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Abstract: Real-time systems like pervasive computing have to complete executing a task 
within the predetermined time while ensuring that the execution results are logically correct. 
Such systems require intelligent scheduling methods that can adequately promptly distribute the 
given tasks to a processor(s). In this paper, we propose LSTR (Least Slack Time Rate first), a 
new and simple scheduling algorithm, for a multi-processor environment, and demonstrate its 
efficient performance through various tests. 
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1 Introduction  

Recently, studies of pervasive computing are in progress for various purposes. 
Pervasive computing environment (PCE) aims at real-time interaction between human 
and computer by collecting and integrating all the information related to daily life, 
and provides intelligent services for the people’s convenience and the prevention from 
dangerous situations. PCE is already involved deeply into many areas such as houses, 
hospitals (Jara, 2010), and schools, and into many devices like mobile devices (Costa, 
2010), cars, medical assistances, and emergency detectors (Brooks, 1997, Mann, 2001, 
Su-Jin, 2002, Xiong, 2009). As having to complete processing the information 
inputted from various sensors and provide intelligent service before the user leaves 
from the terminal, pervasive computing requires more prompt and accurate data 
processing within predetermined deadline than general computers do, otherwise the 
result can even cause serious damage to human life. In this point, pervasive 
computing can be considered as a representative type of real-time system. 
Furthermore, as people’s behaviour pattern consists of a wide range of information, it 
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has to promptly process user information including behaviour and position and 
continuously provide the required services. To implement various functions available 
for the user requires a processor scheduler that can provide services in a timely 
manner by effectively and intelligently processing the information inputted from the 
user. Moreover, there are numerous sensor data that pervasive computing tools need 
to process and sometimes the systems require more than one processor. However, the 
previously proposed multi-processor scheduling algorithms (Stavrinides, 2009, 
Stavrinides, 2010) require complicated operations and thus are rarely appropriate for 
pervasive computing environment which needs to be lightweight. Due to such 
characteristics of pervasive computing, in this paper a simple scheduling algorithm is 
proposed appropriate for multi-processor environment.  

This paper is an expansion of the paper (Hwang, 2010) presented in the workshop 
(IMIS 2010) held as part of International Conference on CISIS 2010. In the previous 
paper, all tests have demonstrated the probability of 100% scheduling within the 
predetermined deadline. In the process of preparing this paper, however, it appeared 
that it was a rather hasty conclusion because the tests were performed for a small 
number of task sets and a wide range of utilization. Therefore, this paper revises part 
of LSTR described in the previous paper and evaluates the algorithm by applying it to 
more task sets and more specified utilization range. 

This paper is organized as follows: Chapter 2 describes the fundamental studies 
of this research. In chapter 3, we indicate the limitations of existing algorithms and 
then propose LSTR scheduling algorithm. Further, we show the experimental results 
and performance evaluation in the fourth chapter. Finally, we summarize our research 
in the fifth chapter. 

2 Fundamental Studies 

This chapter describes general characteristics of tasks and the scheduling algorithms 
that served as a motive for LSTR algorithm. 

2.1 Tasks and Schedulers 

All tasks in real-time systems have timing constraints such as release time, relative 
deadline, absolute deadline, and execution time, as shown in Figure 1. The release 
time (ri) represents the time when a task arrives at the ready queue for execution; the 
relative deadline (Di, or di-ri) is the maximum amount of time within which a task 
should be completed; the absolute deadline (di, or Di+ri) is the time within which 
execution of a task should be completed; and lastly, the execution time (ei) represents 
the amount of time (theoretical minimum execution time) required for the entire task 
process. 
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Figure 1: Timing constraints: release time, relative deadline, absolute deadline, and 
execution time. This figure is excerpted from (Hwang, 2010). 
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Many tasks occur simultaneously and each has its own timing constraints. For 
satisfying these constraints, especially task deadline, a system requires scheduling 
methods that allocate tasks to appropriate processor(s). According to the scheduling 
methods used, scheduling algorithms are classified into dynamic and static (fixed) 
priority scheduling algorithms. Dynamic priority scheduling algorithms such as EDF 
(Earliest Deadline First) and LST (Least Slack Time first) assign different priorities to 
an individual job in each task. On the other hand, static priority scheduling algorithms 
such as RM (Rate Monotonic) and DM (Deadline Monotonic) assign the same 
priority to all jobs in each task (Labrosse, 2002, Liu, 2000, and Stallings, 2004). In 
this paper, we deal with the dynamic priority algorithms only. 

2.2 Earliest Deadline First (EDF) 

EDF is a very simple and famous algorithm in which the earlier the deadline is, the 
higher the priority is and the scheduler operates when a job is completed on a 
processor or when a task wakes up in the ready queue. Let us assume three tasks with 
time constraints in a ready queue, as shown in Table 1. Each task is scheduled and 
divided into several jobs. According to the timing constraints listed in Table 1, the 
scheduling process is carried out as outlined in Table 2. 
 

Tasks ri Di ei 
T1 0 12 3 
T2 0 6 3 
T3 0 4 1 

Table 1: Three tasks with timing constraints (ri: release time, Di: relative deadline, ei: 
execution time, the tasks are periodic and the deadline coincides with the period) 

t 0 1 2 3 4 5 6 7 8 9 10 11 
T1 12 11   8 7 6  -  - - 
T2 6 5   - - 6  4   - 
T3 4 -  - 4 - -  4   1 

Table 2: Priority calculating process based on EDF algorithm (t: current time) 

J3 J2 J3 J1 J1 J2 J3

0 1 2 3 4 5 6 7 8 9 10 11 t12

Scheduler wakes up

 

Figure 2: EDF scheduling result (J: a job of a task) 

The three tasks are released at the initial time (t = 0). The scheduler attempts to 
compare the deadline of each task and then assigns the highest priority to T3 because 
its deadline is the earliest as value 4. Therefore, a job (J3) of T3 is executed on the 
processor. At t = 1, the scheduler wakes up since T3 has just completed. The 
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scheduler then determines that T2 has the highest priority. At t = 4, T2 is completed 
and T3 is awakened due to its period, and between T1 and T3, the scheduler selects 
T3 (T2 is already finished at t = 4). T1 is then processed by the scheduler for the first 
time when t = 5. At t = 6, T2 is awakened due to its period and the priorities are the 
same between T1 and T2. In this case, the scheduler selects T1 because of tie-break 
rule2. At t = 8, the scheduler completes all the works of T1 and T2 is executed due to 
the tie-break rule again. After T2 is completed, T3 is carried out on the processor at t 
= 11. The three tasks are processed while each timing constraint is satisfied through 
iterative operations. Therefore, the EDF scheduling algorithm can be considered to be 
an optimal algorithm only for a single processor. 

It is possible to determine whether given tasks are schedulable or not, by 
measuring processor utilization using timing constraints of given tasks without 
simulations. The processor utilization is measured by (1). 

∑
=

≤=Δ
n

i i

i

D
e

u
1
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Equation (1) measures processor utilization, where �u denotes the utilization; Di 
the relative deadline; ei the execution time of each task; and n the total count of tasks. 
If the utilization of given tasks is 1, the processor should run without idle state for 
satisfying each deadline. The utilization of the tasks listed in Table 1 is 1 (3/12 + 3/6 
+ 1/4 = 1). Therefore, we can assume that these tasks are schedulable. 

2.3 Least Slack Time First (LST) 

LST algorithm follows a rule that the smaller slack time, the higher priority. The slack 
time means the remaining spare time (di - ei

r - t) at the current time. The ei
r represents 

the time required to complete the remaining work of a task as shown in Figure 2. LST 
algorithm can schedule all tasks under the condition of satisfying (1). And, it can be 
considered to be the optimal algorithm for a single processor. 
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Figure 3: Slack is di - ei
r - t. This figure is excerpted from (Hwang, 2010). 

3 Scheduling Policies 

In this chapter, we analyze the existing scheduling algorithms described in the 
previous chapter and examine their limitations in a multi-processor environment. We 
then propose an efficient scheduling algorithm that has the optimal possibility within 

                                                           
2 Tie-break rule: the scheduler selects a task having the first index or the processed 
jobs at the last processing time. 
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a limited range of utilization for real-time systems like pervasive computing. Figure 4 
describes the scheduling operation in pervasive computing. 
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Figure 4: Scheduler model for pervasive computing environment 

3.1 Limitations of existing algorithms 

Algorithms described in the previous chapter are optimal in the uni-processor 
environment but not in the multi-processor one. Table 4 lists the results of scheduling 
on two processors using EDF according to timing constraints listed in Table 3. For the 
optimal scheduling, the utilization of each processor should be 1 but processor 2 is 
idle at times (t) 5 and (t) 11. In case LST is used, it also leaves some processors idle. 
Therefore, missing deadlines occur. 
 

Tasks ri Di ei 
T1 0 2 1 
T2 0 3 2 
T3 0 12 10 

Table 3: Three tasks with timing constraints 

 
 

t 0 1 2 3 4 5 6 7 8 9 10 11 
T1 2 - 2 - 2 - 2 - 2 - 2 - 
T2 3 2 - 3 2 - 3 2 - 3 2 - T 
T3 12 11 10 9 8 7 6 5 4 3 2 1 
P1 J1 J2 J1 J2 J1 J3 J1 J2 J1 J2 J1 J3 P P2 J2 J3 J3 J3 J2 IS J2 J3 J3 J3 J2 IS 

Table 4: Scheduling process and result on two processors based on EDF (P: 
processor IS: idle state). If missing deadline occurs, the task is discarded for periodic 

task at its relative deadline. 
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Missing deadlines frequently occur because the scheduling algorithms depend on 
release time or slack time of given tasks. Further, scheduling based on these factors 
cannot exactly determine which task should be carried out first. Upon this, we suggest 
a new scheduling algorithm that can assign all of jobs on processor(s) while 
minimizing idle state. 

3.2 Least Slack Time Rate first (LSTR): Prerequisites 

LSTR scheduling algorithm has the same prerequisites as those for the existing 
scheduling algorithms for real-time systems. These prerequisites are listed in Table 5. 
 

Conditions Prerequisites 
Pre-emption Accept 
Migration Accept 

Periodic task Only 
Release time 0 

Timing constraints Task set should satisfy (2) 
Scheduling time Basic time unit 

Table 5: Prerequisites for LSTR scheduling algorithm 

The first condition is pre-emptive scheduling, which means that the execution of 
jobs can be interleaved. The scheduler suspends the execution of less urgent jobs and 
gives processor control to a more urgent job. Later, after the urgent job is executed, 
the scheduler returns processor control to the previous job. The second prerequisite is 
migration. In the multi-processor environment, jobs that are ready for execution are 
placed in the priority queue. When a processor is available, the job at the head of the 
queue is carried out on the processor. In other words, an available processor can 
immediately execute any job in the ready queue. The third and fourth prerequisites, 
we assume that all tasks are periodic and the release time is 0 for well-understood 
behaviour of the algorithm. The fifth prerequisite is that all timing constraints have to 
satisfy (2). 
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where, nc denotes the number of processors. Equation (2) represents the ranges of 
timing constraints. The total processor utilization of a given task set cannot be higher 
than the number of processors and the processor utilization of each task is not more 
than 1. If the utilization of a task equals to 1, it implies that the task should occupy 
one processor till completion. In addition, if the total utilization equals to the number 
of processors, optimal scheduling is possible only if all processors work without idle 
state. And the last prerequisite is scheduling time which awakens the scheduler. Every 
scheduling algorithm has scheduling time that is used by the scheduler to determine 
which task should be executed first. Generally, the scheduler operates when tasks are 
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released, when the execution of a task is completed, and when a task is awakened in 
the ready queue (when the time for its execution has arrived). However, LSTR 
scheduling algorithm operates on every basic time unit. Here, we consider the basic 
time unit of 1 (ms). 

The six prerequisites discussed above are fundamental for dynamic scheduling 
algorithm in real-time systems, and the scheduling algorithm described in this paper 
also depends on these prerequisites. 

3.3 Least Slack Time Rate first (LSTR): Scheduler 

LSTR scheduling algorithm measures the rate of execution time of each task at every 
scheduling time. The aim of LSTR is to minimize that any processor has idle state. 
All tasks have deadline and execution time as timing constraints. The scheduler 
determines at the scheduling time which task to be executed on a processor. Tasks are 
carried out on the processor(s) and both the remaining execution time and the 
remaining deadline of these tasks decrease accordingly. However, the remaining 
execution times of other tasks do not decrease. This explains the limitations of 
existing scheduling algorithms such as EDF and LST which use only the deadline, 
release time, or slack time. Therefore, these algorithms cannot determine which task 
is really urgent. Also, in these algorithms, once the scheduler determines a task with 
the highest priority, others cannot be carried out for some fixed time during which the 
task is executed. This causes some processors to be in idle state. On the other hand, 
the LSTR scheduling algorithm determines the priorities of tasks by computing the 
rates between their remaining execution times and remaining deadlines so as to satisfy 
all of the timing constraints of the tasks. Equation (3) presents this scheduler. A task 
with a higher rate has a higher priority. 

( )
td

etaskrate
i

r
i

i −
=  (3) 

Although this is a simple equation, it can schedule tasks while minimizing idle 
states of processors. Here, t denotes the current time; ei

r the remaining execution time 
of i-th task at t; and di the remaining absolute deadline of i-th task at t. The LSTR 
algorithm is similar to the LST algorithm which uses the slack time, but different in 
that it uses the rate of remaining execution time and remaining deadline. This is why 
we named this algorithm Least Slack Time Rate first. As described in the previous 
chapter, the scheduler operates at every basic time unit, which is 1. In our tests under 
these conditions, LSTR returned almost all of optimal scheduling results in both uni- 
and multi-processor environments. As an example, Table 6 shows the scheduling 
results using the timing constraints of Table 3 (three tasks) for multi-processor 
environment (two processors). As shown in the Tables 6, no processor has an idle 
state. 
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t 0 1 2 3 4 5 6 7 8 9 10 11 

T1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 - 
T2 2/3 1/2 1/1 2/3 2/2 1/1 2/3 1/2 1/1 2/3 1/2 1/1 T 
T3 10/12 9/11 8/10 7/9 6/8 6/7 5/6 4/5 3/4 2/3 2/2 1/1 
P1 J3 J1 J2 J1 J2 J1 J3 J1 J2 J1 J3 J2 P P2 J2 J3 J3 J3 J3 J2 J2 J3 J3 J2 J1 J3 

Table 6: LSTR based scheduling process and result on two processors 

4 Experiment and Performance Evaluation 

In the previous chapter, we presented the successful scheduling results of the given 
tasks using LSTR algorithm. In order to evaluate this algorithm, we implemented a 
simulation system and tested it using total 3,310,000 task sets. Further, in order to 
measure the amount of elapsed time by the LSTR algorithm, we evaluated its 
performance by comparing it with the EDF algorithm. For the purpose of test, we 
used a computer system with 4GB memory and two 2.80GHz CPU running Vista OS. 
Even though the system has two processors, the simulation was carried out on one 
processor. 

4.1 Scheduling Results 

In order to evaluate the scheduling performance of LSTR algorithm, we tested the 
algorithm for the uni-processor and the multi-processor environments. We tried to 
apply various conditions according to the numbers of processes and tasks in each 
environment, which are summarized in Table 7. 
 

Num. of tasks Num. of 
processors 

(p) 2 3 4 5 7 9 11 12 13 15 17 20 23 25 
1 (x10000) 7 7 7 7 7 7 - - - - - - - - 
2 (x10000) - 9 9 9 9 9 9 - 5 3 - - - - 
3 (x10000) - - 9 9 9 9 9 - 9 3 3 - - - 
4 (x10000) - - - 9 9 9 9 - 9 9 3 3 - - 
5 (x10000) - - - - 9 9 9 - 9 9 9 3 3 - 
7 (x10000) - - - - - 9 - 9 - 9 - 9 - 9 

Table 7: Pairs of processor(s) and tasks (The number in each rectangle for the pair (p, 
t) means total count of task sets used for the scheduling test, where p and t are 
numbers of processor(s) and task sets respectively. For example, it is 7 in the 

rectangle (1, 5) and means that the simulation system uses 70,000 different task sets 
which consist of 5 tasks.) 

As shown in Table 7, the scheduling performance was tested with the varying 
number of processors and tasks. For 1, 2, 3, 4, 5, and 7 processors, 420,000, 620,000, 
600,000, 600,000, 600,000, and 450,000 task sets were used respectively. In addition, 
a random number creator was implemented and it could create timing constraints for 
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processor-task pairs listed in Table 7 according to the utilization ranges. The 
utilization range of each processor environment and its scheduling result are described 
in respective sections. 

4.1.1 Results for uni-processor environment 

To test the scheduling performance for the uni-processor environment, a total of 
420,000 task sets were created, which were grouped into 10,000 task sets respectively 
according to the utilization range. Table 8 shows the composition of task sets to be 
scheduled in the uni-processor environment. 
 

△ u (utilization) ranges, p = 1 
Num. of 
tasks (t) 

0.5< 
△ u 
≤0.6 

0.6< 
△ u 
≤0.7 

0.7< 
△ u 
≤0.8 

0.8< 
△ u 
≤0.9 

0.9< 
△ u 
≤0.95 

0.95< 
△ u 
≤0.98 

0.98< 
△ u 
≤1.0 

2 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
3 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
4 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
7 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
9 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

Table 8: Total counts of task sets given according to number of tasks and utilization 
ranges. The sum of task sets in the same row is exactly same to the total count of tests 

for pair (p, t) in table 7 (in here, p is 1). 

LSTR scheduler made the optimal scheduling result for all the task sets given 
above, which confirms that LSTR scheduler could make the optimal result in the uni-
processor environment under the condition where the utilization is 1 or less, like EDF 
scheduler. 

4.1.2 Results for multi-processor environment 

Though being capable of making the optimal scheduling result in the uni-processor 
environment, LSTR algorithm was originally designed for high-performance 
scheduling results in the multi-processor environment. In order to test its performance 
under the multi-processor environment, the LSTR algorithm was tested for 10,000 
task sets for each condition consisting of tasks, processors and utilization ranges. The 
utilization ranges used for the test are listed in Table 9. 
 

△ u 
ranges 

0.5< 
△ u 
≤0.6 

0.6< 
△ u 
≤0.7 

0.7< 
△ u 
≤0.8 

0.8< 
△ u 
≤0.9 

0.9< 
△ u 
≤0.95 

0.95< 
△ u 
≤0.98 

0.98< 
△ u 
≤0.99 

0.99< 
△ u 

≤0.995 

0.995< 
△ u 
≤1.0 

Table 9: utilization ranges for each pair (p, t), where p is 2 or more. And, according 
to utilization range and pair (p, t), 10,000 task sets are prepared. 
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For all task sets whose utilization ranges were 0.99 or lower, the LSTR algorithm 
appeared to meet the predetermined deadline. For those whose utilization ranges were 
higher than 0.99, however, it failed to meet deadlines in very small parts. Table 10 
summarizes the parts where the algorithm missed the deadline. 
 

△ u ranges 0.99< △ u ≤ 0.995 0.995< △ u ≤ 1.0 
Num. of Processors 2 3 4 5 7 2 3 4 5 7 

3 0 - - - - 0 - - - - 
4 0 0 - - - 0 0 - - - 
5 0 0 0 - - 0 0 0 - - 
7 0 0 0 0 - 0 0 0 0 - 
9 0 0 0 0 0 0 0 1 1 0 

11 0 1 0 0 - 4 0 2 0 - 
12 - - - - 0 - - - - 0 
13 0 0 0 0 - 0 0 1 1 - 
15 0 0 0 0 0 0 0 15 0 0 
17 - 0 0 0 - - 0 0 1 - 
20 - - 0 0 0 - - 0 0 0 
23 - - - 0 - - - - 3 - 

Num. of 
Tasks 

25 - - - - 0 - - - - 0 

Table 10: Failure cases: in case of pair (4, 15) in 0.995<△ u≤  1.0, the number in the 
rectangle is 15. It means that its failure rate is 0.15(%) because 10,000 different task 

sets were used for each test. 

However, the percentage of the LSTR algorithm not meeting the deadline was 
extremely low and it produced the optimal results when the utilization ranges were 
0.99 or lower. Considering that 10,000 task sets were used for each pair (p, t) and 
utilization range, it can be said that such result proves high reliability of the LSTR 
algorithm. Table 11 shows some of task sets of which deadlines were missed. 
 

△ u ranges Pair(p,t) Task sets (D, e) 

(4,1) (4,1) (12,3) (3,1) (3,1) (3,1) 
0.99~0.995 

Pair(3,11) 
△ u=0.994 (3,1) (20,4) (4,1) (20,4) (12,3)  

(32,4) (6,1) (40,5) (4,1) (6,1) (16,4) Pair(2,11) 
△ u=1.000 (4,1) (12,2) (6,1) (6,1) (12,2)  

(20,6) (8,3) (16,5) (4,2) (8,4) (8,4) Pair(4,9) 
△ u=0.997 (2,1) (2,1) (2,1)  

(32,4) (10,2) (24,3) (4,1) (10,2) (5,1) 
(8,2) (8,2) (10,2) (10,2) (4,1) (8,2) 
(4,1) (4,1) (8,2) (4,1) (10,2) (5,1) 

0.995~1.0 

Pair(5,23) 
△ u=1.000 

(5,1) (5,1) (8,2) (4,1) (5,1)  

Table 11: Task sets missing deadline 
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4.2 Elapsed Time Evaluation 

In the previous section, we demonstrated the scheduling performance of LSTR 
algorithm. However, this algorithm would have scheduling time more frequent than 
those of other algorithms such as EDF and LST. Schedulers of other scheduling 
algorithms wake up when a job on a processor is released or completed, and when a 
task of higher priority wakes up. In case of LSTR, however, the scheduler wakes up at 
every basic time unit. Therefore, we need to know how much time is wasted by the 
LSTR. We have attempted to evaluate the elapsed time by comparing LSTR with 
EDF because this is one of the simplest and the fastest. However, it is not optimal 
algorithm for the multi-processor environment. So, we evaluated the difference of 
elapsed time under a single-processor environment using task sets which consists of 
three, five, seven, and nine tasks respectively, and with the utilization range of 0.95 or 
higher. 

In the computer system, a measurable time unit is 1 ms (0.001 second); however, 
the scheduling time for one task set is smaller than 1 ms. Therefore, we needed to 
iterate each task set 10,000 times to obtain appropriate values. We prepared 200 task 
sets consisting of 50 sets of three, five, seven, and nine tasks respectively. Using these 
sets, both the EDF and the LSTR simulators were operated under the same conditions. 

The results of the performance evaluation are shown in Figure 5, where the x-axis 
represents the index of a task set and the y-axis the time required (ms) for scheduling. 
The scheduling time of LSTR is slightly higher than that of EDF, as indicated in 
Table 12 which presents the summarization of this performance evaluation. For the 
task sets consisting of three tasks, EDF spent 186 (ms) on average for scheduling; 
LSTR 281 (ms), showing the time difference of 95. As this was the result of iterating 
one task set 10,000 times, the actual elapsed time was 0.0186 (ms) and 0.0281 (ms) 
respectively, making the time difference 0.0095. Moreover, in case of the nine-task 
set which LSTR wasted the longest average time, its time difference with EDF is 
0.0449. Considering that the time EDF spent for scheduling this task set was 0.197, 
the time difference is not weak point because LSTR has excellent performance under 
the multi-processor environment. It showed the 13th set of 9 tasks (EDF: 2061 (ms) 
and LSTR: 3731 (ms)) had the greatest time difference of 1670 (ms). For this set, the 
actual time difference was 0.167 (ms) and LSTR spent more time. These results 
indicate that LSTR wastes slightly more scheduling time than EDF does. Still, LSTR 
is more valuable because it shows the possibility of optimal scheduling with the 
utilization range of 0.99 or less in the multi-processor environment. 
 

Num. of tasks 3 tasks 5 tasks 7 tasks 9 tasks 
Method EDF LSTR EDF LSTR EDF LSTR EDF LSTR 
Avg. ET 186 281 518 762 1,074 1,436 1,970 2,419 

Worst ET 761 910 1,685 2,321 2,886 3,160 6,928 7,571 
Difference 

(LSTR-EDF) 
95 

(0.0095 ms)
254 

(0.0254 ms) 
363 

(0.0363 ms) 
449 

(0.0449 ms) 

Table 12: Scheduling process using EDF algorithm (ET: Elapsed Time) 
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Figure 5-1. 50 sets of  3 tasks 

 

Figure 5-2. 50 sets of 5 tasks 

 

Figure 5-3. 50 sets of 7 tasks 

 
Figure 5-4. 50 sets of 9 tasks 

Figure 5: Comparison results for elapsed time, x-axis: index of task set, y-axis: 
elapsed time (ms) 
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5 Conclusions 

This paper proposed LSTR scheduling algorithm which has excellent performance in 
the multi-processor environment. The LSTR algorithm overcomes the limitations that 
EDF and LST which are optimal schedulers in the uni-processor environment have in 
the multi environment, as well as satisfying the pre-determined deadlines of all tasks 
in the uni-processor environment. In the multi processor environment, it produced the 
optimal scheduling result for the utilization range of 0.99 or less and at least 99.85(%) 
success rate at the utilization range higher than 0.99. It appears that LSTR spends 
more scheduling time than the existing scheduling algorithms do because it measures 
the priorities of tasks at every basic time unit. However, it is proven through the 
experiments that LSTR has slightly higher elapsed time than EDF algorithm does. In 
other words, though LSTR spends a little bit more scheduling time, it still can be 
considered as a better scheduling algorithm as it has higher performance in the multi-
processor environment. 
Even though it is expected that LSTR scheduler can be utilized in diverse field for 
real-time services like pervasive computing as well as for data transmission in general 
processors and networks, it is still necessary to further study the resource management 
for job migration and theoretic proof. We will continuously research on it. 
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