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Abstract: Grounding is the process in charge of linking requests and responses of web services 
with the semantic web services execution platform, and it is the key activity to automate their 
execution in a real business environment. In this paper, the authors introduce a practical 
solution for data grounding. On the one hand, we need a mapping language to relate data 
structures from services definition in WSDL documents to concepts, properties and instances of 
a business domain. On the other hand, two functions that perform the lowering and lifting 
processes using these mapping specifications are also presented. 
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1 Introduction 

Web services are the base technology for Service Oriented Architectures (SOA) on 
the Web and the Cloud Computing [Taniar et al. 2011] realm. According to the 
architecture and definitions by W3C [Booth et al. 2004], a web service is a software 
system designed to support interoperable machine-to-machine interaction over a 
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network. It has an interface described in a machine-processable format, specifically 
using the Web Service Description Language (WSDL). Other systems interact with 
the web service in a manner prescribed by its description using Simple Object Access 
Protocol (SOAP) messages, typically conveyed using HTTP with an XML 
serialization in conjunction with other Web-related standards. 

However, practical deployment of SOA architectures usually faces problems of 
integration due to the heterogeneity of the services, in particular, integration of 
different data models. Semantic Web Services (SWS) [Akkiraju et al. 2005, Battle 
and Bernstein 2005, de Bruijn et al. 2005, Martin et al. 2004] combine current web 
services and the semantic web technology [Anicic et al. 2006, Roman et al. 2006]. 
More specifically, SWS propose ontologies as common data models to abstract the 
definition of services. Consequently two different levels of service description appear 
[Burstein et al. 2005, Cabral et al. 2004]: some tasks can be automated at the semantic 
level, e.g. discovery [Álvarez Sabucedo and Rifón 2010, Pan et al. 2011] of services, 
while others can only be performed combining the semantic and syntactic descriptions 
of the services (e.g. invocation). The latter require a mechanism to translate data 
between these two levels. 

“Data Grounding is the bidirectional process that downgrades a semantic model 
to a syntactic level through a subprocess called lowering and upgrades a syntactic 
model to a semantic level through a subprocess called lifting, enabling actual 
invocation of web services in SWS environments [see Fig. 1].” 

 

 

Figure 1: Grounding Process 

We focus on data grounding [Kopecký et al. 2006] because it is the cornerstone to 
deploy semantic web services in production environments. Data grounding allows 
building a request from the information available in the semantic model and to 
process the response from the service. In this paper, we present a new approach to 
data grounding based on a declarative mapping language. We address the problem 
from a structural point of view, i.e., independently from the logical foundations of 
ontologies. Moreover, our proposal is restricted to the vertical transformations 
between different description levels of services. Horizontal transformations such as 
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data mediation are assumed to be solved by other components of the SWS platforms; 
therefore they are out of the scope of this paper. 

This article describes a new approach to perform data grounding subtasks 
comprised of a language mapping and a transformation process. The proposal is based 
on a direct mapping language M [see Fig. 2] between the syntactic description of the 
messages of a web service (XML Schema Fallside and Walmsley [2004] inside 
WSDL) and the graph-based semantic model built with ontology languages like 
RDFS(S), the W3C Ontology Web Language (OWL) or the Web Service Modeling 
Language (WSML). These mappings are clear instructions on how to transform 
between the two different description levels. Such transformations take place when a 
semantic agent needs to exchange information with a web service. In order to carry 
out this transformation, two main functions have been implemented with the 
objectives of: 1) generate XML content for SOAP requests and 2) interpret XML 
content of SOAP responses to create a graph. In the following sections both, the 
language mapping and the transformation processes are detailed. Furthermore, a real 
implementation and application of this proposal is presented. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Direct mapping language between descriptions 

2 Related work 

Taking into account the current web technological stack, the problem of data 
grounding in semantic web services [Pedrinaci and Domingue 2010] consists on a 
structural transformation between XML trees (SOAP Messages) and RDF graphs 
(ontological data). Trees are special kinds of graphs, therefore algebraic approaches to 
graph transformation, such as the double-pushout (DPO) and the single-pushout 
(SPO), can be used [Corradini et al. 1996]. Although these techniques are a feasible 
solution from the formal point of view they are too complex from a practical point of 
view. The particular structure of XML trees and RDF graphs make it possible to 
devise specific solutions. 

According to [Roman et al. 2006] there are three approaches to data grounding 
[see Fig. 3]: 
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Figure 3: Approaches to Data Grounding. The upper half represents data in WSML 
ontologies 

1. Transformations at the XML level are the first option to travel between a 
semantic model (serialized as XML) and a syntactic representation. The main 
advantage is that this process is based on existing and robust technologies: 
XSLT or XQuery, besides the serialization of a semantic model to XML is 
simple, a priori (e.g. RDF/XML serialization of a RDF graph). Nevertheless, 
there is a lack of homogeneity. Existing ontology languages like RDF, OWL or 
WSML-DL, etc. are based on graphs and they have different ways of being 
serialized as XML. Mainstream research is focused on this approach to 
implement grounding [Kopecký 2005, Pantschenko et al. 2005], e.g. WSMO 
initiative [Kopecký et al. 2007]. 

2. Transforming at the ontology level involves building an ad-hoc pseudo-
ontology from the XML Schema of WSDL [Bohring and Auer 2005]. The 
grounding is implemented using ontology mediation [Mocan and Cimpian 
2005] between that pseudo-ontology and the domain ontology. This method is 
based on merging, aligning and mapping techniques [Bruijn et al. 2006]. The 
map-pings are used as a set of rules that are executed on a rule engine, e.g. 
FLORA-2. The key point of this approach lies on the reliability and 
expressiveness of the built pseudo-ontology. Anyway, tools available to realize 
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this approach are still in an early stage of maturity.  
3. Direct transformations between elements from the XML document to entities 

belonging to a domain. There are two possible approaches: (a) ad-hoc trans-
formation code that must be manually programmed in a language such as Java 
or XSPARQL [Kopecký and Schütz 2008]; (b) using declarative map-pings 
rules between XML Schema and the semantic model. In the second case, the 
mapping rules are written in a particular language and it is necessary to 
implement a processor to perform the transformations. In this field, the 
Semantic Annotations for WSDL and XML Schema [Farrell and Lausen 2007, 
Klímek and Necaský 2011] (SAWSDL) initiative and its predecessor WSDL-S 
[Akkiraju et al. 2005] are examples of this approach, but the implementations 
are not yet available or are committed to a particular project. Alternatively, 
OWL-S [Balzer and Liebig] extends both WSDL and OWL to specify 
grounding.  
 
All described approaches require human intervention at design and validation 

time. In the first two options the human intervention is more complex than in the third 
one. In the first case, transformations are coded into programs [Fernández et al. 2010], 
in the second one mapping rules are declared via rules in complex representational 
languages. Therefore we finally chose the third option because it is more suitable for 
people not trained [García et al. 2011] in programming or knowledge engineering. It 
only needs human intervention to directly map entities with XML elements at design 
time but knowledge about technologies (e.g. XSLT or Flora2), operations (e.g. 
merging or aligning) or algorithms (e.g. PROMPT or GLUE) are not required. 

3 Method to transform trees into graphs: use case for Grounding 

As defined in previous works [Rodríguez et al. 2009], data grounding is the process of 
transforming data from the syntactic level to the semantic representation and back. In 
order to bridge the gap between syntactic and semantic levels, we need some kind of 
information that describes how the semantic data can be represented in XML and how 
the XML data returned from the service can be interpreted using its semantic 
description. 

Our approach for data grounding is based on a direct mapping language that uses 
mapping rules to link data structures of WSDL documents with a sequence of IRIs 
from the ontologies. These mapping rules are clear instructions to perform 
transformations between XML trees [Cowan and Tobin 2004] and semantic data 
graphs. In our approach, we do not need the logic formalism of O to implement the 
grounding process, it is merely a structural process that executes a set of mapping 
rules between non-terminals symbols in a RTG grammar [Comon et al. 2007, Murata 
et al. 2001] (elements in XML) and the structure of objects descriptions [see Fig. 4]. 
At design time, mapping rules between the RTG grammar (extracted from XML 
Schema) and the domain ontology are created to link the syntactic and semantic 
descriptions. At run time, these mapping rules are applied in order to perform 
lowering and lifting operations. To support the transformation at run time, only the 
mapping rules and the RTG derived from the WSDL description is required. In other 
words, the semantic description of the web service and the T -Box of the domain 
ontology are not used during the actual transformation. 
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Figure 4: Relation between syntactic and semantic representations 

3.1 Mapping language 
We propose a mapping language to realize data grounding. Our approach is 
declarative in the sense that we focus on what data must be transformed and not how 
to transform it. Let G = (NT,∑,S,R) be a regular tree grammar (RTG), extracted from 
the syntactic description of a web service (WSDL) [see Fig. 5]. Let O be a domain 
ontology used in the semantic description of the same web service. A tuple m = (ctx, 
e, α) is a mapping for grounding, where e ϵ NT, ctx ϵ NT (context of e) and ϵ IRI+. 
The mapping is the glue between the semantic and syntactic description. Non-
terminal symbols of the grammar are mapped to paths in the graph. The context of a 
non-terminal symbol n is the derivation tree from the initial symbol S to n according 
to the production rules in the grammar. As [Rodríguez et al. 2009] indicates, there is a 
bijective correspondence between production rules and non-terminal symbols. 
Therefore, the sequence of production rules that de ne of a non-terminal symbols can 
be represented using a sequence of the non-terminal symbols from the initial symbol 
S. As we have reviewed [Rodríguez et al. 2009] our non-terminal symbols are named 
after the XML elements defined in the XML Schema and those are identified by 
QNames, therefore we can identify the non-terminal symbols using QNames. 
Consequently, the context ctx can be described by a sequence of QNames. The 
language of mapping rules for the grounding is defined by the following expression: 
 
 M: QName* x QName x IRI

+
  

3.2 Transformation operations 
There are two main scenarios when data grounding runs: 1) Lowering, the map-ping 
rules guide the process through the semantic model to extract the parameters of the 
precondition that are used to create the SOAP body of the request. The mapping 
language supports several entities of the semantic model being mapped to the same 
non-terminal symbol. Lowering is restrictive with the generated output in order to 
ensure the creation of valid and well-formed XML documents. 2) Lifting, the 
mapping rules guide the process of parsing the SOAP content and building a set of 
instances according to postconditions (described using a semantic model) of the web 
service. 
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3.3 Lowering function 
Given a regular tree grammar, G, a semantic request Drq, and a set of mappings M, 
we de ne the lowering process as the transformation function of the semantic 
information, starting in the node v, to a syntactic representation T(∑). 

Lowering : Drq x G x M x v  T(∑) 

NT= {NTfare, NTowner, NTdriver, NTpolicyholder,  NTdate, NTname, NTid, NTvehicle, 
NTbrand, NTmodel, NTregistrationnumber,  NTproject, NToffers, NToffer, NTtotal, 
NTamountofinstalments, NTnumberofinstalments} 
 
∑= {Elementfare, Elementowner, Elementdriver, Elementpolicyholder, Elementdate, 
Elementname, Elementid, Elementvehicle, Elementbrand, Elementmodel, 
Elementregistrationnumber, Elementproject, Elementoffers, Elementoffer, Elementtotal, 
Elementamountofinstalments, Elementnumberofinstalments, Literal } 
 
R={ 
      r1: NTfare::= Elementfare  (NTvehicle NTowner  NTdriver  NTpolicyholder  NTdate 
) 
      r2: NTowner::= Elementowner (NTname  NTid ) 
      r3: NTdriver ::= Elementdriver (NTname  NTid ) 
      r4: NTpolicyholder ::= Elementpolicyholder (NTname  NTid ) 
      r5: NTdate ::= Elementdate (Literal) 
      r6: NTname ::= Elementname (Literal) 
      r7: NTid ::= Elementid (Literal) 
      r8: NTvehicle ::= Elementvehicle  (NTbrand  NTmodel  NTregistrationnumber ) 
      r9: NTbrand ::= Elementbrand  (Literal) 
      r10: NTmodel ::= Elementmodel  (Literal) 
      r11: NTregistrationnumber ::= Elementregistrationnumber  (Literal) 
      r12: NTproject ::= Elementproject  (NTdate  NToffers ) 
      r13: NToffers ::= Elementoffers  (NToffer ) 
      r14: NToffer ::= Elementoffer  (NTtotal  NTamountofinstalments  NTnumberofinstalments ) 
      r15: NTtotal ::= Elementtotal  (Literal) 
      r16: NTamountofinstalments ::= Elementamountofinstalments  (Literal) 
      r17: NTnumberofinstalments ::= Elementnumberofinstalments  (Literal) } 

Figure 5: Example of RTG grammar. 

The lowering process starts from the initial symbol S and follows the production 
rules of the grammar G to create a valid XML Document T(∑). It is driven by the 
mappings M that decide how production rules must to be applied. 

Starting from node v, mappings determine movements in the graph Drq. The 
pseudocode of the lowering function is presented in Algorithm 1. A production rule 
can be applied multiple times to produce repeated structures, for instance, a list of 
elements. Ambiguity may arise, however, during the execution of the lowering. If the 
same non-terminal symbol has been mapped to different paths, and more than one of 
these paths can be simultaneously satisfied in the graph, then a fatal error is raised. 
All the error situations are described in more detail below: 
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 Line 5, the derivation tree reaches a terminal symbol of type Literalvalue. 
However, the current node in the graph is not an RDFLiteral, therefore it is 
not possible to determine the value for the terminal symbol. 

 Line 15, the algorithm finds a non-terminal symbol NTi and it is not possible 
determine the production rule to be applied. This error is impossible if the 
grammar is built as a previous work [Rodríguez et al. 2009] introduces.  

 Line 25, the algorithm is processing a non-terminal symbol NTi with several 
mappings MNTi and none of them can be applied in the current graph Drq. 
Note that this is not the same as a non-terminal symbol which does not have 
any mappings. In the latter case, the algorithm continues without errors.  

 Line 27, it is the opposite case to the previous one. More than one mapping 
rule for a non-terminal symbol NTi can be simultaneously applied taking into 
account the current graph Drq. The algorithm stops because there is no way 
to determine which one is preferred.  

3.4 Lifting function 
Given a regular tree grammar, G, a syntactic response comprised by a tree of 
terminals T(∑) and a set of mappings M, we de ne the lifting process as the 
transformation function of the syntactic information to a semantic representation Drp:  

Lifting : T(∑) x G x M Drp 
The lifting process is realized by parsing T(∑). For each terminal symbol, its 

mapping rule is located and a subgraph is created by instantiation of the graph path of 
the mapping rule. The subgraphs are merged recursively. The pseudocode for the 
lifting function is presented in Algorithm 2. This algorithm uses the following 
auxiliary functions: 

 FreshBlankNode: produces a new blank node in the graph.  
 GetNonTerminal: takes a terminal symbol and a context. It returns the 

nonterminal symbol in the left side of the production rule that generates 
terminal symbol in that context. In other words, let R0 be the subset of the 
production rules that have been applied so far in the derivation tree from the 
initial symbol to the current symbol, then:  GetNonTerminal(Elementi,ctx) = 
{NTi ϵ NT/(NTi ::= Elementi(α)) ϵ R’} (1) 

 MergeGraphMergingNode: merges two graphs, and additionally unifies two 
nodes. 

 Get-/SetGraphRoot: in general, graphs do not have a root node. However, the 
algorithm needs to temporarily mark a node as "root" to drive the merging of 
the subgraphs. This pair of functions gets and set the root node of a graph.  

 InstantiateGraphPath: given an initial node, a path and an original graph, this 
function creates a new graph that contains the original graph and a new path 
across a sequence of new blank nodes from the initial node to the root node 
of the original graph [see Fig. 6]. In the new graph the root node is the initial 
node.  
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Algorithm 1 Lowering  
Require: G, symbol, ctx, M, Drq, vertex 
Ensure: T(∑) ≠ ∅ 
if symbol is Literal then  

1: if vertex is RDFLiteralvalue  then   
2: return  Literalvalue   
3: else  
4: Error(“Vertex isn't RDF Literal")  
5: end if  
6: else if symbol is ElementQName  then  
7: for all child ϵ symbol.children do  

8: childrenResult  Lowering(G, child, ctx, M, Drq, vertex)  
9: end for  
10: return  ElementQName(childrenResult)  
11: else if symbol ϵ NT  then  
12: r: symbol  ElementQName ϵ R  
13: if ∃! r then   
14: Error(“Symbol doesn't have production rule")   
15: else   
16: if M

symbol
 = ∅ then   

17: for all child ϵ ElementQName:children do  

19:  childrenResult  Lowering(G, child, ctx + symbol, M, Drq, vertex) 
20: end for  
21: return  childrenResult  
22: else  

23: Mvalid = {m ϵ M
symbol

/m:(ctx, symbol, α), α is satisfiable for vertex} 

24: if Mvalid = ∅ then  
25: Error(“Symbol doesn't have valid mapping")  

26: else if |Mvalid| > 1 then  
27: Error(“Symbol has more than one valid mapping")  
28: else   
29: for all v ϵ [α]

Drq (vertex) do  
30: for all child ϵ ElementQName.children do  

31:  childrenResult  Lowering(G, child, ctx + symbol, M, Drq, v) 
32: end for  
33: end for  
34: return  childrenResult  
35: end if  
36: end if  
37: end if  
38: else  
39: Error(“Unknown symbol")  
40: end if  
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Algorithm 2 Lifting 
Require:  G, symbol, ctx, M, T(∑)  
Ensure:  Drs ≠ ∅ 

1: if symbol is Literalvalue  then  
2:      return  Drs (RDFLiteralvalue, ∅)  
3: else if symbol is ElementQName  then 
4: for all child ϵ symbol.children do  
5: childsResult  Lifting(G,child, ctx + nonterminal, M, T(∑))  
6: if child 2 Literal then  
7: return  childsResult  

8: else if child ϵ ElementQName  then  
9: Drs  (∅,∅)  

10: blankNode  FreshBlankNode(Drs)  
11: nonTerminal  GetNonTerminal(symbol, ctx)  
12: nonTerminalChild  GetNonTerminal(child, ctx + nonTerminal)  

13: if MnonTerminalChild = ∅ then   
14: return MergeGraphMergingNode(blankNode, Drs, childResult)  
15: else if |M

nonTerminalChild
| = 1 then  

16: m:(ctx, nonTerminalChild,α) ϵ MnonTerminalChild  
17: Drs  InstantiateGraphPath(blankNode, α ,childResult)  
18: else  
19: Error(“Symbol has more than one mapping")  
20: end if  

21: SetGraphRoot(Drs, blankNode)  
22: return  Drs  
23: end if  
24: end for  
25: end if  

 
Similarly to the lowering process, the lifting process may run into ambiguous 

cases. If a non-terminal symbol has several mapping rules and they are 
simultaneously valid in a certain context, then it is not possible to determine which 
path must be instantiated, and consequently an error is raised (Line 19). 

 

Figure 6: The function InstantiateGraphPath produces a new graph that is a superset 
of the original one, with the addition of a new path. 
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@prefix onto: <http://example.org/ontology#>. 
onto:profile1 onto:hasPolicyHolder onto:companyOne . 
onto:profile1 onto:hasDriver onto:personOne . 
onto:profile1 onto:hasVehicle onto:car . 
onto:profile1 onto:hasDate "10/05/2008" . 
onto:car onto:hasBrand "Renault" . 
onto:car onto:hasModel "Megane" . 
onto:car onto:hasRegistrationNumber "1234AAA" . 
onto:car onto:hasOwner onto:companyOne . 
onto:personOne onto:hasName "Scott" . 
onto:personOne onto:hasNaturalPersonsRegister "98765432R" . 
onto:companyOne onto:hasName "ACME" . 
onto:companyOne onto:hasTaxIdentificationNumber "12345678N" . 

Figure 7: Some facts described as triples in N3 syntax. 

3.5 Execution traces 
In order to illustrate the grounding functions with a trace, a graphical notation is 
introduced [see Fig. 8]. Mapping rules [see Fig. 9] are depicted as boxes, with the 
context and the non-terminal symbol in the left side, and the graph path in the 
right side. 

3.5.1 Lowering trace 

The notation for the states of the lowering function contains the current non-
terminal symbol (upper half of the box) and the current node of the graph. 
 

 
Figure 8: Graphical notation used to depict mapping rules and the states during the 

execution of the lowering and lifting functions, respectively 

 
 
 
 
 
 
 
 
 

1586 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...



 

 

Figure 9: Mapping rules the graphical notation 

Each state transition is annotated with the name of the production rule (ri) and, 
optionally, the mapping rule (mi). Figure 10 illustrates the complete trace of the 
lowering function using the following input parameters: 1) G = grammar [see Fig. 5]; 
2) M = mappings [see Fig. 9]; 3) Drq = input semantic data [see Fig. 7] and 4) v = 
profile1.  

The initial state is the root of the derivation tree. Consequently, the non-terminal 
symbol is the initial symbol of the grammar, NTfare. The first state transition is 
described in detail [see Fig. 11], and it is red by the production rule r1. The terminal 
symbol (fare) and its children are derived by the production rule. However, there is 
not any valid mapping rule for the current non-terminal symbol, therefore none is 
applied, and the active node in the graph is preserved in the children states. The 
process continues visiting the newly created children in the derivation tree. In the next 
step of the trace [see Fig. 12], the current non-terminal symbol is NTvehicle. Production 
rule r8 is red. In this case, mapping rule m1 is valid; therefore, the new children states 
have a different active node, which is the result of traversing the edge hasVehicle in 
the graph from the previously active node. For convenience, the relevant portion of 
the Drq graph is shown in the figure, as well as the valid mapping rule. 
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Figure 10: Execution of lowering, from the initial state containing the initial symbol 
(root of the derivation tree) 

The process continues expanding all the non-terminal symbols created by 
execution of the production rules of the grammar. Eventually, the derivation tree 
reaches a leaf, i.e., a Literal terminal symbol. In this situation, the algorithm must 
assign the lexical value of the literal symbol. Assuming that the mapping rules are 
correctly built, at such point, the current node in the graph must be an RDFLiteral, 
which value is simply copied into the tree leaf. The same non-terminal symbol can 
appear in more than one mapping rule. In some of those situations, the context 
decides which mapping rules can be applied [see Fig. 13]. At this point, the non-
terminal symbol is NTdate, which appears in two candidate mapping rules (m5 and 
m12). However, the context in the derivation tree (NTfare) only matches with m5 and 
excludes m12. Consequently, this case is unambiguous. 

 

Figure 11: First state transition in the execution of the lowering function 
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Figure 12: Second step in the execution of the lowering function 
 

Figure 13: Situation in which the context decides which mapping rule is to be applied 
during the lowering process 
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Figure 14: Multiple candidate mapping rules at this point. The path of the mapping 
rules determines which one is applied 

Finally, there are some cases where even the context is insufficient. At the point 
depicted in Fig. 14, the non-terminal symbol NTid is being processed. In this case 
there are two candidate mapping rules (m6 and m7), and they do not put any 
constraint on the context, therefore both are equally valid. In such case, the algorithm 
fallbacks to check whether the path of the mapping rules can be traversed from the 
current node in the graph. In the figure, from the node companyOne, only the path of 
m7 can be traversed, while there is not any edge matching the path of m6. Therefore, 
m7 is applied to move the active node to the literal node "12345678N". The final 
result is the tree composed of the terminal symbols, i.e., the result of removing the 
state boxes from Fig. 10. The result is converted in the XML Document [see Fig. 15]. 

 
 

<?xml version="1.0" encoding="utf-8" ?> 
<fare>   
  <vehicle> 
    <brand>Renault</brand> 
    <model>Megane</model> 
    <registrationnumber>1234AAA</registrationnumber> 
  </vehicle> 
  <owner> 
    <name>ACME</name> 
    <id>12345678N</id> 
  </owner> 
  <driver> 
    <name>Scott</name> 
    <id>98765432R</id> 
  </driver> 
  <policyholder> 
    <name>ACME</name> 
    <id>12345678N</id> 
  </policyholder> 
  <date>10/05/2008</date> 
</fare> 

Figure 15: Example of XML Document. 
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3.5.2 Lifting trace 

Each state of the recursive execution of the lifting function is depicted as a box [see 
Fig. 8] that contains the current terminal symbol (in the middle of the box), as well as 
its ancestor and child elements. Some state transitions re mapping rules that produce 
graph fragments. Figure 17 illustrates the complete trace of the lifting function for the 
following input parameters: 1) G = grammar [see Fig. 5]; 2) M = mappings [see Fig. 
9] and 3) T(∑) = tree of the terminal symbols in the XML Document [see Fig. 17]. 

The process starts by parsing the terminal symbol at the root of the XML tree, in 
this case, Elementproject. According to the grammar, this terminal symbol is derived 
from the non-terminal symbol NTproject by production rule r12. As there is not any 
mapping rule valid for this non-terminal symbol, the parsing process simply continues 
recursively by the child branches, without producing any graph. Later, the terminal 
symbol Elementdate is found by the parser [see Fig. 16]. It is derived from the non-
terminal symbol NTdate by production rule r5. There are two mapping rules (m5 and 
m12) available for this non-terminal symbol, but only m12 matches the context 
NTproject, therefore it is red. 

 

Figure 16: Sample situation in which the context of mapping rules decides which one 
is to be applied during lifting 

A new subgraph is created by instantiating the path described in the mapping 
rule. The process continues descending to the child elements. Eventually, the function 
reaches a leaf, for instance, the terminal symbol Literal25=08=2008. This is a final case; a 
minimal graph is created with just an RDFLiteral node with the lexical value of the 
terminal symbol. Finally, the recursive calls return, and the postprocessing stage 
merges the subgraphs produced by the child branches (root nodes are used as merging 
points), completing the final graph [see Fig. 18, bottom]. 
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<?xml version="1.0" encoding="utf-8" ?><project>  
<date>28/05/2008</date>  <offers>    <offer>      <total>1200</total>      
<amountofinstalments>100</amountofinstalments>      
<numberofinstalments>12</numberofinstalments>    </offer>    ...    <offer>      
<total>1200</total>      <amountofinstalments>600</amountofinstalments>      
<numberofinstalments>2</numberofinstalments>    </offer>  
</offers></project> 

Figure 17: Sample XML response obtained from a web service (without the SOAP 
envelope) 

 

Figure 18: Execution of lifting, from the XML tree (top part of the figure) to the 
resulting RDF graph (bottom of the figure) 
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4 Experimentation: the PRAVIA project 

E2000 Nuevas Tecnologías is the leading company in the insurance broker sector in 
Spain. The PRAVIA project was launched by E2000 [http://www.e2000.es] in 
partnership with Fundación CTIC and its main objective was to test the applicability 
of semantic web services to this business domain. For the sake of simplicity, only two 
business processes and two service providers were chosen. This sample has proven 
enough to create a realistic environment with non-trivial web services. 
 

Feature Our approach SAWSDL 
Ad-
hoc 

Use of XML Schema annotations +, -, new attributes- 
 xsd:annotations   

Programming skills required - +    + 
Complete solution + Runtime semantics     + 
  undefined  

Usable by domain experts + + - 
Easy Maintenance and Evolution (changes

in ontologies or services)        + +    - 

Support for REST Web Services - - + 
Able to perform data mediation - + + 
Dependence on modeling language + + + 

Table 1: Comparative study of grounding approaches 
 

The Web Service Execution Environment (WSMX) platform, the WSMO 
ontology and the WSML language were selected to deploy the semantic web services 
technology in this controlled environment. The grounding process provided by the 
WSMX Communication Manager was found to be in an early stage of development, 
and it could not address the requirements of the business environment. Therefore, it 
was replaced with an extended component with the same interface. The new 
component uses the mapping language and implements the transformation functions 
described in this paper. 

Our approach to data grounding in semantic web services takes into account just 
the data structure definition (using XML Schema) of the whole WSDL description of 
a web service. In order to introduce the mapping rules in the XML Schema, we use 
the elements xsd:annnotation and xsd:appinfo and its at-tribute source. Each 
annotation is interpreted as one or more mapping rules. The non-terminal symbol of 
the mapping rule is the symbol labelled after the xsd:element. The context is obtained 
as the list of non-terminal symbols be-tween the current xsd:element declaration and 
the opening declaration of an XML Schema type. The content of an annotation in the 
source attribute is a graph path, described by a list of IRIs separated by blank spaces. 
By using xsd:appinfo, it is possible to introduce multiple mappings associated to the 
same element. According to Tab. 1 our proposal is compared to other approaches, we 
do not evaluate the details of the implementation of each solution, and we only focus 
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on some general properties. The most relevant feature of our approach is its complete 
declarativeness (it does not require any programming skill), and it improves the 
maintenance and evolution of the knowledge bases as well as web services. The main 
drawback is the limited support for proto-cols (it is only supported WSDL 1.1 and 
SOAP 1.x) but it can be extended to do and process annotations inside the Web 
Application Description Language (WADL), a machine-readable description of 
HTTP-based web applications, basically REST-oriented services. 

5 Conclusions and future work 

Our proposal for data grounding relies on a mapping language that describes relations 
as mapping rules and a processor to execute the rules and make trans-formations 
between the syntactic description of the messages of a web service and the semantic 
model. We pursue a domain-independent and systematic solution that reduces to the 
minimum the human intervention. Following, main remarks about this approach for 
data grounding are presented: 1) it require human intervention on design time. The 
difference lies in which tasks are required and who can do them. Our solution only 
needs some simple work to map syntactic descriptions to semantic entities. This 
operation can be carried out using a simple graphical user interface; 2) it depends on 
the web service and se-mantic technologies. We only support WSDL (document 
based) 1.1 and SOAP 1.x. On the contrary, it is independent from the ontology 
language, existing web standards for graph-based knowledge representation systems 
are supported; 3) it positively contributes to the maintainability, reliability, 
robustness, time to repair and cost of the SOA architectures in the new Cloud 
Computing realm, as a consequence of removing the need of ad-hoc developments. 
This is a distinctive feature of our approach with respect to manually implementing 
data grounding using languages such as XSLT, XSPARQL or Java; 4) it must not be 
confused with data mediation. Although some shared transformation patterns can be 
identified, data mediation and data grounding are conceptually different, and their 
responsibilities should be clearly separated in a successful semantic web services 
platform; 5) it is a partial solution for semantic web services grounding. Data 
grounding is able to build requests and to process responses, but that is just a part of 
SWS grounding. There are other issues that must be addressed separately (e.g., 
authentication) and 6) it is a viable solution for data grounding of semantic web 
services. Without data grounding, SWS platforms cannot invoke real web services. 
However, we cannot assure that all SOAP-based web services will be compatible with 
our solution because heterogeneities are always present due to tools, extensions in 
specifications, etc. 

We have reused the experience of previous works and specifications [Martin et al. 
2004, Farrell and Lausen 2007, de Bruijn et al. 2005, Akkiraju et al. 2005] in the 
semantic web services area. Our solution was embedded into WSMX to put it to test 
in a real environment (web services coming from the insurance sector). The results 
con rm that it is possible to specify data grounding of web services using a mapping 
language. Anyway, real web services are not limited to those accepting SOAP 
messages and described by WSDL. Therefore, we are working to extend our solution 
to support other kinds of service (message protocol and description format), such as 
REST services, WSDL 2.0, etc. We also study the alignment of our solution with 
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other proposals and recommendations from W3C and OASIS. Finally, taking into 
account the new semantic features of HTML5 [http://dev.w3.org/html5/spec/single-
page.html] and its implicit XML grammar, this solution could be applied to make 
transformations (similar to XSL) between different datasources (web services, 
databases, etc.) to finally get a HTML5 representation keeping all semantics from the 
source. 
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