of elements –
informational constructs representing the building blocks of the service – and their
relationships – expressing the structural dependencies of elements. Elements and their
relationships are formally defined as:

Definition 1. An element e is a tuple)):(,:(: *
1 propertyprstringnamee i . A

relationship),(ts eer between elements
se and

te is a tuple

):,:,:,:,:(:),(tymultiplicimulrelationrelstringnamestringnamestringnameeer tsts
where:

2367Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

ts namenamename ,, are unique string identifiers of elements

ts eee ,,

respectively, e.g., RequestMessage.
 *

1):(propertypri is a set of zero or more properties, drawing from a property

domain. The messagePattern to be used for an operation is an example of
a property domain, containing properties like One-way, Request-

Response, etc. The domains for each property are depicted as enumerations
in 0.

 rel is the type of type of relationship between the elements (a,c,s – that is,
aggregation, composition or association, respectively, with the semantics
defined in [Andrikopoulos et al. 08]).

 mul is the multiplicity of the relationship, defined as max][min,:mul , where

maxmin, (the set of natural numbers) is the minimum and maximum

respectively multiplicities allowed for each member of the relationship, as
denoted in 0.

To illustrate the correspondences between the concepts of ASD metamodel and
the formal concepts of elements and relationships, Listing 2 shows the elements and
relationships used by the structural layer of the ASD metamodel.

Listing 1. Formal specification of the ASD metamodel

1. Operations: o := (name : string, messagePattern)

where messagePattern{one-way, notification,
request-response, solicit-response}.

2. Messages: m := (name : string, role)
where role{input, output, fault}.

3. InformationTypes: it := (name : string, valueType, valueRange)
where valueType {document, int, float, double,
string,…} and valueRange {(min, max), N/A}.

--
Relationship types:
1. Operation-Message: r(o,m) := (nameo, namem, c, mul)

where mul = [1, 1..*].
2. Message-InformationType: r(m, it) := (namem, nameit, a, mul)

where mul = [1, 1..*].
3. InformationType-InformationType: r(iti, itj) := (namei, namej ,

s, mul) where mul = [0, 1..*].

For instance, an Operation is an element that owns just one property

(messagePattern), while an Operation-Message relationship is containment
relationship between one Operation element and one or more Message objects.

Next, note that elements e and relationships),(ts eer are records in the type

theoretical sense which allows us to define a subtyping relation on them:
 Definition 2. An element),,,(: 1 kprprnamee is a subtype of element

),,,(: 1 mrprpename , and we write ee , iff

mirpprkmenamname ii 1 , , that is, they have the same name

identifier, and e has less properties than e , but the ones it has are more generic
(super-types) of the respective properties of e .

2368 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

A relationship),(ts eer is a subtype of relationship),(ts eer , and we write

),(),(tsts eereer , iff lmumullrereleeee ttss , that is, the

elements participating in the (new) relationship are super-types of the original ones
and the multiplicity domain of the relationship is a super-set of the respective one in
the old relationship.

Using the subtype relation and a segmentation of an ASD S into two proper
subsets

proS and
reqS , denoting output- and input-specific elements and relationships

respectively we can easily check for the compatibility of two ASDs as follows:
Definition 3. Two service versions S and S are called compatible, and we write

SS c , iff

output) of variance-(co :

input) of variance-(contra :

ssSsSs

ssSsSs

propro

reqreq

Note that this notion of compatibility is not symmetric: the fact that S is
compatible with S’ does not imply that S’ is compatible with S. It just implies that the
data types of their inputs and outputs allows replacing S by S’ without breaking the
consumers. Note also that we are not considering here the functionality of S and S’.
One might assume that they provide the same functionality or develop behavioural
checks to assess it. Furthermore, from their definition, ASD models assume a
functional, input/output-oriented view of services in line with the object-oriented
paradigm that they evolved out of [Meyer 97]. However, different models of services,
such as for example the AS2 model for data-intensive services [Ma et al. 09], do not
adopt this functional view. As such, the theoretical tools discussed in this model are
not directly applicable and appropriate, equivalent mechanisms have to be developed
(if possible) in order to allow for the remaining of our proposed approach to be used
in conjunction with them.

The fact that Definition 3 can be easily translated into a compatibility checking
function, combined with the fact that ASDs can be expressed as models conforming to
a common metamodel, allow for a direct application of MDE techniques for
implementing the compatible service evolution framework as we discuss in the
following section.

3 Modeling and Comparing Abstract Service Descriptions

In order to support the theoretical framework discussed above we developed a DSL
for ASDs and a basic toolkit to use it. In particular:
 We encoded the structural aspect of the ASD metamodel discussed above.
 We developed both a tree-like editor and a diagrammer for models that conform

to the ASD metamodel.
 We implemented a basic comparison between ASDs to assess whether they are

compatible according to the principles defined in the last section.
The development process we followed to accomplish these tasks is shown in 0. It is
adapted from the process proposed in [Vara 09] for the development of new DSL
toolkits. Each step in the development process is represented with a rounded rectangle
while the software artefacts produced are represented with ovals. Besides, how each
product is used in subsequent steps of the development process is also depicted. In

2369Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

addition, the main technical solution used for each task is represented by means of its
corresponding logo.

Model Processor

ECL
Comparer

Concrete Syntax Definition

GMF
Diagrammer

EMF
Tree-like

Editor

Abstract Syntax Definition

Service
Description
Metamodel

Figure 2: SRMod development process

First step is the definition of the abstract syntax of the DSL. To this end, the
metamodel of the DSL is defined as an Ecore metamodel using the facilities provided
by the Eclipse Modelling Framework (EMF) [Budinsky et al. 08], like the Ecore tools
and the Ecore diagrammer.

Next task is the definition of a concrete syntax for the DSL. EMF and GMF
(Graphical Modelling Framework) [Tikhomirov and Shatali 08] are used for this
purpose to generate a couple of model editors, a basic tree-like editor and a
diagrammer. Due to the GMF architecture, the latter is based on the former, which
helps with subsequent steps of the process.

Finally, once the DSL has been defined it is time to address the model processing
tasks for which it was devised. In this case, the aim was to compare ASDs. For this
purpose we developed a model comparer using the Epsilon Comparing Language
[Kolovos 09]. The following sections present the key points for each step of the
process.

3.1 Abstract Syntax Definition

The first task to address when deploying a DSL is the specification of its metamodel
which collects the abstract syntax of the language. It describes the vocabulary of the
concepts provided by the language and how they may be combined to create new
models. Listing 2 contains the elements and relationships used by the structural layer
of the ASD metamodel.

2370 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

Listing 2. Formal specification of the ASD metamodel

1. Operations: o := (name : string, messagePattern)

where messagePattern{one-way, notification,
request-response, solicit-response}.

2. Messages: m := (name : string, role)
where role{input, output, fault}.

3. InformationTypes: it := (name : string, valueType, valueRange)
where valueType {document, int, float, double,
string,…} and valueRange {(min, max), N/A}.

--
Relationship types:
1. Operation-Message: r(o,m) := (nameo, namem, c, mul)

where mul = [1, 1..*].
2. Message-InformationType: r(m, it) := (namem, nameit, a, mul)

where mul = [1, 1..*].
3. InformationType-InformationType: r(iti, itj) := (namei, namej ,

s, mul) where mul = [0, 1..*].

To implement this metamodel we have used Emfatic1, a language that allows for

representing EMF Ecore models in textual form. The use of Emfatic allows
introducing some @gmf annotations during the definition of the metamodel that will
serve to drive the look & feel of the GMF diagrammer. Next, the Emfatic textual
specification is injected into an Ecore metamodel that includes the @gmf annotations
which are later used to drive the generation of the diagrammer. 0 shows two partial
views of this metamodel.

GMF
annotations

Figure 3: The ASD metamodel as an Ecore metamodel

The left-hand side shows the default EMF tree-like editor. Notice how the @gmf
annotations have been mapped to Ecore annotations. The right-hand side of the
picture shows the metamodel depicted with the Ecore diagrammer that supports the
representation of Ecore metamodels as class diagrams.

1
 http://www.alphaworks.ibm.com/tech/emfatic

2371Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

3.2 Concrete Syntax Definition

After defining the metamodel of the DSL, the next step is to provide it with a concrete
syntax. Broadly speaking, defining the concrete syntax of a DSL consists of
associating a notation to each concept and relationship in the metamodel. We have
focused on visual notations since visual representation of models has been typically
identified as one of the technological foundations supporting MDE [Bézivin 04].
Moreover, we are currently working to import ASD models directly from WSDL files
so we could use WSDL as the textual notation.

To address this task, EMF and GMF capabilities are used to generate a tree-like
editor with basic capabilities, and a diagrammer. We believe that any DSL toolkit has
to bundle a diagrammer for each DSL supported, since they are useful to provide with
a first glance of any given model. However, the effort dedicated to their development
should be considered very carefully. In this context, the generative nature of GMF fits
perfectly: it generates an efficient – though not perfect, diagrammer in reasonable
time and with minimum effort. Given the above, the process to provide with a
(graphical) concrete syntax for the ASD DSL in EMF is summarized as follows:
 From the Ecore (meta)model, EMF provides runtime support for graphically

editing, manipulating, reading, and serializing data based on the given
(meta)model. Thus, conforming models can be created using a simple tree-like
editor.

 Since we rely on extended EMF tree-like editors as the most convenient way of
handling low-level models, the next step is to customize the basic EMF tree-like
editor. Examples of this process can be found in [Vara 09]. It is worth mentioning
that GMF relies extensively on EMF-generated code. The way model elements
are displayed on GMF diagrammers, the icons used to identify them, and even
the labels that show their names are directly taken from EMF generated code.
Thus, the improvements made over the EMF tree-like editor are automatically
transferred to the GMF diagrammer.

 Finally, the EuGENia2 and the KybeleGMFgen3 plug-in are used to leverage the
level of automation of the model-driven development process for diagrammers
implemented by GMF. This automated process consumes three types of inputs:
the Ecore meta-model, the code that implements the EMF tree-like editor and a
set of Epsilon Object Language (EOL) files. Since a predefined set of annotations
is not enough to obtain exactly the required look & feel for the diagrammer, the
EOL files collect the different design decisions that we want to project in the
diagrammer. From these inputs a chain of model transformations generate a new
set of intermediate models and finally the working code that implements the
diagrammer.

3.3 Comparing ASDs

In the following we present a first implementation of the comparison between two
service versions to assess whether they are compatible. According to [Andrikopoulos
10], we can summarize ASD version compatibility by: two service versions

2 http://www.eclipse.org/gmt/epsilon/doc/eugenia/
3 http://kybelegmfgen.wordpress.com/

2372 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

(represented as ASDs) are compatible if one of them is composed by the same
elements and relationships (or a subtype of them) that compose the other. In other
words, two service versions are compatible if (sub)typing relations hold between their
elements and relationships. The sufficient conditions for subtyping between the
components of an ASD are summarized in Listing 3.

Listing 3. Conditions for subtyping

1. o o’ name = name’ messagePattern = messagePattern’
(we only accept equality).

2. m m’ name = name’ role = role’ (as above).

3. it it’ name = name’ valueType valueType’

valueRange valueRange’

where int float double string (everything else is not
valid) and the value ranges are compared as subsets (if
applicable).

4. r(o, m) r’(o,m) o ≤ o’ m ≤ m’ mul mul’.

5. r(m, it) r’(m, it) m ≤ m’ it ≤ it’ mul mul’.

6. r(iti, itj) r’(iti, itj) iti it’i itj it’j

mul mul’.

7. For all relationships, it holds that

 r(s, t) [0, 0] mul,

or equivalently, if the relationship has a multiplicity of
 [0, 1..*]).

To implement the comparison, we translate the conditions of Listing 2 into a
operative Epsilon program using the Epsilon Comparison Language, a hybrid rule-
based language built atop the Epsilon platform, which enables developers to
implement comparison algorithms at a high level of abstraction [Kolovos 09]. The
next section will show the result of running the comparison between different
versions of a service in practice.

The result of this implementation process was the SRMod prototype, which is
publicly available at http://srmod.wordpress.com.

4 Case Study

To validate the different software artifacts produced in this work we have used the
Automotive Purchase Order Processing Scenario which is being developed and used
as one of the validation scenarios in the S-Cube Network of Excellence4. The scenario
is based on the Supply Chain Operations Reference (SCOR) model that provides
guidelines for the implementation of Supply Chains. This scenario is an example of
how to implement activities of SCOR Level 3 using SOA, based on the processes of a
company belonging to the automobile industry called Automobile Incorporation (aka
AutoInc). AutoInc contains various business units, for example, Sales, Logistics,
Manufacturing, etc., and cooperates with other partners such as suppliers, banks,

4 http://www.s-cube-network.eu/

2373Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

carriers, etc. In the following we assume that the various activities are implemented as
services.

In particular, we used the SRMod prototype to model two different versions of
one service (Receive Purchase Order). The service contains one Operation that
handles two different Messages (POMessage and m2) and uses a set of data types
like PODocument. Each version differs from the other in the signature of the
operations provided. The first version of the considered service is shown in Listing 4.

Listing 4. Formal specification of the Receive Purchase Order Service (V1)

o1 = (processOrder, request - response)
m1 = (POMessage, input)
m2 = (m2, output) //for unnamed output message
it1 = (PODocument, document, N/A)
it2 = (OrderInfo, string, N/A)
it3 = (DeliveryInfo, string, N/A)
it4 = (it4, string, N/A) //for unnamed output message
r(o1, m1) = (processOrder, POMessage, c, [1, 1])
r(o1, m2) = (processOrder, m2, c, [1, 1])
r(m1, it1) = (POMessage, PODocument, a, [1, 1])
r(m2, it4) = (m2, it4, a, [1, 1])
r(it1, it2) = (PODocument, OrderInfo, s, [1, 1])
r(it1, it3) = (PODocument, DeliveryInfo, s, [0, 1])

The graphical representation of the service description is depicted in 0, along with
some screen captures showing the properties sheet for each type of object.

Figure 4: Graphical representation of Receive Purchase Order Service (V1)

The second version of the Receive Purchase Order service adds a new
InfoType object to model the date of the purchase order (OrderDate) and a new
relationship, which relates a given purchase order with its date of expedition. Again,
the new version of the service is formally described in Listing 5 (new elements are in
bold).

2374 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

Listing 5. Formal specification of the Receive Purchase Order Service (V2)

o1 = (processOrder, request - response)
m1 = (POMessage, input)
m2 = (m2, output) //for unnamed output message
it1 = (PODocument, document, N/A)
it2 = (OrderInfo, string, N/A)
it3 = (DeliveryInfo, string, N/A)
it4 = (it4, string, N/A) //for unnamed output message
it5 = (OrderDate, date, N/A)

r(o1, m1) = (processOrder, POMessage, c, [1, 1])
r(o1, m2) = (processOrder, m2, c, [1, 1])
r(m1, it1) = (POMessage, PODocument, a, [1, 1])
r(m2, it4) = (m2, it4, a, [1, 1])
r(it1, it2) = (PODocument, OrderInfo, s, [1, 1])
r(it1, it3) = (PODocument, DeliveryInfo, s, [0, 1])
r(it1, it5) = (PODocument, OrderDate, s, [0, 1])

Given the above, when the comparison between the two service versions is

performed, then the results are displayed in a structured way in the Eclipse console.
We are currently working to transform them into a new model that will be later
processed by means of MDE techniques.

The results are split into two big groups of model elements that inform
respectively of the compatibility between objects (instances of the metaclasses
collected in the metamodel) and relationships (instances of the meta-associations
collected in the metamodel). For each model element found on one version (element
or relationship), we check if the other service version contains an element whose
properties fulfil the requirements for replacing the former without affecting service
compatibility.
The lower part of 0 shows that all the partial comparisons yield a positive result when
V1 is used as the old version of the service, i.e., V1 can be replaced by V2. Indeed,
despite that the PODocument data type uses an additional data type (OrderDate) in
V2, we can still replace V1 by V2 without affecting compatibility since we can look
at V1.PODcoument as a subtype of V2.PODocument. On the contrary, if V2 is used
as the service to be replaced (by V1), individual comparisons yield a negative result
since the subtyping relations are not fulfilled: we cannot replace the V2.PODocument
data type with the V1.PODocument data type, as shown in Fig. 5.

In summary, with the SRMod prototype we have replaced the tedious and error
prone task of parsing two WSDL files to look for differences, expressed them in a
manner suitable for computing the formal algorithms described in Section 2 and
finally displayed the results in a user-friendly way. At the same time, we provided
with a graphical representation of the ASD that helps on its understanding and
provides with a quick overview of each service description.

2375Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

1. COMPARING OBJECTS AND RELATIONSHIPS BETWEEN useCase1.model AND useCase2.model:

OBJECTS.-
[Operation]: processOrder with [messagePattern]: requestresponse -> Exist?: true

[Message]: POMessage with [role]: input -> Exist?: true
[Message]: m2 with [role]: output -> Exist?: true

[InfoType]: PODocument with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: OrderInfo with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: DeliveryInfo with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: it4 with [valueType]: document -> Exist and its valuetype is compatible?: true

RELATIONSHIPS.-
[Relationship Operation: processOrder - Message: POMessage] -> Is compatible?: true
[Relationship Operation: processOrder - Message: m2] -> Is compatible?: true

[Relationship Message: POMessage - InfoType: PODocument] ->Is compatible?: true
[Relationship Message: m2 - InfoType: it4] ->Is compatible?: true

[Relationship InfoType: PODocument - InfoType: OrderInfo] ->Is compatible?: true
[Relationship InfoType: PODocument - InfoType: DeliveryInfo] ->Is compatible?: true

V1

V2

Service to replace

Replacing
Service

Figure 5: Excerpt from the comparison results: V1 used as former version

5 Related Work

Evolution in software systems has been traditionally considered as either a part, or a
synonym of software maintenance and defined by the empirical laws that drive and
govern the evolution of software systems [Lehman 96]. However, attempting to apply
the conventional maintenance procedure (halt operation, edit source and re-execute)
in service-oriented environments is not sensible [Bennet and Raljich 07]. The
difficulty of identifying which software artifacts constitute the system itself is non-
trivial, especially in the context of large service networks. In addition, the lack of
ownership and access to the actual source code (if any) of third-party services (due to
the SOA principles of encapsulation and loose coupling) does not allow the
application of many of the maintenance techniques like refactoring or impact analysis.
This has given rise to different approaches in service evolution.
On the one end of the spectrum there are approaches on service evolution that do not
consider whether the changes to a service version break the consumers of the service,
preferring to remain as neutral as possible e.g. [Juric et al. 09; Leitner et al. 08]. On
the other end, there are approaches that aim to enforce non-breaking changes of
services to the extent that versioning of the service description can be simply
subsumed under one version, the active (i.e., deployed and running) one. A special
case of this idea is proposed by [Endrei et al. 06] where there are two versions active

2376 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

at all times: the current one and the old version which will be deprecated within a
given time period.

1. COMPARING OBJECTS AND RELATIONSHIPS BETWEEN useCase1.model AND useCase2.model:

OBJECTS.-
[Operation]: processOrder with [messagePattern]: requestresponse -> Exist?: true

[Message]: POMessage with [role]: input -> Exist?: true
[Message]: m2 with [role]: output -> Exist?: true

[InfoType]: PODocument with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: OrderInfo with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: DeliveryInfo with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: it4 with [valueType]: document -> Exist and its valuetype is compatible?: true
[InfoType]: OrderDate with [valueType]: date -> Exist and its valuetype is compatible?: false

RELATIONSHIPS.-
[Relationship Operation: processOrder - Message: POMessage] -> Is compatible?: true
[Relationship Operation: processOrder - Message: m2] -> Is compatible?: true

[Relationship Message: POMessage - InfoType: PODocument] ->Is compatible?: true
[Relationship Message: m2 - InfoType: it4] ->Is compatible?: true

[Relationship InfoType: PODocument - InfoType: OrderInfo] ->Is compatible?: true
[Relationship InfoType: PODocument - InfoType: DeliveryInfo] ->Is compatible?: true
[Relationship InfoType: OrderDate - InfoType: PODocument] ->Is compatible?: false

V1

V2
Service to

replace

Replacingservice

Figure 6: Excerpt from the comparison results: V2 used as former version

The majority of the approaches in the literature, e.g., [Becker et al. 08; Brown and
Ellis 04; Fang et al. 07; Weinreich et al. 07] are located somewhere between these two
ends. In principle, they propose a common compatibility-oriented strategy for service
evolution: maintain multiple active service versions for major releases, but cut
maintenance costs by grouping all minor releases under the latest one. However, such
works lack the theoretical framework to support the empirical guidelines they depend
on. By contrast, we aim at providing a holistic theoretical and technological
framework to support service evolution. Such framework operates on a formal basis,
focused on enforcing non-breaking changes to service versions.

With respect to the discovering of model differences, it is worth mentioning the
works from Bernstein [Bernstein 03] around schema matching. In the MDE field there
are several works focused on identifying differences between UML models, such as
[Ohst et al. 03] or [Xing and Stroulia 05]. The work from [Sriplakich et al. 06] raises
the level of abstraction since it allows discovering differences between models
conforming to any given metamodel. Finally, in the context of EMF, EMF Compare5
is probably the most accepted tool for detecting changes between different models.

5 http://wiki.eclipse.org/index.php/EMF_Compare

2377Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

Indeed it serves as the basis for more elaborate proposals on metamodel evolution and
model co-evolution, like [Cichetti et al. 09]. Nevertheless, all these tools are more
oriented towards automatically discovering equivalences and differences. Since we
needed to implement our own algorithm to establish such relationships we have opted
for using the Epsilon Comparison Language because it is specifically intended for this
type of tasks.

As regards the convergence of MDE and SOA, some authors argue that such an
effort, and in combination with better techniques for documenting and improving
business processes, are the way to realize the promise of rapid, accurate development
of software that serves, rather than dictates, software users’ goals [Watson 08]. This
kind of alignment between high level business specifications and lower level SOA
implementations is a crucial aspect in the field of Service-Oriented Development.
Besides, a number of methodological proposals have appeared trying to combine the
strengths of MDE and SOA [Andrikopoulos 10; Arsanjani et al. 08; Bell 08] by
providing models, methods and techniques to deal with the development of service-
oriented systems. Most of them however do so at a very high level of abstraction,
based around business process modeling. Our approach is applicable to the level of
service version, making it more accessible in practice for service developers.

6 Conclusion and future work

The prototype presented in this work is complete in the sense that the current version
of SRMod is the first release of a service Evolution framework: it supports the
modeling of the structural part of Abstract Service Descriptions (ASDs) and provides
with a reasoning mechanism that assesses whether two versions of a service are
compatible with respect to its consumers.

However, we would like to note that the development of this prototype has served
as some kind of position prototype: it has served to show the potential advantages that
MDE technologies can bring to the deployment of SOA methodological proposals. As
a consequence, as long as we were going forward in the development of SRMod, we
found a number of issues that will be addressed by means of other MDE techniques.
For instance, now that we are able to model ASDs, we are able to address the
automatic mapping of WSDL files into ASDs (and vice-versa).

Therefore, in the following we enumerate some of the future challenges that we
plan to address in the development of our Service Evolution framework. Note that
most of them are already ongoing work:
 First, we are already working on the improvement of the produced software

artifacts. In particular, we are extending the DSL to deal not only with the
structural layer of the ASD metamodel, but also with the non-functional one (top
layer of Fig. 4).

 Besides, we are building a set of extractors and injectors to bridge the ASD DSL
with languages for Web service description such as WSDL. This will allow us to
import and export directly from and to WSDL documents. To that end we are
using the TCS (Textual Concrete Syntax) language [Jouault et al. 06]. With TCS,
it is possible to parse (text-to-model) and pretty-print (model-to-text) DSL
sentences. To that end, TCS provides with a DSL for the specification of the

2378 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

correspondence between the metamodel and its textual representation. From that,
an ANTLR grammar together with a parser for this grammar is generated. Such
parser (also known as injector) takes as input a textual program of the DSL and
generates a model conforming to the DSL metamodel.

 Furthermore, we are extending the use of MDE technologies in handling the result
of the comparison process. More specifically, version comparison results will be
expressed in a weaving model that relates the two source models. To that end, we
use the ATLAS Model Weaver (AMW). The AMW workbench provides a set of
standard facilities for the management of weaving models and metamodels
[Didonet Del Fabro and Valduriez 08]. This way, each element of the weaving
model would inform of the level of compatibility between two given elements of
the Service versions compared, together with a short description of the issues
related to the compatibility assessment.

 Unfortunately, the theoretical framework that serves as methodological basis for
the proposal, does not deal with the name space and schemas issues since it
abstract the comparison of data types with the concept of “Information Type”. To
address this issue, we will take advantage from existing MDE technologies. In
particular, the EMF metamodeling framework that constitutes the technological
basis of this proposal bundles a complete set of facilities for modeling XML
Schemas and dealing with theirs instances (conforming XML documents). We are
already using them to ease the injection of WSDL files into ASD models since
WSDL files are nothing but XML files conforming to a given XML Schema.
Hence, we will use them also to improve the comparison of XSD data types.
Finally, as the next step in demonstrating the suitability of MDE techniques in a

SOA setting we plan to apply a similar approach to the one described in this paper to
existing work on service contracts [Andrikopoulos et al. 09]. A service contract is an
intermediary construct interposed between service providers and consumers,
expressed also in ASD form, which can be used to represent a technical Service Level
Agreement (SLA) between them. The use of contracts allows for greater flexibility in
evolving both interacting parties (i.e., providers and consumers) in a compatible
manner. Furthermore, the work of [Andrikopoulos et al. 09] shows that even the
contract itself can evolve under certain conditions. The fact that the authors (re-)use
the ASD notation and the subtyping relation as discussed in Section 2 provide an ideal
setting for an extension of our current work.

Acknowledgments

This research has been carried out in the framework of the MODEL-CAOS
(TIN2008-03582) and the MASAI (TIN-2011-22617) projects, financed by the
Spanish Ministry of Science and Innovation, and has received funding from the
European Community's Seventh Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

The authors would also like to thank David Granada at Kybele Research group for
his help with the SRMod prototype.

2379Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

References

[Andrikopoulos 10] Andrikopoulos, V.: “A Theory and Model for the Evolution of Software
Services”; Tilburg: Tilburg University Press. Available:
http://arno.uvt.nl/show.dgi?fid=107815 (2012).

[Andrikopoulos et al. 08] Andrikopoulos, V., Benbernou, S., and Papazoglou, M.: “Managing
the evolution of service specifications”; Proc. of the International Conference on Advanced
Information Systems Engineering (CAiSE’08). Springer-Verlag (2008), 359-374.

[Andrikopoulos et al. 09] Andrikopoulos, V., Benbernou, S., and Papazoglou, M.: “Evolving
services from a contractual perspective”; Proc. of the International Conference on Advanced
Information Systems Engineering (CAiSE’09), Springer-Verlag (2009), 290-304.

[Arsanjani 08] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., and Holley,
K.: “SOMA: A method for developing service-oriented solutions”; IBM Systems Journal, 47, 3
(2008), 377-396.

[Becker et al. 08] Becker, K., Lopes, A., Milojicic, D., Pruyne, J., and Singhal, S.:
“Automatically determining compatibility of evolving services”; Proc. of the IEEE
International Conference on Web Services (ICWS 2008), 161-168.

[Bell 08] Bell, M.: “Service-Oriented Modeling (SOA): Service Analysis, Design, and
Architecture”; Wiley (2008).

[Benett and Raljich 07] Bennett, K.H. and Rajlich, V.T.: “Software maintenance and evolution:
a roadmap”; Proc. International Conference on The Future of Software Engineering (ICSE),
ACM (2007), 73-87.

[Bernstein 03] Bernstein, P A. “Applying Model Management to Classical Meta Data
Problems”; Proc. First Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA (2003).

[Bézivin 04] Bézivin, J.: “In search of a Basic Principle for Model Driven Engineering”;
Novatica/Upgrade, V(2) (2004), 21-24.

[Bézivin 05] Bézivin, J.: “On the Unification Power of Models. Software and Systems
Modeling”; 4, 2 (2005), 171-188.

[Brown and Ellis 04] Brown, K. and Ellis, M.: “Best practices for web services versioning”;
IBM (2004). Available: http://www.ibm.com/developerworks/webservices/library/ws-version/

[Budinksky et al. 08] Budinsky, F., Merks, E., Steinberg, D.: “Eclipse Modeling Framework
2.0 (2nd Edition)”; Addison-Wesley Professional (2008).

[Cardelli 98] Cardelli, L.: “A semantics of multiple inheritance”; Information and Computation,
76, 2-3 (1998), 138-164.

[Cicchetti et al. 09] Cicchetti, A., Ruscio, D., and Pierantonio, A.: “Managing Dependent
Changes in Coupled Evolution”; Proc. 2nd international Conference on theory and Practice of
Model Transformations, Zurich, Switzerland. Springer-Verlag, Berlin (2009), 35-51.

[De Castro et al. 09] De Castro, V., Marcos, E. and Wieringa, R.: “Towards a Service-oriented
MDA-Based Approach to the Alignment of Business Processes with it Systems: From the
Business Model to a WS Composition Model”; Int. Journal on Cooperative Systems, 18, 2
(2009), 225-260.

2380 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

[Didonet Del Fabro and Valduriez 2008] Didonet Del Fabro, M., Valduriez, P.: “Towards the
efficient development of model transformations using model weaving and matching
transformations”; Software Systems Modeling, 8, 3 (2008), 305-324.

[Endrei et al. 06] Endrei, M., Gaon, M., Graham, J. Hogg, K. and Mulholland, N.: “Moving
forward with Web services backward compatibility”; (2006). [Online]. Available:
http://www.ibm.com/developerworks/java/library/ws-soa-backcomp/index.html?ca=drs.

[Fang et al. 07] Fang, R., Lam, L., Fong, L., Frank, D., Vignola, C., Chen, Y. and Du, N.A.:
“Version-aware approach for web service directory”; Proc. IEEE International Conference on
Web Services (ICWS'07) (2007), 406-413.

[Jimenez et al. 09] Jimenez, M., Rosique, F., Sanchez, P., Alvarez, B., Iborra, A.: “Habitation:
A Domain-Specific Language for Home Automation”; IEEE Software, 26, 4 (2009), 30-38.

[Jouault et al. 06] Jouault, F., Bezivin, J. and Kurtev, I.: “TCS: a DSL for the Specification of
Textual Concrete Syntaxes in Model Engineering”; Proc. GPCE'06 Fifth international
conference on Generative programming and Component Engineering, Portland, Oregon, USA
(2006), 249-254.

[Juric et al. 09] Juric, M.B., Sasa, A. Brumen, B. and Rozman, I.: “WSDL and UDDI
extensions for version support in web services”; Journal of Systems and Software, 82, 8 (2009),
1326-1343.

[Koch et al. 08] Koch, N, Meliá, S. Moreno, N. Pelechano, V. Sanchez, F. & Vara, J.M.:
“Model-Driven Web Engineering”; Upgrade Journal, IX, 2 (2008), 40-46.

[Kolovos 09] Kolovos, D.S.: “Establishing Correspondences between Models with the Epsilon
Comparison Language”; Proc. 5th European Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA '09). Springer-Verlag (2009), 146-157.

[Lehman 96] Lehman, M.M.: “Laws of software evolution revisited”; Proc. 5th European
Workshop on Software Process Technology (EWSPT), Springer-Verlag (1996), 108-124.

[Leitner et al. 08] Leitner, P., Michlmayr, A., Rosenberg, F. and Dustdar, S.: “End-to-End
versioning support for web services”; Proc. IEEE International Conference on Services
Computing (2008), 59-66.

[Ma et al. 09] Ma, H. Schewe, K.-D., Thalheim, K.-D., Wang, Q: “A Theory of Data-Intensive
Software Services”; Service Oriented Computing and Its Applications, 3, 4 (2009), 263-283.

[Meyer 97] Meyer, B.: “Object-Oriented Software Construction, 2nd ed”; Upper Saddle River,
NJ, USA: Prentice Hall PTR (1997).

[OMG 01] Object Management Group, “MDA Guide Version 1.0”; (2001), OMG Document -
omg/2003-05-01.

[Ohst et al. 03] Ohst, D., Welle, M., Kelter, U.: “Differences between versions of UML
diagrams”. SIGSOFT Softw. Eng. Notes, 28, 5 (2003), 227-236.

[Paige et al. 09] Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N. and Polack, F.: “The
Design of a Conceptual Framework and Technical Infrastructure for Model Management
Language Engineering”; Proc. IEEE International Conference on Engineering of Complex
Computer Systems (IECCS) (2009), 162-171.

[Selic 03] Selic, B.: “The pragmatics of Model-Driven development”; IEEE Software, 20, 5
(2003), 19-25.

2381Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

[Sriplakich et al. 06] Sriplakich, P., Blanc, X., Gervais, M.P.: “Supporting collaborative
development in an open MDA environment”; Proc. 22nd IEEE International Conference on
Software Maintenance (ICSM’06), IEEE Computer Society (2006), 244-253.

[Tikhomirov and Shatali, 08] Tikhomirov, A., and Shatali, A.: “Introduction to the Graphical
Modeling Framework”;. Tutorial at the EclipseCON 2008. Santa Clara, California (2008).

[Vara 09] Vara, J.M.: “M2DAT: a technical solution for Model-Driven Development of Web
Information Systems”; PhD Thesis. University Rey Juan Carlos (2009). Available:
http://www.kybele.etsii.urjc.es/members/jmvara/Thesis/.

[Watson 08] Watson, A.: “A Brief History of MDA”; Upgrade, IX, 2 (2008), 7-11

[Weinreich et al. 07] Weinreich, R., Ziebermayr, T. and Draheim, D.: “A versioning model for
enterprise services”. Proc. 21st International Conference on Advanced Information Networking
and Applications Workshops (AINAW'07), (2007), 570-575.

[Xing and Stroulia 05] Xing, Z., Stroulia, E.: “UMLDiff: an algorithm for object-oriented
design differencing”. Proc. 20th IEEE/ACM international Conference on Automated software
engineering (ASE '05), New York, NY, USA, ACM (2005), 54-65.

2382 Vara J.M., Andrikopoulos V., Papazoglou M.P., Marcos E.: Towards ...

