
Towards a Practical Solution for Data Grounding in a
Semantic Web Services Environment

Miguel García Rodríguez
(Department of Computer Science, University of Oviedo, Spain

miguel.garcia@weso.es)

Jose María Alvarez Rodríguez
(Department of Computer Science, University of Oviedo, Spain

josem.alvarez@weso.es)

Diego Berrueta Muñoz
(R&D Department, Fundación CTIC, Gijón, Spain

diego.berrueta@fundacionctic.org)

Luis Polo Paredes
(R&D Department, Fundación CTIC, Gijón, Spain

luis.polo@fundacionctic.org)

Jose Emilio Labra Gayo
(Department of Computer Science, University of Oviedo, Spain

 jelabra@weso.es)

Patricia Ordoñez De Pablos
(Department of Business Management, University of Oviedo, Spain

patriop@uniovi.es)

Abstract: Grounding is the process in charge of linking requests and responses of web services
with the semantic web services execution platform, and it is the key activity to automate their
execution in a real business environment. In this paper, the authors introduce a practical
solution for data grounding. On the one hand, we need a mapping language to relate data
structures from services definition in WSDL documents to concepts, properties and instances of
a business domain. On the other hand, two functions that perform the lowering and lifting
processes using these mapping specifications are also presented.

Key Words: service-oriented architectures, web services, cloud computing, semantic web,
ontologies, data grounding, semantic web services, interoperability, mapping languages
Category: H.3.5, G.2.2, I.2.4

1 Introduction

Web services are the base technology for Service Oriented Architectures (SOA) on
the Web and the Cloud Computing [Taniar et al. 2011] realm. According to the
architecture and definitions by W3C [Booth et al. 2004], a web service is a software
system designed to support interoperable machine-to-machine interaction over a

Journal of Universal Computer Science, vol. 18, no. 11 (2012), 1576-1597
submitted: 30/11/11, accepted: 15/5/12, appeared: 1/6/12 © J.UCS

network. It has an interface described in a machine-processable format, specifically
using the Web Service Description Language (WSDL). Other systems interact with
the web service in a manner prescribed by its description using Simple Object Access
Protocol (SOAP) messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

However, practical deployment of SOA architectures usually faces problems of
integration due to the heterogeneity of the services, in particular, integration of
different data models. Semantic Web Services (SWS) [Akkiraju et al. 2005, Battle
and Bernstein 2005, de Bruijn et al. 2005, Martin et al. 2004] combine current web
services and the semantic web technology [Anicic et al. 2006, Roman et al. 2006].
More specifically, SWS propose ontologies as common data models to abstract the
definition of services. Consequently two different levels of service description appear
[Burstein et al. 2005, Cabral et al. 2004]: some tasks can be automated at the semantic
level, e.g. discovery [Álvarez Sabucedo and Rifón 2010, Pan et al. 2011] of services,
while others can only be performed combining the semantic and syntactic descriptions
of the services (e.g. invocation). The latter require a mechanism to translate data
between these two levels.

“Data Grounding is the bidirectional process that downgrades a semantic model
to a syntactic level through a subprocess called lowering and upgrades a syntactic
model to a semantic level through a subprocess called lifting, enabling actual
invocation of web services in SWS environments [see Fig. 1].”

Figure 1: Grounding Process

We focus on data grounding [Kopecký et al. 2006] because it is the cornerstone to
deploy semantic web services in production environments. Data grounding allows
building a request from the information available in the semantic model and to
process the response from the service. In this paper, we present a new approach to
data grounding based on a declarative mapping language. We address the problem
from a structural point of view, i.e., independently from the logical foundations of
ontologies. Moreover, our proposal is restricted to the vertical transformations
between different description levels of services. Horizontal transformations such as

1577Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

data mediation are assumed to be solved by other components of the SWS platforms;
therefore they are out of the scope of this paper.

This article describes a new approach to perform data grounding subtasks
comprised of a language mapping and a transformation process. The proposal is based
on a direct mapping language M [see Fig. 2] between the syntactic description of the
messages of a web service (XML Schema Fallside and Walmsley [2004] inside
WSDL) and the graph-based semantic model built with ontology languages like
RDFS(S), the W3C Ontology Web Language (OWL) or the Web Service Modeling
Language (WSML). These mappings are clear instructions on how to transform
between the two different description levels. Such transformations take place when a
semantic agent needs to exchange information with a web service. In order to carry
out this transformation, two main functions have been implemented with the
objectives of: 1) generate XML content for SOAP requests and 2) interpret XML
content of SOAP responses to create a graph. In the following sections both, the
language mapping and the transformation processes are detailed. Furthermore, a real
implementation and application of this proposal is presented.

Figure 2: Direct mapping language between descriptions

2 Related work

Taking into account the current web technological stack, the problem of data
grounding in semantic web services [Pedrinaci and Domingue 2010] consists on a
structural transformation between XML trees (SOAP Messages) and RDF graphs
(ontological data). Trees are special kinds of graphs, therefore algebraic approaches to
graph transformation, such as the double-pushout (DPO) and the single-pushout
(SPO), can be used [Corradini et al. 1996]. Although these techniques are a feasible
solution from the formal point of view they are too complex from a practical point of
view. The particular structure of XML trees and RDF graphs make it possible to
devise specific solutions.

According to [Roman et al. 2006] there are three approaches to data grounding
[see Fig. 3]:

1578 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Figure 3: Approaches to Data Grounding. The upper half represents data in WSML
ontologies

1. Transformations at the XML level are the first option to travel between a
semantic model (serialized as XML) and a syntactic representation. The main
advantage is that this process is based on existing and robust technologies:
XSLT or XQuery, besides the serialization of a semantic model to XML is
simple, a priori (e.g. RDF/XML serialization of a RDF graph). Nevertheless,
there is a lack of homogeneity. Existing ontology languages like RDF, OWL or
WSML-DL, etc. are based on graphs and they have different ways of being
serialized as XML. Mainstream research is focused on this approach to
implement grounding [Kopecký 2005, Pantschenko et al. 2005], e.g. WSMO
initiative [Kopecký et al. 2007].

2. Transforming at the ontology level involves building an ad-hoc pseudo-
ontology from the XML Schema of WSDL [Bohring and Auer 2005]. The
grounding is implemented using ontology mediation [Mocan and Cimpian
2005] between that pseudo-ontology and the domain ontology. This method is
based on merging, aligning and mapping techniques [Bruijn et al. 2006]. The
map-pings are used as a set of rules that are executed on a rule engine, e.g.
FLORA-2. The key point of this approach lies on the reliability and
expressiveness of the built pseudo-ontology. Anyway, tools available to realize

1579Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

this approach are still in an early stage of maturity.
3. Direct transformations between elements from the XML document to entities

belonging to a domain. There are two possible approaches: (a) ad-hoc trans-
formation code that must be manually programmed in a language such as Java
or XSPARQL [Kopecký and Schütz 2008]; (b) using declarative map-pings
rules between XML Schema and the semantic model. In the second case, the
mapping rules are written in a particular language and it is necessary to
implement a processor to perform the transformations. In this field, the
Semantic Annotations for WSDL and XML Schema [Farrell and Lausen 2007,
Klímek and Necaský 2011] (SAWSDL) initiative and its predecessor WSDL-S
[Akkiraju et al. 2005] are examples of this approach, but the implementations
are not yet available or are committed to a particular project. Alternatively,
OWL-S [Balzer and Liebig] extends both WSDL and OWL to specify
grounding.

All described approaches require human intervention at design and validation

time. In the first two options the human intervention is more complex than in the third
one. In the first case, transformations are coded into programs [Fernández et al. 2010],
in the second one mapping rules are declared via rules in complex representational
languages. Therefore we finally chose the third option because it is more suitable for
people not trained [García et al. 2011] in programming or knowledge engineering. It
only needs human intervention to directly map entities with XML elements at design
time but knowledge about technologies (e.g. XSLT or Flora2), operations (e.g.
merging or aligning) or algorithms (e.g. PROMPT or GLUE) are not required.

3 Method to transform trees into graphs: use case for Grounding

As defined in previous works [Rodríguez et al. 2009], data grounding is the process of
transforming data from the syntactic level to the semantic representation and back. In
order to bridge the gap between syntactic and semantic levels, we need some kind of
information that describes how the semantic data can be represented in XML and how
the XML data returned from the service can be interpreted using its semantic
description.

Our approach for data grounding is based on a direct mapping language that uses
mapping rules to link data structures of WSDL documents with a sequence of IRIs
from the ontologies. These mapping rules are clear instructions to perform
transformations between XML trees [Cowan and Tobin 2004] and semantic data
graphs. In our approach, we do not need the logic formalism of O to implement the
grounding process, it is merely a structural process that executes a set of mapping
rules between non-terminals symbols in a RTG grammar [Comon et al. 2007, Murata
et al. 2001] (elements in XML) and the structure of objects descriptions [see Fig. 4].
At design time, mapping rules between the RTG grammar (extracted from XML
Schema) and the domain ontology are created to link the syntactic and semantic
descriptions. At run time, these mapping rules are applied in order to perform
lowering and lifting operations. To support the transformation at run time, only the
mapping rules and the RTG derived from the WSDL description is required. In other
words, the semantic description of the web service and the T -Box of the domain
ontology are not used during the actual transformation.

1580 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Figure 4: Relation between syntactic and semantic representations

3.1 Mapping language
We propose a mapping language to realize data grounding. Our approach is
declarative in the sense that we focus on what data must be transformed and not how
to transform it. Let G = (NT,∑,S,R) be a regular tree grammar (RTG), extracted from
the syntactic description of a web service (WSDL) [see Fig. 5]. Let O be a domain
ontology used in the semantic description of the same web service. A tuple m = (ctx,
e, α) is a mapping for grounding, where e ϵ NT, ctx ϵ NT (context of e) and ϵ IRI+.
The mapping is the glue between the semantic and syntactic description. Non-
terminal symbols of the grammar are mapped to paths in the graph. The context of a
non-terminal symbol n is the derivation tree from the initial symbol S to n according
to the production rules in the grammar. As [Rodríguez et al. 2009] indicates, there is a
bijective correspondence between production rules and non-terminal symbols.
Therefore, the sequence of production rules that de ne of a non-terminal symbols can
be represented using a sequence of the non-terminal symbols from the initial symbol
S. As we have reviewed [Rodríguez et al. 2009] our non-terminal symbols are named
after the XML elements defined in the XML Schema and those are identified by
QNames, therefore we can identify the non-terminal symbols using QNames.
Consequently, the context ctx can be described by a sequence of QNames. The
language of mapping rules for the grounding is defined by the following expression:

 M: QName* x QName x IRI

+

3.2 Transformation operations
There are two main scenarios when data grounding runs: 1) Lowering, the map-ping
rules guide the process through the semantic model to extract the parameters of the
precondition that are used to create the SOAP body of the request. The mapping
language supports several entities of the semantic model being mapped to the same
non-terminal symbol. Lowering is restrictive with the generated output in order to
ensure the creation of valid and well-formed XML documents. 2) Lifting, the
mapping rules guide the process of parsing the SOAP content and building a set of
instances according to postconditions (described using a semantic model) of the web
service.

1581Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

3.3 Lowering function
Given a regular tree grammar, G, a semantic request Drq, and a set of mappings M,
we de ne the lowering process as the transformation function of the semantic
information, starting in the node v, to a syntactic representation T(∑).

Lowering : Drq x G x M x v  T(∑)

NT= {NTfare, NTowner, NTdriver, NTpolicyholder, NTdate, NTname, NTid, NTvehicle,
NTbrand, NTmodel, NTregistrationnumber, NTproject, NToffers, NToffer, NTtotal,
NTamountofinstalments, NTnumberofinstalments}

∑= {Elementfare, Elementowner, Elementdriver, Elementpolicyholder, Elementdate,
Elementname, Elementid, Elementvehicle, Elementbrand, Elementmodel,
Elementregistrationnumber, Elementproject, Elementoffers, Elementoffer, Elementtotal,
Elementamountofinstalments, Elementnumberofinstalments, Literal }

R={
 r1: NTfare::= Elementfare (NTvehicle NTowner NTdriver NTpolicyholder NTdate
)
 r2: NTowner::= Elementowner (NTname NTid)
 r3: NTdriver ::= Elementdriver (NTname NTid)
 r4: NTpolicyholder ::= Elementpolicyholder (NTname NTid)
 r5: NTdate ::= Elementdate (Literal)
 r6: NTname ::= Elementname (Literal)
 r7: NTid ::= Elementid (Literal)
 r8: NTvehicle ::= Elementvehicle (NTbrand NTmodel NTregistrationnumber)
 r9: NTbrand ::= Elementbrand (Literal)
 r10: NTmodel ::= Elementmodel (Literal)
 r11: NTregistrationnumber ::= Elementregistrationnumber (Literal)
 r12: NTproject ::= Elementproject (NTdate NToffers)
 r13: NToffers ::= Elementoffers (NToffer)
 r14: NToffer ::= Elementoffer (NTtotal NTamountofinstalments NTnumberofinstalments)
 r15: NTtotal ::= Elementtotal (Literal)
 r16: NTamountofinstalments ::= Elementamountofinstalments (Literal)
 r17: NTnumberofinstalments ::= Elementnumberofinstalments (Literal) }

Figure 5: Example of RTG grammar.

The lowering process starts from the initial symbol S and follows the production
rules of the grammar G to create a valid XML Document T(∑). It is driven by the
mappings M that decide how production rules must to be applied.

Starting from node v, mappings determine movements in the graph Drq. The
pseudocode of the lowering function is presented in Algorithm 1. A production rule
can be applied multiple times to produce repeated structures, for instance, a list of
elements. Ambiguity may arise, however, during the execution of the lowering. If the
same non-terminal symbol has been mapped to different paths, and more than one of
these paths can be simultaneously satisfied in the graph, then a fatal error is raised.
All the error situations are described in more detail below:

1582 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

 Line 5, the derivation tree reaches a terminal symbol of type Literalvalue.
However, the current node in the graph is not an RDFLiteral, therefore it is
not possible to determine the value for the terminal symbol.

 Line 15, the algorithm finds a non-terminal symbol NTi and it is not possible
determine the production rule to be applied. This error is impossible if the
grammar is built as a previous work [Rodríguez et al. 2009] introduces.

 Line 25, the algorithm is processing a non-terminal symbol NTi with several
mappings MNTi and none of them can be applied in the current graph Drq.
Note that this is not the same as a non-terminal symbol which does not have
any mappings. In the latter case, the algorithm continues without errors.

 Line 27, it is the opposite case to the previous one. More than one mapping
rule for a non-terminal symbol NTi can be simultaneously applied taking into
account the current graph Drq. The algorithm stops because there is no way
to determine which one is preferred.

3.4 Lifting function
Given a regular tree grammar, G, a syntactic response comprised by a tree of
terminals T(∑) and a set of mappings M, we de ne the lifting process as the
transformation function of the syntactic information to a semantic representation Drp:

Lifting : T(∑) x G x M Drp
The lifting process is realized by parsing T(∑). For each terminal symbol, its

mapping rule is located and a subgraph is created by instantiation of the graph path of
the mapping rule. The subgraphs are merged recursively. The pseudocode for the
lifting function is presented in Algorithm 2. This algorithm uses the following
auxiliary functions:

 FreshBlankNode: produces a new blank node in the graph.
 GetNonTerminal: takes a terminal symbol and a context. It returns the

nonterminal symbol in the left side of the production rule that generates
terminal symbol in that context. In other words, let R0 be the subset of the
production rules that have been applied so far in the derivation tree from the
initial symbol to the current symbol, then: GetNonTerminal(Elementi,ctx) =
{NTi ϵ NT/(NTi ::= Elementi(α)) ϵ R’} (1)

 MergeGraphMergingNode: merges two graphs, and additionally unifies two
nodes.

 Get-/SetGraphRoot: in general, graphs do not have a root node. However, the
algorithm needs to temporarily mark a node as "root" to drive the merging of
the subgraphs. This pair of functions gets and set the root node of a graph.

 InstantiateGraphPath: given an initial node, a path and an original graph, this
function creates a new graph that contains the original graph and a new path
across a sequence of new blank nodes from the initial node to the root node
of the original graph [see Fig. 6]. In the new graph the root node is the initial
node.

1583Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Algorithm 1 Lowering
Require: G, symbol, ctx, M, Drq, vertex
Ensure: T(∑) ≠ ∅
if symbol is Literal then

1: if vertex is RDFLiteralvalue then
2: return Literalvalue
3: else
4: Error(“Vertex isn't RDF Literal")
5: end if
6: else if symbol is ElementQName then
7: for all child ϵ symbol.children do

8: childrenResult  Lowering(G, child, ctx, M, Drq, vertex)
9: end for
10: return ElementQName(childrenResult)
11: else if symbol ϵ NT then
12: r: symbol  ElementQName ϵ R
13: if ∃! r then
14: Error(“Symbol doesn't have production rule")
15: else
16: if M

symbol
 = ∅ then

17: for all child ϵ ElementQName:children do

19: childrenResult  Lowering(G, child, ctx + symbol, M, Drq, vertex)
20: end for
21: return childrenResult
22: else

23: Mvalid = {m ϵ M
symbol

/m:(ctx, symbol, α), α is satisfiable for vertex}

24: if Mvalid = ∅ then
25: Error(“Symbol doesn't have valid mapping")

26: else if |Mvalid| > 1 then
27: Error(“Symbol has more than one valid mapping")
28: else
29: for all v ϵ [α]

Drq (vertex) do
30: for all child ϵ ElementQName.children do

31: childrenResult  Lowering(G, child, ctx + symbol, M, Drq, v)
32: end for
33: end for
34: return childrenResult
35: end if
36: end if
37: end if
38: else
39: Error(“Unknown symbol")
40: end if

1584 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Algorithm 2 Lifting
Require: G, symbol, ctx, M, T(∑)
Ensure: Drs ≠ ∅

1: if symbol is Literalvalue then
2: return Drs (RDFLiteralvalue, ∅)
3: else if symbol is ElementQName then
4: for all child ϵ symbol.children do
5: childsResult  Lifting(G,child, ctx + nonterminal, M, T(∑))
6: if child 2 Literal then
7: return childsResult

8: else if child ϵ ElementQName then
9: Drs  (∅,∅)

10: blankNode  FreshBlankNode(Drs)
11: nonTerminal  GetNonTerminal(symbol, ctx)
12: nonTerminalChild  GetNonTerminal(child, ctx + nonTerminal)

13: if MnonTerminalChild = ∅ then
14: return MergeGraphMergingNode(blankNode, Drs, childResult)
15: else if |M

nonTerminalChild
| = 1 then

16: m:(ctx, nonTerminalChild,α) ϵ MnonTerminalChild
17: Drs  InstantiateGraphPath(blankNode, α ,childResult)
18: else
19: Error(“Symbol has more than one mapping")
20: end if

21: SetGraphRoot(Drs, blankNode)
22: return Drs
23: end if
24: end for
25: end if

Similarly to the lowering process, the lifting process may run into ambiguous

cases. If a non-terminal symbol has several mapping rules and they are
simultaneously valid in a certain context, then it is not possible to determine which
path must be instantiated, and consequently an error is raised (Line 19).

Figure 6: The function InstantiateGraphPath produces a new graph that is a superset
of the original one, with the addition of a new path.

1585Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

@prefix onto: <http://example.org/ontology#>.
onto:profile1 onto:hasPolicyHolder onto:companyOne .
onto:profile1 onto:hasDriver onto:personOne .
onto:profile1 onto:hasVehicle onto:car .
onto:profile1 onto:hasDate "10/05/2008" .
onto:car onto:hasBrand "Renault" .
onto:car onto:hasModel "Megane" .
onto:car onto:hasRegistrationNumber "1234AAA" .
onto:car onto:hasOwner onto:companyOne .
onto:personOne onto:hasName "Scott" .
onto:personOne onto:hasNaturalPersonsRegister "98765432R" .
onto:companyOne onto:hasName "ACME" .
onto:companyOne onto:hasTaxIdentificationNumber "12345678N" .

Figure 7: Some facts described as triples in N3 syntax.

3.5 Execution traces
In order to illustrate the grounding functions with a trace, a graphical notation is
introduced [see Fig. 8]. Mapping rules [see Fig. 9] are depicted as boxes, with the
context and the non-terminal symbol in the left side, and the graph path in the
right side.

3.5.1 Lowering trace

The notation for the states of the lowering function contains the current non-
terminal symbol (upper half of the box) and the current node of the graph.

Figure 8: Graphical notation used to depict mapping rules and the states during the

execution of the lowering and lifting functions, respectively

1586 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Figure 9: Mapping rules the graphical notation

Each state transition is annotated with the name of the production rule (ri) and,
optionally, the mapping rule (mi). Figure 10 illustrates the complete trace of the
lowering function using the following input parameters: 1) G = grammar [see Fig. 5];
2) M = mappings [see Fig. 9]; 3) Drq = input semantic data [see Fig. 7] and 4) v =
profile1.

The initial state is the root of the derivation tree. Consequently, the non-terminal
symbol is the initial symbol of the grammar, NTfare. The first state transition is
described in detail [see Fig. 11], and it is red by the production rule r1. The terminal
symbol (fare) and its children are derived by the production rule. However, there is
not any valid mapping rule for the current non-terminal symbol, therefore none is
applied, and the active node in the graph is preserved in the children states. The
process continues visiting the newly created children in the derivation tree. In the next
step of the trace [see Fig. 12], the current non-terminal symbol is NTvehicle. Production
rule r8 is red. In this case, mapping rule m1 is valid; therefore, the new children states
have a different active node, which is the result of traversing the edge hasVehicle in
the graph from the previously active node. For convenience, the relevant portion of
the Drq graph is shown in the figure, as well as the valid mapping rule.

1587Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Figure 10: Execution of lowering, from the initial state containing the initial symbol
(root of the derivation tree)

The process continues expanding all the non-terminal symbols created by
execution of the production rules of the grammar. Eventually, the derivation tree
reaches a leaf, i.e., a Literal terminal symbol. In this situation, the algorithm must
assign the lexical value of the literal symbol. Assuming that the mapping rules are
correctly built, at such point, the current node in the graph must be an RDFLiteral,
which value is simply copied into the tree leaf. The same non-terminal symbol can
appear in more than one mapping rule. In some of those situations, the context
decides which mapping rules can be applied [see Fig. 13]. At this point, the non-
terminal symbol is NTdate, which appears in two candidate mapping rules (m5 and
m12). However, the context in the derivation tree (NTfare) only matches with m5 and
excludes m12. Consequently, this case is unambiguous.

Figure 11: First state transition in the execution of the lowering function

1588 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Figure 12: Second step in the execution of the lowering function

Figure 13: Situation in which the context decides which mapping rule is to be applied
during the lowering process

1589Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

Figure 14: Multiple candidate mapping rules at this point. The path of the mapping
rules determines which one is applied

Finally, there are some cases where even the context is insufficient. At the point
depicted in Fig. 14, the non-terminal symbol NTid is being processed. In this case
there are two candidate mapping rules (m6 and m7), and they do not put any
constraint on the context, therefore both are equally valid. In such case, the algorithm
fallbacks to check whether the path of the mapping rules can be traversed from the
current node in the graph. In the figure, from the node companyOne, only the path of
m7 can be traversed, while there is not any edge matching the path of m6. Therefore,
m7 is applied to move the active node to the literal node "12345678N". The final
result is the tree composed of the terminal symbols, i.e., the result of removing the
state boxes from Fig. 10. The result is converted in the XML Document [see Fig. 15].

<?xml version="1.0" encoding="utf-8" ?>
<fare>
 <vehicle>
 <brand>Renault</brand>
 <model>Megane</model>
 <registrationnumber>1234AAA</registrationnumber>
 </vehicle>
 <owner>
 <name>ACME</name>
 <id>12345678N</id>
 </owner>
 <driver>
 <name>Scott</name>
 <id>98765432R</id>
 </driver>
 <policyholder>
 <name>ACME</name>
 <id>12345678N</id>
 </policyholder>
 <date>10/05/2008</date>
</fare>

Figure 15: Example of XML Document.

1590 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

3.5.2 Lifting trace

Each state of the recursive execution of the lifting function is depicted as a box [see
Fig. 8] that contains the current terminal symbol (in the middle of the box), as well as
its ancestor and child elements. Some state transitions re mapping rules that produce
graph fragments. Figure 17 illustrates the complete trace of the lifting function for the
following input parameters: 1) G = grammar [see Fig. 5]; 2) M = mappings [see Fig.
9] and 3) T(∑) = tree of the terminal symbols in the XML Document [see Fig. 17].

The process starts by parsing the terminal symbol at the root of the XML tree, in
this case, Elementproject. According to the grammar, this terminal symbol is derived
from the non-terminal symbol NTproject by production rule r12. As there is not any
mapping rule valid for this non-terminal symbol, the parsing process simply continues
recursively by the child branches, without producing any graph. Later, the terminal
symbol Elementdate is found by the parser [see Fig. 16]. It is derived from the non-
terminal symbol NTdate by production rule r5. There are two mapping rules (m5 and
m12) available for this non-terminal symbol, but only m12 matches the context
NTproject, therefore it is red.

Figure 16: Sample situation in which the context of mapping rules decides which one
is to be applied during lifting

A new subgraph is created by instantiating the path described in the mapping
rule. The process continues descending to the child elements. Eventually, the function
reaches a leaf, for instance, the terminal symbol Literal25=08=2008. This is a final case; a
minimal graph is created with just an RDFLiteral node with the lexical value of the
terminal symbol. Finally, the recursive calls return, and the postprocessing stage
merges the subgraphs produced by the child branches (root nodes are used as merging
points), completing the final graph [see Fig. 18, bottom].

1591Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

<?xml version="1.0" encoding="utf-8" ?><project>
<date>28/05/2008</date> <offers> <offer> <total>1200</total>
<amountofinstalments>100</amountofinstalments>
<numberofinstalments>12</numberofinstalments> </offer> ... <offer>
<total>1200</total> <amountofinstalments>600</amountofinstalments>
<numberofinstalments>2</numberofinstalments> </offer>
</offers></project>

Figure 17: Sample XML response obtained from a web service (without the SOAP
envelope)

Figure 18: Execution of lifting, from the XML tree (top part of the figure) to the
resulting RDF graph (bottom of the figure)

1592 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

4 Experimentation: the PRAVIA project

E2000 Nuevas Tecnologías is the leading company in the insurance broker sector in
Spain. The PRAVIA project was launched by E2000 [http://www.e2000.es] in
partnership with Fundación CTIC and its main objective was to test the applicability
of semantic web services to this business domain. For the sake of simplicity, only two
business processes and two service providers were chosen. This sample has proven
enough to create a realistic environment with non-trivial web services.

Feature Our approach SAWSDL
Ad-
hoc

Use of XML Schema annotations +, -, new attributes-
 xsd:annotations

Programming skills required - + +
Complete solution + Runtime semantics +
 undefined

Usable by domain experts + + -
Easy Maintenance and Evolution (changes

in ontologies or services) + + -

Support for REST Web Services - - +
Able to perform data mediation - + +
Dependence on modeling language + + +

Table 1: Comparative study of grounding approaches

The Web Service Execution Environment (WSMX) platform, the WSMO
ontology and the WSML language were selected to deploy the semantic web services
technology in this controlled environment. The grounding process provided by the
WSMX Communication Manager was found to be in an early stage of development,
and it could not address the requirements of the business environment. Therefore, it
was replaced with an extended component with the same interface. The new
component uses the mapping language and implements the transformation functions
described in this paper.

Our approach to data grounding in semantic web services takes into account just
the data structure definition (using XML Schema) of the whole WSDL description of
a web service. In order to introduce the mapping rules in the XML Schema, we use
the elements xsd:annnotation and xsd:appinfo and its at-tribute source. Each
annotation is interpreted as one or more mapping rules. The non-terminal symbol of
the mapping rule is the symbol labelled after the xsd:element. The context is obtained
as the list of non-terminal symbols be-tween the current xsd:element declaration and
the opening declaration of an XML Schema type. The content of an annotation in the
source attribute is a graph path, described by a list of IRIs separated by blank spaces.
By using xsd:appinfo, it is possible to introduce multiple mappings associated to the
same element. According to Tab. 1 our proposal is compared to other approaches, we
do not evaluate the details of the implementation of each solution, and we only focus

1593Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

on some general properties. The most relevant feature of our approach is its complete
declarativeness (it does not require any programming skill), and it improves the
maintenance and evolution of the knowledge bases as well as web services. The main
drawback is the limited support for proto-cols (it is only supported WSDL 1.1 and
SOAP 1.x) but it can be extended to do and process annotations inside the Web
Application Description Language (WADL), a machine-readable description of
HTTP-based web applications, basically REST-oriented services.

5 Conclusions and future work

Our proposal for data grounding relies on a mapping language that describes relations
as mapping rules and a processor to execute the rules and make trans-formations
between the syntactic description of the messages of a web service and the semantic
model. We pursue a domain-independent and systematic solution that reduces to the
minimum the human intervention. Following, main remarks about this approach for
data grounding are presented: 1) it require human intervention on design time. The
difference lies in which tasks are required and who can do them. Our solution only
needs some simple work to map syntactic descriptions to semantic entities. This
operation can be carried out using a simple graphical user interface; 2) it depends on
the web service and se-mantic technologies. We only support WSDL (document
based) 1.1 and SOAP 1.x. On the contrary, it is independent from the ontology
language, existing web standards for graph-based knowledge representation systems
are supported; 3) it positively contributes to the maintainability, reliability,
robustness, time to repair and cost of the SOA architectures in the new Cloud
Computing realm, as a consequence of removing the need of ad-hoc developments.
This is a distinctive feature of our approach with respect to manually implementing
data grounding using languages such as XSLT, XSPARQL or Java; 4) it must not be
confused with data mediation. Although some shared transformation patterns can be
identified, data mediation and data grounding are conceptually different, and their
responsibilities should be clearly separated in a successful semantic web services
platform; 5) it is a partial solution for semantic web services grounding. Data
grounding is able to build requests and to process responses, but that is just a part of
SWS grounding. There are other issues that must be addressed separately (e.g.,
authentication) and 6) it is a viable solution for data grounding of semantic web
services. Without data grounding, SWS platforms cannot invoke real web services.
However, we cannot assure that all SOAP-based web services will be compatible with
our solution because heterogeneities are always present due to tools, extensions in
specifications, etc.

We have reused the experience of previous works and specifications [Martin et al.
2004, Farrell and Lausen 2007, de Bruijn et al. 2005, Akkiraju et al. 2005] in the
semantic web services area. Our solution was embedded into WSMX to put it to test
in a real environment (web services coming from the insurance sector). The results
con rm that it is possible to specify data grounding of web services using a mapping
language. Anyway, real web services are not limited to those accepting SOAP
messages and described by WSDL. Therefore, we are working to extend our solution
to support other kinds of service (message protocol and description format), such as
REST services, WSDL 2.0, etc. We also study the alignment of our solution with

1594 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

other proposals and recommendations from W3C and OASIS. Finally, taking into
account the new semantic features of HTML5 [http://dev.w3.org/html5/spec/single-
page.html] and its implicit XML grammar, this solution could be applied to make
transformations (similar to XSL) between different datasources (web services,
databases, etc.) to finally get a HTML5 representation keeping all semantics from the
source.

References

[Akkiraju et al. 2005] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T.: “Web
Service Semantics-WSDL-S”; W3C member submission; W3C (2005);
http://www.w3.org/Submission/WSDL-S/.

[Álvarez Sabucedo and Rifón 2010] Álvarez Sabucedo, L., Rifón, L. A.: “Locating and
Crawling eGovernment Services A Light-weight Semantic Approach”; Journal of Universal
Computer Science; 16 (2010), 8, 1117--1137.

[Anicic et al. 2006] Anicic, D., Brodie, M., Bruijn, J. D., Fensel, D., Heymans, S., Ho mann, J.,
Kerrigan, M., Kopecky, J., Krummenacher, R., Lausen, H., Mocan, A., Toma, I., Zaremba, M.:
“Semantically enabled service oriented ar-chitectures: A manifesto and a paradigm shift in
computer science”; Technical report; In Proceedings of WICI International Workshop on Web
Intelligence (WI) meets Brain Informatics (BI) (WImBI 2006) (2006).

[Balzer and Liebig] Balzer, S., Liebig, T.: “Bridging the Gap Between Abstract and Concrete
Services”; A Semantic Approach for Grounding OWL-S; Proceedings of the Workshop on
Semantic Web Services: Preparing to Meet the World of Business Applications (2004).

[Battle and Bernstein 2005] Battle, S., Bernstein, A.: “Semantic Web Services Framework
(SWSF)”; W3C member submission; W3C (2005); http://www.w3.org/Submission/SWSF/.

[Bohring and Auer 2005] Bohring, H., Auer, S.: “Mapping XML to OWL Ontologies."; K. P.
Jantke, K.-P. F•ahnrich, W. S. Wittig, eds., Leipziger Informatik-Tage; volume 72 of LNI; 147-
-156; GI, 2005.

[Booth et al. 2004] Booth, D., Haas, H., McCabe, F., (until October 2003), E. N., (until
March 2003), M. C., (until March 2003), C. F., (until March 2003), D. O.: “Web Services
Architecture”; W3C working group note; W3C (2004); http://www.w3.org/TR/ws-
arch#introduction.

[Bruijn et al. 2006] Bruijn, J. d., Ehrig, M., Feier, C., Mart n-Recuerda, F., Schar e, F., Weiten,
M.: “Ontology mediation, merging and aligning”; Semantic Web Technologies; Wiley, 2006.

[Burstein et al. 2005] Burstein, M. H., Bussler, C., Zaremba, M., Finin, T. W., Huhns, M. N.,
Paolucci, M., Sheth, A. P., Williams, S. K.: “A Semantic Web Services Architecture.”; IEEE
Internet Computing; 9 (2005), 5, 72--81.

[Cabral et al. 2004] Cabral, L., Domingue, J., Motta, E., Payne, T. R., Hakim-pour, F.:
”Approaches to Semantic Web Services: an Overview and Comparisons”; ESWS; 225--239;
2004.

[Calladine and Downey 2005] Calladine, J., Downey, P.: “Xml Schema and Web Services”;
W3C Workshops on XML Schema 1.0 User Experiences; 2005.

1595Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

[Comon et al. 2007] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacque-mard, F.,
Lugiez, D., Tison, S., Tommasi, M.: “Tree Automata Techniques and Applications”; (2007);
release October, 12th 2007.

[Corradini et al. 1996] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Loew, M.:
“Algebraic Approaches to Graph Transformation, part I: Basic Concepts and Double Pushout
Approach”; Tr-96-17; Universitá di Pisa, Dipartimento di Informatica (1996).

[Cowan and Tobin 2004] Cowan, J., Tobin, R.: “XML Information Set (Second Edition)”;
W3C recommendation; W3C (2004); http://www.w3.org/TR/xml-infoset/.

[de Bruijn et al. 2005] de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., et al.: “Web Service
Modeling Ontology (WSMO)”; W3C member submission; W3C (2005);
http://www.w3.org/Submission/WSMO/.

[Fallside and Walmsley 2004] Fallside, D. C., Walmsley, P.: “XML Schema Part 0: Primer
Second Edition”; W3C recommendation; W3C (2004); http://www.w3.org/TR/xmlschema-0/.

[Farrell and Lausen 2007] Farrell, J., Lausen, H.: “Semantic Annotations for WSDL and XML
Schema”; W3C recommendation; W3C (2007); http://www.w3.org/TR/sawsdl/.

[Fernández et al. 2010] Fernández, S., Berrueta, D., Rodríguez, M. G., Gayo, J. E. L.: “Trioo -
Keeping the Semantics of Data Safe and Sound into Object-oriented Software”; ICSOFT (1);
311--320; 2010.

[García et al. 2011] García, J., Peñalvo, F. J. G., Theron, R., de Pablos, P. O.: “Usability
Evaluation of a Visual Modelling Tool for OWL Ontologies”; J. UCS; 17 (2011), 9, 1299--
1313.

[Klímek and Necaský 2011] Klímek, J., Necaský, M.: “Generating Lowering and Lifting
Schema Mappings for Semantic Web Services”; Proceedings of the 2011 IEEE Workshops of
International Conference on Advanced Information Networking and Applications; WAINA '11;
29--34; IEEE Computer Society, Washington, DC, USA, 2011.

[Kopecký 2005] Kopecký, J.: “Simple RDF to XML Data Grounding (slides)” (2005).

[Kopecký et al. 2007] Kopecký, J., Moran, M., Vitvar, T., Roman, D., Mocan, A., eds.:
“D24.2v0.1. WSMO Grounding”; WSMO, 2007.

[Kopecký et al. 2006] Kopecký, J., Roman, D., Moran, M., Fensel, D.: “Semantic Web
Services Grounding”; AICT/ICIW; 127; IEEE Computer Society, 2006.

[Kopecký and Schütz 2008] Kopecký, J., Schütz, A.: “D1.2.1 WSMO grounding in SAWSDL”;
SOA4All deliverable d1.2.1; European Project-FP7 (2008); http://www.soa4all.eu.

[Martin et al. 2004] Martin, D., Burstein, M., et al.: “OWL-S: Semantic Markup for Web
Services”; W3C member submission; W3C (2004); http://www.w3.org/Submission/OWL-S/.

[Mocan and Cimpian 2005] Mocan, A., Cimpian, E., eds.: D13.3v0.2 WSMX Data Mediation;
WSMO, 2005.

[Murata et al. 2001] Murata, M., Lee, D., Mani, M.: “Taxonomy of XML Schema Languages
using Formal Language Theory”; Extreme Markup Lan-guages; Montreal, Canada, 2001.

[Pan et al. 2011] Pan, Y., Tang, Y., Li, S.: “Web Services Discovery in a Pay-As-You-Go
Fashion”; Journal of Universal Computer Science; 17 (2011), 14, 2029{2047.

[Pantschenko et al. 2005] Pantschenko, K., Noppens, O., Liebig, T.: “Grounding Web Services
Semantically: Why and How?”; W3C Workshop on Frameworks for Semantics in Web
Services; 2005.

1596 Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

[Pedrinaci and Domingue 2010] Pedrinaci, C., Domingue, J.: “Toward the Next Wave of
Services: Linked Services for the Web of Data”; Journal of Universal Computer Science; 16
(2010), 13, 1694--1719.

[Rodríguez et al. 2009] Rodríguez, M. G., Alvarez, J. M., Berrueta, D., Polo, L.: “Declarative
Data Grounding Using a Mapping Language”; Communications of SIWN; 1 (2009), 7.

[Roman et al. 2006] Roman, D., de Brujin, J., Mocan, A., Toma, I., Lausen, H., Kopecky, J.,
Bussler, C., Fensel, D., Domingue, J., Galizia, S., Cabral, L.: “Semantic Web Technologies”.
Trends and research in ontology-based systems; Wiley, 2006.

[Taniar et al. 2011] Taniar, D., Khalil, I., Pardede, E.: “Cloud Computing”; Journal of
Universal Computer Science; 17 (2011), 8, 1134—1134.

1597Garcia Rodriquez M., Alvarez Rodriguez J.M., Berrueta Munoz D., ...

