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Abstract: In this paper we focus on approximate solutions to solve a new class of
Art Gallery Problems inspired by wireless localization. Instead of the usual guards
we consider wireless devices whose signal can cross a certain number, k, of walls.
These devices are called k-transmitters. We propose an algorithm for constructing the
visibility region of a k-transmitter located on a point of a simple polygon. Then we
apply a hybrid metaheuristic strategy to tackle the problem of minimizing the number
of k-transmitters, located at vertices, that cover a given simple polygon, and compare its
performance with two pure metaheuristics. We conclude that the approximate solutions
obtained with the hybrid strategy, for 2-transmitters and 4-transmitters, on simple
polygons, monotone polygons, orthogonal polygons and monotone orthogonal polygons,
are better than the solutions obtained with the pure strategies.
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1 Introduction

Geometric optimization problems related to visibility are very interesting given

their applicability in several areas such as computer graphics (e.g., [Dobkin,

Teller 2004]), pattern recognition (e.g., [O’Rourke, Toussaint 2004]) and robotics

(e.g., [Wein et al. 2006]). In Computational Geometry these problems sprung

from an Art Gallery Problem posed by Victor Klee in 1973: determining the

minimum number of guards that are sufficient to cover the interior of an n-wall

art gallery room. Chvátal showed that ⌊n
3
⌋ guards are occasionally necessary
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and always sufficient to guard a simple polygon with n vertices [Chvátal 1975].

By simple polygon we mean a region on the plane enclosed by a simple cycle

of line segments and its interior is topologically equivalent to a disk. According

to the original definition, two points p and q on a simple polygon P are said to

be visible if the line segment joining p and q does not cross the exterior of P .

Since the publication of Chvátal’s result, many researchers have studied several

variants of visibility. In 1987, J. O’Rourke [O’Rourke 1987] published the first

book devoted to these problems. Other two survey papers were also written on

this subject, one in 1992 by T. Shermer [Shermer 1992] and, the second one, in

2000 by J. Urrutia [Urrutia 2000]. Since then, a large number of papers in this

area have been published and some important problems have been solved.

The development of the wireless networks paved the way for further research

on visibility in a different way. For example, [Aichholzer et al. 2009 (a)] defined

a new variant of the original Art Gallery Problem, which arises from a practical,

everyday problem: How to place wireless routers in a building in such a way

that a computer placed anywhere within the building receives a strong enough

signal to guarantee a stable Internet connection? There are two main limitations

when trying to connect a computer to a wireless network: its distance to the

wireless router and the number of walls that separate it from the router. How-

ever, in many buildings, the most significant limiting factor is the number of

walls that separate the computer from the wireless router and not the distance

between them. The communications in wireless networks, where the signals are

blocked by walls, was the motivation that encouraged [Aichholzer et al. 2009 (a)]

to study the k-transmitter Art Gallery Problem: Given n, what is the smallest

number of k-transmitters that is sufficient to cover any polygon with n vertices?

A k-transmitter refers to a wireless router whose signal can cross k walls. It is said

that a point y in a simple polygon P is covered or illuminated by a k-transmitter

placed on a point x ∈ P if the line segment xy crosses at most k walls (edges)

of P . It is easy to observe that (i) for k = 0 this problem is reduced to the Art

Gallery Problem and (ii) for k = n just one n-transmitter placed on any point

is sufficient to cover P (trivial solution). [Aichholzer et al. 2009 (a)] obtained

combinatorial bounds for monotone polygons and monotone orthogonal poly-

gons. They proved that every monotone polygon with n vertices can be covered

with ⌈ n
2k
⌉ k-transmitters, and there is a monotone polygon n-vertex polygon

that requires at least ⌈ n
2k+3

⌉ k-transmitters to be covered 1. These authors also

proved that ⌈ n
2k+4

⌉ k-transmitters are always sufficient and sometimes neces-

sary to cover a monotone orthogonal polygon. If the k-transmitter are restricted

to the vertices of P (vertex k-transmitters), the implicit assumption is that the

transmitter is placed just inside the polygonal region, and so must penetrate one

wall to reach the exterior. The results established above remain valid to vertex

1 personal communication with the authors
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k-transmitters. However, the problem for simple polygons and orthogonal poly-

gons remains open. In a more recent paper, [Fabila-Monroy et al. 2009] studied

this notion of visibility for other geometric configurations. For example, they

studied the problem of determining the number of k-transmitters that is always

sufficient to cover any arrangement with n lines on the plane. They also studied

the problem of covering simple polygons, orthogonal arrangements of lines and

orthogonal polygons using a few transmitters with high power. Among other re-

sults, they proved that any simple polygon with n vertices can be covered with a

transmitter of power ⌈ n
2k+3

⌉ and this bound is tight up to an additive constant.

While the center of attention in [Aichholzer et al. 2009 (a), Fabila-Monroy et al.

2009] is on finding a small number of high power transmitters, [Ballinger et al.

2010] are focused on lower power transmitters. For instance, they proved that
n
6

2-transmitters are sometimes necessary to cover a simple polygon and that to

cover the plane in the presence of n disjoint orthogonal line segments, ⌈ 5n+6

12
⌉

1-transmitters are sufficient and ⌈n+1

4
⌉ are sometimes necessary. In [Aichholzer

et al. 2009 (b)] the notion of k-convexity is introduced and studied. A polygon

P is k-convex if every line segment with endpoints in P crosses at most 2(k− 1)

edges of P . Thus, a 2-convex polygon can be covered by a 2-transmitters placed

anywhere in P .

Since all the previous results are combinatorial, in this paper we are inter-

ested in algorithmic results regarding simple polygons. The results presented by

[Aichholzer et al. 2009 (a)] are combinatorial solutions that solve the problem to

most polygons with n vertices. However, not all polygons with n vertices require

the established number of k-transmitters and can be covered with less. This

reasoning justifies the following algorithmic problem: Given a n-vertex polygon

P determine the minimum number of k-transmitters that cover P . Since the

problem of finding the minimum number of guards (i.e., 0-transmitters) that

cover a given simple polygon is NP-hard ([Aggarwal 1984] and [Lee, Lin 1986]),

it is strongly believed that this problem is also NP-hard, both for simple and

orthogonal polygons (for 0 < k < n) [Aichholzer et al. 2009 (a)]. Therefore it

makes sense to tackle this problem using approximation algorithms. In general,

these approximation methods can be designed specifically to solve a problem

(e.g., greedy strategies) or can be based on general metaheuristics (e.g., simu-

lated annealing and genetic algorithms). A metaheuristic is a general algorithmic

framework that can be adapted to different optimization problems with relatively

few modifications. For a comprehensive survey on metaheuristics see, e.g., [Blum,

Rolli 2003, Glover, Kochenberger 2003]. There are several works where approx-

imation algorithms were developed to tackle art gallery problems, for instance

[Amit et al. 2010, Eidenbenz et al. 2001, Ghosh 2010, Packer 2008, Tomás et al.

2003]. For the special case of vertex guards [Couto et al. 2011] have recently

developed an exact method that is based on a set-cover approach.
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[Abellanas et al. 2006] applied metaheuristic techniques for solving some

variants of visibility problems. Following these ideas [Bajuelos et al. 2009] and

[Martins 2009] obtained good results on the application of metaheuristic tech-

niques. In particular, these authors studied the following problems: calculating

the minimum number of vertex-guards that cover a polygon and estimating the

maximum hidden vertex set in polygons.

In this paper we study the problem of minimizing the number of vertex

k-transmitters that cover a given simple polygon. In the next section we for-

malize the problem and state some useful results and definitions. In section 3

we describe a new algorithm to construct the region covered by a k-transmitter

located on a point of a simple polygon with n edges, for all the possible values of

k (0 < k < n). In section 4 we discuss approximation methods designed to solve

approximately the problem of minimizing the number of k-transmitters: a hybrid

approach that uses both the general metaheuristics Genetic Algorithms (GAs)

and Simulated Annealing (SA) and two other pure approaches based on the

general metaheuristics GAs and SA. In section 5 we describe the choice of the

metaheuristics parameters, we present the experimental results obtained with

the three methods, for k = 2 and k = 4, on randomly generated polygons and

compare the performance of the hybrid metaheuristic with the other two approx-

imation methods. Furthermore, we also use the least squares method to deter-

mine, approximately, the average number of 2-transmitters and 4-transmitters

that cover a given simple polygon, obtained from the conducted experiments.

Finally, in section 6 we present some conclusions.

2 Problem Description

A simple polygon P is a region of the plane enclosed by a finite collection of

straight line segments forming a simple cycle. Non-adjacent segments do not

intersect and two adjacent segments intersect only at their common endpoint.

These intersection points are the vertices of P and the line segments are the

edges of P . The interior and the boundary of P are denoted by int(P ) and bd(P ),

respectively. This paper only focuses on simple polygons, and therefore we call

them just polygons throughout the paper. Every polygon P with n vertices (or

n-vertex polygon) is well defined by the sequence of its vertices v1, . . . , vn, given

in counterclockwise (CCW) order. In this way, it is easy to see that P is located

to the left (positive side) of any edge traversed from vi to vi+1. Orthogonal

polygons are those whose edges are parallel to the axes.

As stated above, there are two main limitations when trying to connect a

computer to a wireless network: its distance to the wireless router and the num-

ber of walls between the computer and the router. In a first approach, we only

consider the number of walls that separates the computer from the router. So,
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first of all, it is necessary to define when a computer located on point y ∈ P is

covered or illuminated by a wireless router placed on a point x ∈ P .

Definition 1. Let P be an n-vertex polygon. A wireless router, located on a

point x ∈ P , which transmits a stable signal through at most k edges (walls) of

P along a straight line is denoted by k-transmitter [Aichholzer et al. 2009 (a)].

Definition 2. Let P be an n-vertex polygon and k ∈ {0, . . . , n}. A point y ∈ P

is covered by a k-transmitter placed on a point x ∈ P if the line segment xy

crosses at most k edges (walls) of P (see Fig. 1(a)). That is, y is covered by a

k-transmitter placed on x if the line segment xy intersects the relative interior

of the edges of P at most k times.

Definition 3. Let P be an n-vertex polygon. The k-transmitter visibility region

of a k-transmitter placed on a point x ∈ P is the set of all points y ∈ R
2 that

are covered by x. This set is denoted by Visk(x, P ), where x is a k-transmitter2.

Figure 1(b) illustrates the visibility region of a 2-transmitter. Note that this

region can be unbounded in some cases.

x

2-transmitter

x

y
z

(a)

2-transmitter

x

(b)

Figure 1: (a) The 2-transmitter placed on x covers y but it does not cover z; (b)

Vis2(x, P ).

Now, we can state our main problem: Given an n-vertex polygon P , what is

the minimum number of k-transmitters (placed on points of P ) that cover P?

Let P be a polygon with n vertices and gkm(P ) be the smallest number

of k-transmitters that cover P , that is, gkm(P ) = min{|S| : S ⊂ P, P ⊆
⋃

x∈S V isk(x, P )}. Let Gkm(n) be the maximum of gkm(P ) over all polygons

with n vertices, i.e., Gkm(n) = max{gkm(P ) : P ∈ Pn}, where Pn denotes the

set of all n-vertex polygons. Thus, Gkm(n) k-transmitters always suffice to cover

any n-vertex polygon and are necessary to cover at least one n-vertex polygon.

2 For simplification purposes, sometimes the expression“x is a k-transmitter”, x ∈ P ,
is used instead of “a k-transmitter placed on a point x”.
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So, the combinatorial problem asks for Gkm(n). As stated before, the first com-

binatorial results for the problem were obtained by [Aichholzer et al. 2009 (a)],

and can be applied to monotone polygons (polygons whose intersection with a

vertical line is connected - a point, a line segment or an empty set). However,

to the best of our knowledge, there are not any combinatorial results related

to non-monotone, simple and orthogonal, polygons. On the other hand, it is

strongly believed that the algorithmic problem of finding the minimum number

of vertex k-transmitters that cover a given polygon is NP-hard, for 0 < k < n

[Aichholzer et al. 2009 (a)]. This brings us to a new variant of the k-transmitter

Art Gallery problem that we designate by Minimum Vertex k-Transmitter

Set problem, MVkT(P, k), and can be stated as:

MVkT(P, k)

Input: A polygon P with n vertices and a number k (0 < k < n) of walls.

Question:What is the minimum number of vertex k-transmitters that cover

P?

This paper proposes a hybrid metaheuristic strategy to tackle this problem

and compares its performance with two pure metaheuristics. However, before

applying any approximate method, the first step to solve the MVkT(P, k) prob-

lem is to construct Visk(x, P ). For classical visibility there exists a linear time

algorithm to calculate the visibility region of x ∈ P , V is(x, P ), [Joe, Simpson

1985]. However, an algorithm to determine the region covered by a k-transmitter

located at a point x ∈ P , Visk(x, P ), is unknown to this date. This means that

our first challenge is to develop an algorithm to determine this region.

3 k-Transmitter Visibility Polygon

Let P be a polygon with n vertices VP = {v0, v1, . . . , vn−1} and x a point on

P where a k-transmitter is placed. In this section we describe an algorithm to

construct the region covered by the k-transmitter placed on x. This region is

composed of interior and exterior areas of P . For simplicity reasons, we assume

that P is contained in a rectangular box R and the visibility region is constructed

inside R. In this way, the region covered by x is always bounded and we call it

k-transmitter visibility polygon and, abusing a bit of the terminology, we denote

it by Visk(x, P ). A vertex vi ∈ VP is called a critical vertex for x if the ver-

tices vi−1 ∈ VP and vi+1 ∈ VP are on the same half-plane regarding the ray −→xvi

(see Fig. 2). Now we will describe the algorithm to construct Visk(x, P ) for all

admissible values for k, that is, 0 < k < n. Although the following collinearity

cases arise: (i) x is collinear with two (or more) critical vertices of P and (ii) x

belongs to a straight line containing an edge of P ; and we have addressed them

in our work. We will not include them in the overall description, because they

are degenerate cases. In the following we present the main steps of the algorithm:
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critical vertex

vi

vi-1

vi+1

k transmitter-
x

Figure 2: Critical vertices for x.

(1) Find the critical vertices and sort these points angularly around x in counter-

clockwise order. Draw all the rays with source x passing through the critical

vertices of P .

(2) Using the critical vertices, calculate the intersection points between the rays

and the edges of P (see Fig. 3(a)). The rays divide each edge of the polygon in

one or more segments. Label each segment with the number of edges (walls)

crossed by the ray from x to the segment. Repeat this method to label the

boundary of the rectangular box (see Fig. 3(b)).

x

(a)

0

1

2

2

2

2

3

4

0

1

1

0

1

3

1

3

53

x

1

(b)

Figure 3: (a) Rays and intersection points; (b) Labeled segments.

(3) Visk(x, P ) is constructed by connecting all the segments with the same label

k by angularly sweeping the incident rays. For this, take a segment, s1s2,

with a label k, where s1 < s2 with respect to the angular sorting around x. At

point s1 start drawing the boundary of Visk(x, P ) in CCW order. Advance

along bd(P ) (if k is even continue in CCW order, otherwise continue in CW

order) until a segment with a different label k′ is reached. If k′ > k then

continue along the ray incident to the starting point of the new segment in
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direction to x until a segment with a label k is found. Otherwise if k′ < k

then move along the same ray but in the opposite direction. Observe that

if another segment labeled k does not exist, we will hit the boundary of the

rectangular box. In this case, follow the boundary until the first segment

with label greater than k is reached. Repeat this procedure until Visk(x, P )

is finished.

Fig. 4(a) shows how the algorithm connects the segments labeled with 2 in

order to build the polygon covered by a 2-transmitter. Fig. 4 (b) illustrates

Vis2(x, P ).

0

1

1

2 2

3

4

0

1

1

0

2

x

2

(a)

0

1

1

2 2

3

4

0

1

1

0

2

x

2

(b)

Figure 4: (a) Method to construct Vis2(x, P ); (b) Vis2(x, P ).

Step (2) needs a more detailed description. The labeling of each segment is

done as follows:

1. Label each critical vertex with “+1” or “−1”. If vi is a critical vertex there

are four rules to label it (see Fig. 5):

1.1 if vi−1vivi+1 is a left-turn and:

Rule 1: vi−1 is on the positive side of the ray −→xvi then label vi with “+1”.

Rule 2: vi−1 is on the negative side of the ray −→xvi then label vi with

“−1”.

1.2 if vi−1vivi+1 is a right-turn and:

Rule 3: vi−1 is on the positive side of the ray −→xvi then label vi with “−1”.

Rule 4: vi−1 is on the negative side of the ray −→xvi then label vi with

“+1”.

Fig. 7(a) illustrates a polygon whose critical vertices labeled according to

the previous rules.
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Rule 1

x

+1
vi -1

vi +1

vi

Rule 4

x

+1 vi

vi +1

vi -1

Rule 3

x

-1

vivi +1

vi -1

Rule 2

x

-1 vi

vi +1

vi -1

Figure 5: Rules to label the critical vertices (shaded areas represent int(P )).

2. Label each intersection point q identified in step (2) with “+2” or “−2”: Let

be q ∈ vj−1vj , where vj−1vj is an edge of P and q can be equal to vj . If vj−1

and vi−1 are on the same side regarding the ray −→xvi then label q with “−2”,

else label q with “+2”. See Fig. 6 for illustration.

x

-1

-2

+2
q

q

vi -1

vj -1

vj -1

x
+1

-2
+2q

q

vi -1
vj -1

vj -1

x

+1

-2

+2

q

q

vi -1

vj -1

vj -1

x

-1

+2
-2

q

q
vi -1

vj -1

vj -1

Figure 6: Rule to label the intersection points.

Fig. 7(b) illustrates a polygon with the intersection points labeled according

to the previous rule.

x

+1
+1

+1

+1

-1

-1

(a)

x

+1

+1

+1

-1

-1

-2

-2

+2
+2

+2

-2

-2

+1

(b)

Figure 7: (a) Labeled critical vertices; (b) Labeled intersection points.

3. Draw the horizontal ray (to the right of x) and detect the first intersection

point z with bd(P ). Label with 0 the edge to which z belongs (from z to

the next vertex/point with a label), see Fig. 8(a). Advance by bd(P ) (in

CCW direction) until the next labeled vertex/point p is found. Label the

built segments adding the label of p to the label of the previous segment.

This procedure should be repeated until z is reached. Fig. 8(b) illustrates a
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polygon with all the segments labeled.

x

+1

+1

+1

-1

-1

-2

-2

+2
+2

+2

-2

-2

+1

z

0

(a)

x

+1

+1

+1

+1

-1

-1

-2

-2

+2
+2

+2

-2

-2

z

0

1

2

0
1 3

2

4
20

2

1

0
1

(b)

Figure 8: (a) First labeled edge; (b) Labeled segments.

3.1 Algorithm Complexity

The detection of critical vertices is linear, because testing whether a vertex is

reflex is done in constant time. Subsequently the management of critical vertices

is done in O(n log n). In step 2 we have n edges of the polygon that intersect

O(n) rays that connect critical points with x. Therefore, the total number of

segments in which these rays divide the edges of the polygon is O(n2). Moreover

the labeling with +1 or -1 for each critical vertex is done in constant time, and

the label +2 or -2 for each intersection point detected in step 1 is also performed

in constant time. Thus, as there are O(n2) points of intersection, the total cost

of labeling is O(n2). As there are O(n2) segments, the total cost is O(n2).

The construction of the visibility polygon for each fixed value of k (step 3)

is done in linear time, as the label k appears at most twice on each ray from x.

Moreover, the points with k label on any ray are consecutive or there is only one

point between them. To conclude, the construction of all k-visibility polygons is

done in O(n2) time with k = 1, 2, ...n− 1.

In the implementation of this algorithm we only considered even values of k

because, for now, we are only interested in covering the interior of the polygon.

However, for odd values the implementation can be done in a similar way. To

conclude, figures 9 and 10 show some snapshots of our software.

We can now present the approximation methods that we developed to tackle

the Minimum Vertex k-Transmitter Set problem, MVkT(P, k).
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(a) (b)

Figure 9: A 100-vertex simple polygon P and: (a) Vis2(x, P ); (b)Vis4(x, P )

(a) (b)

Figure 10: A 100-vertex orthogonal polygon P and: (a) Vis2(x, P ); (b) Vis4(x, P )

4 Approximation Algorithms

Genetic Algorithms (GAs) and the Simulated Annealing (SA) are two classic

and general metaheuristics techniques. GAs are population-based search meth-

ods and SA is a single-solution search method. Different combinations of these

types of metaheuristics, the so called hybrid metaheuristics, have provided pow-

erful search algorithms resulting in successful applications (see e.g. [Blum, Rolli

2008, Talbi 2002]). A well-known way of hybridization is the use of single-solution

search methods into population-based techniques [Blum, Rolli 2008]. Indeed,

the most successful applications of population-based methods make use of local

search procedures (this is explained in 4.3). In this way, we opted to develop a

hybridization of these two metaheuristic: we use a GA as a global optimizer and

augment its standard genetic operators with a SA strategy. In addition to the hy-

brid method we also developed two other approximation methods, based on the

general metaheuristics GAs and SA, and conducted a performance comparison
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between the three methods.

In this section we describe our three approximation algorithms to deter-

mine a covering vertex k-transmitter set Gkm, whose cardinality approximates

the minimum number of vertex k-transmitters that cover a given polygon P .

A set Gkm of vertices of P is a covering vertex k-transmitter set for P if

P ⊂
⋃

v∈Gkm
V isk(v, P ). Each of these methods starts with a pre-processing

step to compute and store the k-transmitter visibility polygons of vi, for all

vi ∈ VP , using the algorithm described in Sect. 3. After obtaining a covering

vertex k-transmitter set for P , Gkm, with each algorithm, some elements of Gkm

can be redundant. Thus, after running the approximation methods, we iteratively

remove those elements in order to refine the obtained solution (post-processing

step). In the next subsections we present the three approximation methods. We

begin with the methods based on the general metaheuristics, since the hybrid

method uses some concepts of the GAs and SA strategies.

4.1 Genetic Algorithm Strategy

Genetic Algorithms (GAs) are population-based search methods that use tech-

niques inspired by evolutionary biology, such as, chromosomes, genes, selection

and crossover, to solve optimization problems (see, e.g., [Alba 2005]). GAs are

implemented as a computer simulation of an optimization problem in which a

population of abstract representations of candidate solutions evolves toward bet-

ter solutions. In the end, the population is composed of “good” solutions and the

algorithm outputs the best one. To solve an optimization problem with GAs it

is necessary to specify the following components: a genetic representation of the

possible solutions, called individuals, to the problem (Encoding); a way of creat-

ing an initial population of possible solutions (Initial Population); a function to

evaluate the individuals and act as natural selection (Fitness function); genetic

operators to modify the composition of the solutions (Selection, Crossover and

Mutation) and the values of several parameters used by the genetic algorithm

(e.g., population size, probability of the genetic operators, population evalua-

tion, population generation, termination condition). For more details on GAs

see, for instance, [Glover, Kochenberger 2003]. In the following we describe how

these parameters were defined to suit our problem.

Encoding. In our algorithm an individual I is represented by a chain I =

m0m1 . . . mn−1, where each mi (called gene) represents the vertex vi ∈ VP and

its value can be either 0 or 1. If mi = 1 then vi is a k-transmitter; otherwise vi

is not a k-transmitter.

Population and Initial Population. The population size is given by the number

of reflex vertices, r, of the polygon (a vertex of a polygon is a reflex vertex if its

internal angle is strictly greater than π). In this way, the input of the problem
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is associated with the elements of the metaheuristic. [Urrutia 2000] proved that,

being P a polygon with r reflex vertices, r guards, placed on the reflex vertices of

P , are always sufficient to guard P . It is easy to conclude that this result remains

valid if the guards are replaced by k-transmitters. Thus, to create the initial

population we consider the set of reflex vertices of P , R = {u0, u1, . . . , ur−1}.

Then each of the r individuals are generated as follows: ∀i ∈ {0, . . . , r − 1}, if

the polygon is covered by placing a k-transmitter in every vertex of R\{ui},

R\{ui} is admitted as an individual of the population; otherwise R is taken as

an individual.

Fitness function. For each I, f is defined by f(I) =
∑n−1

j=0
mj . Our goal is to

minimize this function.

Selection. The selection method should choose the best individuals to be re-

produced. Since there are many different types of selection, we performed a

comparative study taking two common methods into account: the roulette wheel

selection and the tournament selection (see, e.g., [Reeves 2003]). In both meth-

ods we chose two individuals to be parents in crossover.

Crossover. Crossover operates on selected genes from parent individuals and

creates new individuals (children). As there are many different kinds of crossover,

we did a comparative study with four different types of crossover: single point

crossover, two-point crossover, uniform crossover and a variant of the single

point crossover where the generated children cannot be clones of the parents

(see, e.g., [Reeves 2003]). In any crossover method we only generate one child

from two parents. Crossover only occurs with a given probability, pc, decided on

the basis of trial and error. We used pc = 0.8, which was experimentally obtained.

Note that the child resulting from any of the described crossover methods may

not be valid (i.e., it may not correspond to a covering vertex k-transmitter set),

in this case the child is not accepted.

Mutation. Our mutation flips each gene from zero to one or vice versa, with a

mutation probability pm. In our case we apply the mutation to the child obtained

in the crossover operation, with pm = 0.05 (chosen experimentally). As in the

crossover, if the resultant individual is not valid we do not accept it.

Population Generation. As there are many different ways to generate a new

population we used a common one (steady-state reproduction): we select the

worst individual of the population to be deleted replacing it by the child obtained

at the mutation.

Population Evaluation. We consider the population evaluation, i.e., the fitness

of a population as the minimum value of the fitness function f when applied to

all individuals of the population.

Termination Condition. If the fitness of the population remains unchanged for a

large number of generations h, we can assume that we are close to optimal and
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stop the search. In our case, we considered h = 500 (chosen experimentally).

4.2 Simulated Annealing Strategy

Simulated Annealing (SA) is a single point search method and it is usually ac-

knowledged as the oldest among the metaheuristics. This strategy is based on an

analogy between the physical annealing of solids and combinatorial optimization

problems. It is commonly said that SA is one of the first algorithms that has an

explicit strategy to escape from locally optimal solutions (see, e.g. [Blum, Rolli

2003]). For that, SA introduces a control parameter T , designated by tempera-

ture. This parameter should have a high initial value that will decrease during

the search process. The search is an iterative process that stops when a termina-

tion condition is achieved. According to a certain probability, control parameter

T allows solutions y whose objective function values are worse than the objec-

tive function value of the current solution x. Given an optimization problem, it

is necessary to adapt it to the SA scheme, which is obtained by specifying the

following parameters: (i) Specific Parameters: solution space, objective function,

neighborhood of each solution and initial solution; (ii) Generic Parameters: ini-

tial temperature (T0), temperature decrement rule, number of iterations in each

temperature (N(Tk)) and termination condition. For more details on SA see, for

instance, [Glover, Kochenberger 2003]. These parameters are described in the

following.

4.2.1 Specific Parameters

Solution space. The solution space, set S, is the set of all covering vertex k-

transmitter sets for P . Thus, S is a finite set and can be represented by S =

{S1, S2, . . . , Sm}, where Si = vi
0v

i
1 . . . vi

n−1 for i = 1, . . . , m. In this way, each

candidate solution Si is represented by a chain of length n, where vi
j , with

j ∈ {0, . . . , n − 1}, represents the vertex vj ∈ P and its value is 0 or 1. If vi
j = 1

then the vertex vj is a k-transmitter; otherwise the vertex vj is not a k-transmitter.

Objective function. The objective function f : S → N is defined in a similar way

to the fitness function defined for the GA strategy. For each Si ∈ S, f is defined

by f(Si) =
∑n−1

j=0
v

j
i . As for the GA strategy, our goal is to to minimize this

function.

Neighborhood of each solution. According to SA, for each candidate solution

Si ∈ S, an element Sj ∈ S, called neighbor of Si, must be obtained in order

to be analyzed in the next iteration. In our case, to generate a neighbor Sj of

Si = vi
0 . . . vi

n−1 we randomly generate a natural number, uniformly distributed,

t ∈ [0, n − 1] and then: (a) if vi
t = 1 then we set v

j
t to 0 and accept this new

solution if it is valid, otherwise we discard it; (b) if vi
t = 0, we set v

j
t to 1 and

accept this new solution with a certain probability.
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Initial solution. The initial solution S0 is the first covering vertex k-transmitter

set to be analyzed. For the initial solution we consider all reflex vertices of P as

vertex k-transmitters.

4.2.2 Generic Parameters

Initial temperature (T0). We performed a comparative study taking into account

two different types of T0: (1) an initial temperature dependent on the number

of vertices of the simple polygon P , T0 = f(n) (we have considered T0 = n and

T0 = n
4
) and (2) a constant initial temperature: T0 = 500 (this constant value

was chosen on the basis of trial and error).

Temperature decrement rule. The value of the temperature at each iteration k,

Tk, is established by a temperature decrement rule. We made an analysis on

three different types of rules: (1) Tk+1 = T0

1+k
(Fast Simulated Annealing (FSA)

decrease); (2) Tk+1 = T0

ek (Very Fast Simulated Annealing (VFSA) decrease) and

(3) Tk+1 = αTk, where 0 < α < 1 (Geometric decrease).

Iterations for each temperature Tk. In our algorithm N(Tk) = ⌈Tk⌉. Note that

this choice ensures that there are more iterations while the temperatures are

high, when the solutions are still far from optimal.

Termination condition. In theory, the search process should stop when Tk = 0.

However, much before reaching this value, the probability to accept a move

toward a worse solution is practically null. As a result it is possible, in general,

to finish the search with a final temperature, Tf , greater than zero without

quality loss in the solution. In this sense, the termination condition chosen in

our algorithm consists in finishing the search when Tf ≤ 0.005 or when the last

l = 3000 consecutive series of temperatures do not achieve a better solution and

the percentage of accepted solutions is less than ε = 2% (the values of l and ε

were chosen experimentally).

4.3 Hybrid Strategy

As stated above, our hybrid metaheuristic consists in using a GA as a global op-

timizer and augmenting its standard genetic operators with a SA. That is, our

hybridization is done by using a single-solution search method into a population-

based technique, which usually is a successful combination [Blum, Rolli 2008].

The reason for that becomes clear when the strong points of population-based

methods and the single-solution methods are analyzed. There are two main, com-

plementary, forces (concepts) that determine the behavior of a metaheuristic,

diversification (or exploration)and intensification (or exploitation). Diversifica-

tion ensures that many and different regions of the search space are “visited”,

whereas intensification guarantees a carefully and intensively search within those

regions, allowing high quality solutions. A good balance between these two goals
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is important because a search should intensively explore areas of the search space

with high quality solutions and move to unexplored areas of the search space

when necessary (see, e.g., [Blum, Rolli 2008, Lozano, Garćıa-Mart́ınez 2010]).

While all metaheuristics are driven by these two forces, some of them have a

clear tendency to intensification and others to diversification. It can be said

that population-based methods are better in identifying promising areas on vast

and complex search spaces, whereas single-solution methods are better in ex-

ploiting those promising areas. In other words, population-based metaheuristics

are mainly guided by diversification, while intensification guides single-solution

methods. The idea of combining these two complementary forces, diversifica-

tion and intensification, is a good reason to hybridize population-based and

single-solution metaheuristics and seek to incorporate the strengths and elimi-

nate weaknesses of both types of methods [Mahfoud, Goldberg 1995].

Although there are many ways to use single-solution methods into population

based techniques, to solve the MVkT(P, k) problem we used a SA strategy as

a genetic operator of a GA strategy. As the standard genetic operators, this

one occurs with a certain probability psa. In the experimental evaluation we

used psa = 0.1 (chosen empirically). Figure 11 illustrates the general scheme of

our hybridization. This hybridization allows to observe how a GA behaves on

reinforcing the intensification during the search process.

Generation
of the initial
population

Population
evaluation

Termination
condition

Selection

Crossover

Generate
new
population

No

Mutation

Yes
Good
individuals

Solution

SA

Figure 11: General scheme of the hybrid strategy.

It is important to note that the alternatives concerning the parameters of

the metaheuristics (GA and SA) that could be explored is almost endless. With

regard to the hybrid heuristics, not only different combinations can be made, but

also different parameters can be used. We rely on studies of other problems (e.g.

[Martins 2009]), noting that a more exhaustive study in future investigations
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might improve the obtained results.

5 Experiments and Results

To compare the performance of the hybrid method with the two pure strategies

(GA and SA), we implemented the metaheuristics and tested their behaviour

over a large set of randomly generated polygons. As said before, it was also

necessary to develop and implement a new algorithm to determine Visk(x, P ),

x ∈ P , described in section 3. These implementations were done in C/C++ (for

MS Visual Studio 2005) on top of the Computational Geometry Algorithms Li-

brary (CGAL 3.2.1). The described methods were tested on a PC featuring a

Intel(R) Core (TM)2 CPU 6400 at 2.66 GHz and 1 GB of RAM. Our experi-

ments were done over simple, monotone, orthogonal and monotone orthogonal

polygons. The simple polygons were generated using the CGAL function ran-

dom polygon 2, whose implementation is based on the method of eliminating

self-intersections in a polygon by using the so-called “2-opt” moves [Hert et al.

2006], and to generate the monotone polygons we used the algorithm devel-

oped by [Snoeyink, Chong 1993]. The orthogonal polygons were generated using

the polygon generator developed by Joseph O’Rourke (personal communication

2002) and the monotone orthogonal polygons using the algorithm proposed in

[Tomás et al. 2003]. According to this algorithm the polygons are placed on an
n
2
× n

2
unit square grid and have no collinear edges, and by this reason they are

designated by grid monotone orthogonal polygons.

Because the simple comparison of two or more values (e.g., averages, medi-

ans) might be different according to the statistical distributions, we performed

a statistical study to ensure strong statistical results (i.e., determining whether

the conclusions are meaningful and not just noise) [Alba 2005]. Therefore, we

first applied the Kolmogorov-Smirnof test to check data normality. Since in all

performed studies the data sets were not normally distributed, we had to use

non-parametric statistical tests, such as the Kruskal-Wallis test. This test en-

sures statistical difference in the results, with a higher statistical power than

the ANOVA test when data are not modeled as a normal population [Waynem

1990]. When at least a data sample was significantly different than the others,

multiple comparison tests were used to determine which pairs of results were

significantly different and which were not. A significance level of 0.05 was used

for all tests.

In the next subsections we present the results and the conclusions of the

experiments that were carried out. First, we present how we chose the meta-

heuristics parameters (subsection 5.1). Next, in subsection 5.2, we analyze and

compare the results obtained by the hybrid metaheuristic and the two pure

metaheuristics. We performed the computational experiments over sets of sim-

ple, monotone, orthogonal and grid monotone orthogonal polygons, each set
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with 40 polygons of 50, 100, 150 and 200-vertex polygons. This study was

made for 2-transmitters and 4-transmitters. Finally, in subsection 5.3, we use

the least squares method to determine, approximately, the average number of

2-transmitters and 4-transmitters that cover a given polygon, obtained from

the conducted experiments. This was done in order to establish upper bounds,

smaller than the theoretical bounds, for the minimum number of vertex k-

transmitters that cover an n-vertex polygon.

5.1 Analysis of the Metaheuristics Parameters

According to subsections 4.1, 4.2 and 4.3, there are various alternatives for some

of the GA and SA parameters. Together, as we shall see, they can be combined to

yield numerous cases, making it tedious and impractical to perform experiments

for the four types of polygons with so many vertices (n = 50, 100, 150 and 200)

and for the two values of k (k = 2 and k = 4). Instead, we decided to chose the

parameters based on experiments over sets of simple polygons, each one formed

by 40 polygons of 30, 50, 70 and 100 vertex polygons, which we believed would

give good results and be time efficient. For every set of polygons we determined

the average number of vertex 2-transmitters, as well as the average runtime in

seconds and the average number of iterations. And as stated above, we also

performed a statistical study to compare the obtained results. Since there are

too many results, we decided to present only the conclusions of the experiments

in the following three subsections.

5.1.1 GA Parameters

According to section 4.1 we have several options for two of the GA parameters:

the selection and the crossover operators. The different combinations produce

eight cases (see Table 1).

Table 1: Studied cases for GA.

Cases

Case 1 Roulette Wheel Selection and Single Point Crossover
Case 2 Roulette Wheel Selection and Two-Point Crossover
Case 3 Roulette Wheel Selection and Single Uniform Crossover
Case 4 Roulette Wheel Selection and Variant of Single Point Crossover
Case 5 Tournament Selection and Single Point Crossover
Case 6 Tournament Selection and Two-Point Crossover
Case 7 Tournament Selection and Single Uniform Crossover
Case 8 Tournament Selection and Variant of Single Point Crossover

We carried out a statistical study to compare the results obtained by the

eight cases (concerning the number of vertex 2-transmitters, the runtime and the

number of iterations). This study allowed us to conclude that: (a) regarding the

returned number of vertex 2-transmitters, there were no statistically significant
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differences between the eight cases; (b) concerning the runtime, for n = 30, 50

and 70, Case 8 is the fastest one with no statistically significant differences

from Case 2, for n = 100 Case 8 is the fastest one with statistically significant

differences from all the other cases. In this way, the solutions obtained by the

eight cases can be considered similar, even though the response time is lower in

Case 8. As good solutions result in higher algorithm runtimes, it is appropriate

to balance one against the other, so we decided to chose Case 8, which we believe

to be the best under these circumstances.

5.1.2 SA parameters

In accordance with subsection 4.2, there are several choices for two of the SA

parameters: T0 and the temperature decrement rule. The different combinations

result in nine cases (see Table 2). Once again, we analyzed these nine cases by

comparing the number of vertex 2-transmitters, the runtime and the number

of iterations. We performed a statistical study to compare the results obtained

by them, which allowed us to conclude that concerning the returned number of

vertex 2-transmitters, Case 4 is the best, with no statistically significant differ-

ences from Case 1 but with significant differences from the other cases. However,

regarding these two cases, Case 1 is statistically significantly faster than Case 4.

Table 2: Studied cases for SA.

Cases

Case 1 T0 = n and Tk+1 = T0

1+k
(FSA decrease)

Case 2 T0 = n and Tk+1 = T0

ek
(VFSA decrease)

Case 3 T0 = n and Tk+1 = αTk−1 (α = 0.9) (Geometric decrease, α = 0.9)
Case 4 T0 = 500 and Tk+1 = T0

1+k
(FSA decrease)

Case 5 T0 = 500 and Tk+1 = T0

ek
(VFSA decrease)

Case 6 T0 = 500 and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)
Case 7 T0 = n

4
and Tk+1 = T0

1+k
(FSA decrease)

Case 8 T0 = n

4
and Tk+1 = T0

ek
(VFSA decrease)

Case 9 T0 = n

4
and Tk+1 = αTk−1 (Geometric decrease, α = 0.9)

Note that, the best solutions are those obtained in Cases 1 and 4, however, the

response time is higher in Case 4. And again, as we want to find a compromise

between the goodness of the solution obtained and the algorithm runtime, it

seems that Case 1 is the best under these conditions. Therefore, this is the case

that we considered as the SA strategy.

5.1.3 Hybrid Strategy Parameters

As stated in subsection 4.3, our hybridization consists of a SA strategy used as a

genetic operator of a GA strategy. In this way, we have to chose the parameters

for these two strategies. For the GA component of our hybrid metaheuristic we
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chose to use exactly the same parameters that were selected to our pure GA

strategy (that is, Case 8), since it was the GA’s case that we considered the

best one. Concerning the SA component, we chose to use the parameters of the

SA’s Case 8. We made this choice because this case is the fastest algorithm and

although the returned solution is not statistically significantly better than all the

other cases, it is acceptable to work as genetic operator. We think that if we had

chosen SA’s Case 4 (the elected pure SA strategy) the execution time of our al-

gorithm would not have obtained substantially improved solutions. Nevertheless,

as a future work we intend to analyze and experiment other combinations.

5.2 Comparison of the Three Strategies

As stated above, to analyze and compare our three methods, we performed the

computational experiments over sets of simple, monotone, orthogonal and grid

monotone orthogonal polygons, each set with 40 polygons of 50, 100, 150 and

200-vertex polygons.

5.2.1 Simple and Monotone Polygons

In this section we proceed with the presentation and analysis of the results

obtained on simple and monotone polygons. Table 3 presents the results ob-

tained on simple polygons. This table shows the average number of vertex

k-transmitters, with k = 2 and k = 4, (Solution), the average runtime in seconds

(Time) and the average number of iterations (Iter.), for the three strategies.

Table 3: Results obtained with the hybrid, GA and SA strategies on simple poly-

gons for: (a) k = 2 and (b) k = 4.

(a) simple polygons, k = 2.

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 2.67 37.35 541.57 2.97 26.75 779.97 3.10 49.97 6208.40
100 4.55 343.50 613.20 5.72 292.62 1559.70 5.32 317.37 10391.00
150 6.65 1091.50 613.70 8.22 1167.90 2887.40 7.67 877.27 14159.00
200 8.35 2664.30 702.75 10.27 2766.30 3995.20 9.70 1729.50 17902.00

(b) simple polygons, k = 4.

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 1.65 30.97 517.67 1.85 24.37 737.27 1.75 48.17 5063.80
100 2.65 417.45 582.17 3.02 457.27 1743.80 2.97 448.85 10669.00
150 3.57 1527.00 572.10 4.25 1876.80 3012.00 3.95 1379.80 14462.00
200 4.37 4207.40 613.30 5.25 4785.10 3929.30 5.15 2974.80 17688.00

As we can notice, although the response time of the hybrid algorithm appears

to be greater, the obtained solutions seems to be better than the ones obtained
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with the two pure strategies (except for n = 50, where they appear to be almost

equal). However, as stated before, the comparison between the results obtained

with the three strategies only makes sense if a statistical study is made to ensure

its statistically significance. First of all we studied the results concerning the

number of k-transmitters. This study allowed us to conclude that for n = 50 there

was not a statistically significant difference between the three methods. However,

for n = 100, 150 and 200 the hybrid method is the best one presenting significant

differences from methods SA and GA and the worst method is GA with no

significant differences from SA. We also did a statistical analysis regarding the

runtime. This study was made in a similar way and it allows us to conclude that

the hybrid method is sometimes slower than SA and other times slower than GA.

However, we should point out that the differences are not always statistically

significant, for example, for k = 4 and n = 100 no significant differences were

found between the three methods; for k = 4 and n = 150 the fastest method is the

SA and it has no significant differences from the hybrid algorithm. In conclusion,

for simple polygons, the hybrid method obtains, in general, solutions statistically

significantly better than the other two methods, despite being globally slower.

Table 4 shows the results obtained for monotone polygons.

Table 4: Results obtained with the hybrid, GA and SA strategies on monotone

polygons for: (a) k = 2 and (b) k = 4.

(a) monotone polygons, k = 2.

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 3.17 26.00 555.70 3.80 13.45 743.15 3.77 37.47 6209.90
100 6.92 189.60 594.90 8.17 122.42 1358.10 8.07 198.25 10496.00
150 10.10 509.62 605.20 11.92 426.42 2501.70 11.62 484.42 14318.00
200 13.37 1184.50 655.12 15.62 934.12 3412.80 15.42 925.45 17836.00

(b) monotone polygons, k = 4.

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 2.15 20.17 536.00 2.55 13.00 731.25 2.45 33.70 6463.50
100 4.00 184.45 562.95 4.82 147.07 1447.80 4.87 209.70 10375.00
150 6.15 515.95 581.45 7.60 469.77 2484.70 7.50 516.30 14186.00
200 7.85 1232.60 588.85 9.70 1080.10 3579.60 9.37 996.92 18149.00

Similarly to what happens with simple polygons, even though the hybrid al-

gorithm seems to take longer it appears to reach improved solutions. Therefore

we performed again the statistical study described before. First of all we per-

formed a study concerning the number of k-transmitters, whose results showed

that, for n = 50, 100, 150 and 200, the hybrid method is the best one with statis-

tically significant differences from the other two methods and the worst method

is GA with no significant differences from SA. Concerning the algorithms’ run-
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time, the statistical analysis allowed us to conclude that on the whole the hybrid

method is sometimes slower than SA and other times slower than GA. However,

we should point out that in some cases the differences are not statistical signif-

icantly different, for example, for k = 4 and n = 100 the three methods do not

present significant differences. Accordingly, the hybrid method obtains solutions

significantly better than the other two methods, although it is generally slower.

5.2.2 Orthogonal and Monotone Orthogonal Polygons

In this section we present the analysis of the results obtained for orthogonal

and grid monotone orthogonal polygons, and which can be seen in Tables 5

and 6. As in the previous subsection, these tables exhibit the average number

of vertex k-transmitters, with k = 2 and k = 4, (Solution), the average runtime

in seconds (Time) and the average number of iterations (Iter.), for the three

strategies. Similarly to the cases of simple and monotone simple polygons, it

seems that the hybrid algorithm obtains better solutions in spite of an overall

slower running time. As previously described, we then carried out a statistical

study. This study allowed us to conclude that, concerning the average number

of 2-transmitters and 4-transmitters, the best strategy is the hybrid one with

statistically significant differences from the SA and GA strategies (except for

k = 4 and n = 50, where a significant difference was not found between the

three). Regarding the runtime, although the hybrid strategy is globally slower

than SA or GA, in several cases the differences are not statistically significant.

Table 5: Results obtained with the hybrid, GA and SA strategies on orthogonal

polygons for: (a) k = 2 and (b) k = 4.

(a) orthogonal polygons, k = 2.

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 2.45 32.25 559.27 2.92 25.27 785.02 2.92 51.22 6400.10
100 4.20 318.17 618.60 5.02 296.62 1607.10 4.82 292.75 10163.00
150 5.95 1091.90 692.70 7.67 1248.80 2930.40 7.20 844.92 13871.00
200 7.95 2541.30 656.45 9.35 2958.30 4052.90 8.92 1748.40 18313.00

(b) orthogonal polygons, k = 4

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 1.35 22.82 555.50 1.65 19.42 821.57 1.67 48.50 4883.30
100 2.22 359.15 594.20 2.95 379.15 1721.60 2.70 370.20 9781.00
150 3.15 1535.00 625.77 3.97 1778.10 2828.80 3.62 1291.90 13926.00
200 3.97 4088.89 649.32 5.05 4674.90 3986.40 4.62 2830.20 18173.00
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Table 6: Results obtained with the hybrid, GA and SA strategies on grid monotone

orthogonal polygons for: (a) k = 2 and (b) k = 4.

(a) grid monotone orthogonal polygons, k = 2.

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 3.00 27.90 583.10 3.77 13.35 747.75 3.42 35.95 6563.90
100 5.65 212.57 640.67 7.20 163.55 1588.70 6.85 193.40 10302.00
150 8.60 612.90 644.77 11.90 397.87 2325.10 9.67 489.20 14235.00
200 11.25 1391.00 695.65 13.85 1298.60 4128.40 12.95 956.50 18062.00

(b) grid monotone orthogonal polygons, k = 4

Hybrid GA SAn
Solution Time Iter. Solution Time Iter. Solution Time Iter.

50 1.97 22.22 530.27 2.15 17.17 787.22 2.15 31.77 6169.40
100 3.20 212.950 564.92 4.025 194.05 1688.20 3.75 209.65 10160.00
150 4.65 693.85 643.05 5.67 697.37 2822.30 5.67 574.22 14003.00
200 6.00 1468.30 622.40 7.67 1617.10 4059.00 7.27 1130.20 18480.00

5.3 Average number of k-transmitters

Since the hybrid strategy was considered the best, it was therefore used to infer

the average of the minimum number of k-transmitters, with k = 2 and k = 4,

that cover a given simple, monotone, orthogonal or grid monotone orthogonal

polygon with n vertices. To this end, the referred strategy was applied to sets

of simple, monotone, orthogonal or grid monotone orthogonal polygon, each set

with 40 polygons of 30, 50, 70, 100, 110, 130, 150 and 200 vertex polygons,

respectively. The obtained solutions are presented in Table 7. Then we used the

least squares method and we conclude that:

(a) Simple polygons. The curve fitted to the data of Table 7(a) (concerning the

average number of 2-transmitters) is f(n) = 0.0383n + 0.7523 ≈ n
26.10

, with

a correlation factor of 0.9988. The linear function that “best” fits the data

presented on Table 7(a) (concerning the average number of 4-transmitters)

is f(n) = 0.0191n + 0.6436 ≈ n
52.35

, with a correlation factor of 0.9926.

(b) Monotone polygons. The linear function that “best” fits the number of

2-transmitters and vertex 4-transmitters with the number of vertices n of

monotone polygons are f(n) = 0.0662n + 0.1462 ≈ n
15.10

, with a correlation

factor of 0.9978 and f(n) = 0.0279n + 0.4162 ≈ n
35.84

, with a correlation

factor of 0.9973.

(c) Orthogonal polygons. The curve fitted to the data of Table 7 (c) (concern-

ing the average number of 2-transmitters) is f(n) = 0.0365n+0.5844 ≈ n
27.39

,

with a correlation factor of 0.9988. The linear function that “best” fits
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the data presented on Table 7(c) (concerning the average number of 4-

transmitters) is f(n) = 0.0174n + 0.5065 ≈ n
57.47

, with a correlation factor

of 0.9985.

(d) Grid monotone orthogonal polygons. The linear functions that “best”

fit the number of 2-transmitters and vertex 4-transmitters with the number

of vertices n of grid monotone orthogonal polygon are f(n) = 0.0546n +

0.2614 ≈ n
18.31

, with a correlation factor of 0.9987 and f(n) = 0.0174n +

0.5065 ≈ n
57.47

, with a correlation factor of 0.9985.

Table 7: Average of the minimum number of 2-transmitters and 4-transmitters.

(a) simple polygons

n 30 50 70 100 110 130 150 200
2-transmitters 1.90 2.67 3.45 4.55 4.87 5.72 6.65 8.35
4-transmitters 1.07 1.65 2.00 2.65 2.82 3.05 3.57 4.37

(b) monotone polygons

n 30 50 70 100 110 130 150 200
2-transmitters 2.32 3.17 4.82 6.92 7.20 8.87 10.10 13.37
4-transmitters 1.75 2.15 3.02 4.00 4.70 5.45 6.15 7.85

(c) orthogonal polygons

n 30 50 70 100 110 130 150 200
2-transmitters 1.67 2.45 3.15 4.20 4.60 5.32 5.59 7.95
4-transmitters 1.00 1.35 1.80 2.22 2.45 2.75 3.15 3.97

(d) grid monotone orthogonal polygons

n 30 50 70 100 110 130 150 200
2-transmitters 1.97 3.00 4.12 5.65 6.22 7.15 8.60 11.25
4-transmitters 1.17 1.97 2.30 3.20 3.50 3.97 4.65 6.00

Table 8 summarizes the observed average number of vertex 2-transmitters

and 4-transmitters that cover a given n-vertex polygon (simple, monotone or-

thogonal and grid monotone orthogonal).

Table 8: Experimental results for the MVkT(P, k) problem.

Polygon P

Simple Monotone Simple Orthogonal Grid Monotone Orthogonal

k = 2 ⌈ n

26
⌉ ⌈ n

15
⌉ ⌈ n

27
⌉ ⌈ n

18
⌉

k = 4 ⌈ n

52
⌉ ⌈ n

26
⌉ ⌈ n

57
⌉ ⌈ n

35
⌉

Note that the average number of vertex k-transmitters that cover monotone

polygons is greater than the average number of vertex k-transmitters that cover
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non-monotone polygons. This behavior can be easily explained, since the direc-

tion of monotony is unfavorable for signal transmission.

6 Conclusions

In this paper we proposed a new O(n2) time algorithm to determine the re-

gion covered by a k-transmitter located on a point x of a polygon P with n

edges, Visk(x, P ), for all the possible values of k (0 < k < n). We also devel-

oped three approximation strategies to tackle the problem of minimizing the

number of k-transmitters, located at vertices, that cover a given simple polygon

(MVkT(P, k) problem). One is a hybrid metaheuristic and the other two are

based on the general metaheuristics GAs and SA. We compared the performance

of the three methods and concluded that hybrid strategy, for 2-transmitters and

4-transmitters, on simple, monotone, orthogonal and grid monotone orthogonal

polygons are better than the pure strategies.

Concerning the algorithm to determine Visk(x, P ) as future research we in-

tend to develop of an algorithm to lower this computational complexity for a

fixed value of k. Regarding the approximation algorithms, it is our purpose to

try not only different metaheuristics parameters, but also different metaheuris-

tics combinations. We also plan to develop a method that allows to determine the

approximation ratio of the algorithms implemented to tackle the MVkT(P, k)

problem, because the optimal solution for this problem is unknown. This method

will allow to determine the gap between the approximate solutions and the op-

timal solution.
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