Journal of Universal Computer Science, vol. 17, no. 5 (2011), 639-669
submitted: 8/2/10, accepted: 4/11/10, appeared: 1/3/11 © J.UCS

Modeling Quality Attributes with Aspect-Oriented
Architectural Templates '

Mboénica Pinto, Lidia Fuentes
(University of Mélaga, Spain
{pinto, fuentes}@Ilcc.uma.es)

Abstract: The quality attributes of a software system are, to a large extent, de-
termined by the decisions taken early in the development process. Best practices in
software engineering recommend the identification of important quality attributes dur-
ing the requirements elicitation process, and the specification of software architectures
to satisfy these requirements. Over the years the software engineering community has
studied the relationship between quality attributes and the use of particular archi-
tectural styles and patterns. In this paper we study the relationship between quality
attributes and Aspect-Oriented Software Architectures - which apply the principles
of Aspect-Oriented Software Development (AOSD) at the architectural level. AOSD
focuses on identifying, modeling and composing crosscutting concerns - i.e. concerns
that are tangled and/or scattered with other concerns of the application. In this paper
we propose to use AO-ADL, an aspect-oriented architectural description language, to
specify quality attributes by means of parameterizable, and thus reusable, architectural
patterns. We particularly focus on quality attributes that: (1) have major implications
on software functionality, requiring the incorporation of explicit functionality at the ar-
chitectural level; (2) are complex enough as to be modeled by a set of related concerns
and the compositions among them, and (3) crosscut domain specific functionality and
are related to more than one component in the architecture. We illustrate our approach
for usability, a critical quality attribute that satisfies the previous constraints and that
requires special attention at the requirements and the architecture design stages.
Key Words: Aspect-Oriented Software Architecture, AO-ADL, Quality Attributes,
Reuse, Usability

Category: D.2, D.2.11, D.2.13

1 Introduction

The critical quality attributes (QAs) of a software system must be well under-
stood and articulated early in the development of a system, so that the architect
can design a software architecture that satisfies them [Bachmann et al., 2005].
The list of documented QAs is very large. Some of them have strong functional
implications and so can be easily modeled by software components (like secu-
rity, usability, error handling, etc.). Others, like efficiency, price, portability, etc.,
could be mapped to architectural or implementation decisions, and not directly
to functional components. In this paper we will focus only on those QAs with
strong functional implications, which we will call functional quality attributes

(FQAs).

1 This research was funded by the Spanish Project TIN2008-01942 and by the regional
Project FamWare P09-TIC-5231.

640 Pinto M., Fuentes L.: Modeling Quality Attributes ...

Modeling FQAs is not a straightforward task for several reasons. On the one
hand, they are usually very complex, being composed by many concerns. For ex-
ample, security is an FQA composed of authentication, access control, encryption
and non-repudiation concerns, among others. Furthermore, FQA concerns also
have dependencies and interactions among them. For example, the confidential-
ity concern will depend on the authentication, encryption and access control
concerns. Moreover, these FQAs also have dependency relationships with other
FQAs, since some concerns are shared and required by different FQAs. Security
is a typical example, as its concerns are required to satisfy other FQAs such as,
for example, usability, adaptability or context awareness.

On the other hand, modeling FQAs completely independently of the base
applications is not always possible. Firstly, some FQAs require specific services
from the application core components, meaning that the FQA concerns depend
greatly on the base application. An example of this is the feedback concern of
the usability FQA, which requires introducing a new panel into the graphical
interface of the base application in order to show the feedback information. Sec-
ondly, FQA concerns normally crosscut several core application components.
This means that the concern is scattered and/or tangled with the base function-
ality of such components. For example, the encryption concern of the security
FQA is required by the components that both send and receive encrypted data,
and thus it is scattered among them, and tangled with their base functionality.
Finally, these FQAs are normally recurrent, being required by several appli-
cations. Therefore, final applications need ready-to-use (re)usable architectural
patterns documenting and modeling the complex dependency relationships of
FQAs. Moreover, these architectural patterns should be parameterizable in or-
der to be instantiated to different applications.

Among the various existing approaches, some simply opt to model FQAs as
non functional concerns, but this does not provide enough information about
what kind of architectural artifacts (i.e. functional components) must be in-
corporated into the architecture in order to satisfy a given quality attribute
[Cysneiros et al., 2005]. Other proposals [Welie, 2007] [Folmer and Bosch, 2004]
[Juristo et al., 2007] [Juristo et al., 2003] suggest a complementary approach, in
which FQAs are incorporated into the architecture as functional concerns. How-
ever, these approaches do not overcome all the problems presented above. Al-
though they identify the dependencies between the concerns of a particular FQA,
these approaches normally specify these concerns using tabular views or by tex-
tual descriptions of intricate scenarios [Geebelen and et. al., 2008]. Some of them
focus on specific FQAs (e.g. usability in [Juristo et al., 2007]), rather than pay-
ing attention to the dependencies identified across different FQAs. Moreover,
the solutions provided suffer from the scattered and tangled code problem, since
they do not separate the FQA crosscutting concerns that are required by several

Pinto M., Fuentes L.: Modeling Quality Attributes ... 641

base components.

In this paper we propose to use an architectural description language (ADL)
to document and formally specify all the different kinds of dependencies be-
tween concerns belonging to the same or to different FQAs. We follow an aspect-
oriented approach in order to separate crosscutting concerns of FQAs into sep-
arate modules (i.e. aspects in aspect-oriented terminology). The language pro-
posed to model FQAs is AO-ADL [Pinto and Fuentes, 2007], an aspect-oriented
architectural description language (ADL) that composes (weaves in aspect-o-
riented terminology) crosscutting concerns inside an aspectual connector, but
separately from base components. Other aspect-oriented approaches have al-
ready been used to model FQAs [Noda and Kishi, 1999] [Moreira et al., 2002].
They usually model a FQA simply by adding a single aspectual component to
the architecture.

However, modeling a FQA using aspect-orientation is more complicated than
just adding an aspect to our architecture. Not all the FQA concerns are crosscut-
ting, so only those which are should be modeled as aspectual components (i.e. as
aspects), and the others should be modeled as base components. Also, some lev-
els of parametrization are required in order to specify the dependencies between
the FQA concerns and the application components, and also those dependencies
between the components modeling concerns that belong to different FQAs. In
this sense, we have defined a process for specifying aspect-oriented and parame-
terizable architectural patterns, which will be instantiated in this paper for the
usability quality attribute. AO-ADL allows the parametrization of architectural
patterns by means of connector templates, encapsulating the weaving informa-
tion between base and aspectual components. These architectural patterns can
be stored in a repository, ready for (re)use. The AO-ADL Tool Suite provides
support for all this functionality. The benefit of this proposal is that it provides
a language support flexible enough to separate and inject (re)usable crosscutting
concerns modeling FQAs in a non intrusive way at architectural level.

After this introduction, we outline the motivations of our approach in Sec-
tion 2. Then, the AO modeling process is presented in Section 3 using the usabil-
ity FQA, and the support provided by the AO-ADL language to implement the
process is described in Section 4. Then, Section 5 discusses the AO-ADL Tool
Suite, which supports the definition and instantiation of AO-ADL architectural
templates. Finally, in Section 6 we discuss the main benefits and shortcomings
of our approach and in Section 7 we present our conclusions.

2 Motivating case study: usability

In this section we describe the motivation for our approach, discussing the issues
raised in the introduction in more detail. We have chosen the usability attribute

642 Pinto M., Fuentes L.: Modeling Quality Attributes ...

because: (1) it is a complex attribute that can be decomposed into several con-
cerns, with many dependency relationships; (2) it has an important impact on
the base functionality of the system; (3) it is usually tangled or scattered with
other system functionalities; (4) it depends on several other FQAs; and (5) it is
a recurrent FQA often present in many software systems. In this section we will
show how all these complex interdependency relations are poorly documented
in current approaches, how scattered the FQAs concerns are among base func-
tional components, and we will describe why it is necessary to define reusable
and parameterizable architectural patterns ready-to-use in different applications.

2.1 The Usability Attribute

Usability is an essential software attribute, and as such, guidelines have been
published both in the ISO standards [ISO 9241-11, 1994] [ISO 9126-1, 2000],
and by different individuals and organizations. However, most usability related
concerns are usually discovered very late in the software development process,
for instance, during testing and deployment [Folmer, 2005]. Recently, the impli-
cations for the usability of the application core have been explicitly highlighted
from a software engineering perspective, with several approaches recognizing the
importance of addressing usability at the requirements [Juristo et al., 2007] and
architectural stages [John et al., 2004] [Harrison and Avgeriou, 2007].
Specifically in [Folmer, 2005], a framework has been defined for extracting
architectural information related to usability. As illustrated in Figure 1, the ba-
sic idea of this framework is that architectural Usability Patterns are defined
in the solution domain in order to satisfy a list of identified Usability Proper-
ties. These usability properties help to satisfy the Usability Attributes identified
in the problem domain. For instance, the framework defines that the Progress
Indication, Alerts, Status indication and History Logging usability patterns col-
laborate to satisfy the Provide Feedback usability property. Furthermore, this
property, together with Consistency, Guidance and Ezplicit User Control, helps
to achieve the Learnability attribute identified in the problem domain.
Although considerable work has been done on modeling both usability con-
cerns and dependency relationships among different usability concerns (or prop-
erties), much more work needs to be done on the definition of ready-to-use
architectural patterns. Firstly, the current format for presenting architectural
solutions for FQAs does not help developers understand the peculiarities of each
concern. Normally, the patterns descriptions are not very detailed, and they are
often too abstract for the software architect who will have to apply them. In gen-
eral these patterns are poorly documented, specifically they use a tabular view
with brief, textual descriptions of the architectural implications. Furthermore, al-
though many pages provide an informal description of FQAs, only small and non
complete designs are provided. As a result, the applicability of such approaches is

Pinto M., Fuentes L.: Modeling Quality Attributes ... 643

Attributes Usability Properties Usability Patterns

Saticfaction Provide feedback <—1———sProgress indication

-~

“\’\\‘, Alerts
/ ror management Status indication

—

T

Learnabilify s arror correction - History logging
* error prevention Undo
-—)
‘\._) Form or Field
validation
Efficiengy 5 Lonsistency Model/'View/Controller
separafion
* user inferface 4__-—71'7 Emulation
= functional 'é-//‘ Workflow model
Reliability * evolutionary Actions for multiple
objects
Adaptability /" User profile
Satisfactio . — -
+ maiching user | _— User modes
ferences /
==>| earnab ty * /matching user Shortcuts
expertise

{> Context sensitive help

Cuidance ﬁ’—’:ﬂ——_

Explicit user control Selection indication

Natural mapp ing\‘\:“"‘) Cancel

Accessibility Multi-tasking

I Wizard

[«

Efficiency w=_|
Reliability <[~ « Disabilities
+ Multi channel

*, * infermationalisation
Mihimize cognitive load | ————— Macros
PROBLEM SOLUTION

Figure 1: Usability Framework defined in and taken from [Folmer, 2005].

limited, at architectural level. Architectural description languages may be used
to specify these architectural patterns more formally and with the advantage
of being reusable at the architectural level. Secondly, it is easy to identify that
some usability properties affect more than one usability pattern. For example,
the Provide Feedback property affects both Status indication and History Log-
ging. This means that the Provide Feedback property cuts across and is tangled
with both Status indication and History Logging. So, some kind of ” crosscutting”
is present in many usability properties. Aspect-Oriented Software Development
(AOSD), and specifically the Aspect-Oriented Software Architecture (AOSA)
may help to alleviate this problem, because it aims to remove crosscutting and
tangling by means of aspects (or architectural aspects at architectural level).
Finally, this framework has been specifically designed for usability, so all the
concerns related to usability were considered. Nevertheless, it should be noted
that the authors were unaware that many of the concerns related to usability

644 Pinto M., Fuentes L.: Modeling Quality Attributes ...

(like Adaptability for example) are also part of other quality attributes and as
a result, the relationships between these concerns have not been considered in
this work.

In general, the constraints that a FQA imposes on the core application and
the impossibility of defining completely reusable architectural solutions for some
concerns are not always appropriately highlighted. Furthermore, how the ar-
chitectural solutions are presented does not help users to understand the pe-
culiarities of each concern. The details about different alternatives to satisfy a
particular concern, about the dependencies with other concerns and with the
core application are not well-documented from the early stages.

2.2 Complexity of FQAs and dependencies among them

The goal of this section is to justify the necessity of specifying parameterizable
architectural patterns, in order to model only once such concerns that partici-
pate in several FQAs, as well as to specify the relationships between different
FQAs. In order to illustrate this, in Figure 2 we have represented several FQAs,
the set of related concerns for each FQA, and the interactions between different
FQAs. The circles in dark grey are examples of FQAs and the circles in white
are concerns identified for each attribute. The dashed lines represent dependen-
cies and/or interactions between FQAs. This graph is not complete and has
been constructed based on information provided mainly in [Juristo et al., 2003]
and [Barbacci and et. al., 1995].

In Figure 2 it can be seen that most concerns, for example the concerns
comprising the usability FQA (alert, progress indicator, undo, authentication,
encryption, etc.) have a functional nature. So, these concerns must be added
to the architecture before it is possible to reason about, in this case, the us-
ability attribute. Also, for each FQA, we can distinguish between those func-
tional concerns that are exclusive to this FQA, and others that are shared by
several FQAs. For instance, the authentication concern (Security FQA) is re-
quired to achieve the contextual help concern (Usability FQA). But in prac-
tice, these shared concerns are usually modeled from scratch inside a frame-
work modeling a particular FQA. For instance, fault-tolerance is modeled as
a concern of the usability attribute in [Juristo et al., 2007], of the security at-
tribute in [Geebelen and et. al., 2008], and of the context awareness attribute
in [Geebelen and et. al., 2008]. So, if we add the usability, security and con-
text aware attributes to the same application, the concerns related with fault-
tolerance would be triplicated, which is not acceptable from the architectural
point of view.

In conclusion then, there must be a clear separation of the concerns belong-
ing to several FQAs and those that are exclusive to one particular FQA. Those
concerns needed to satisfy several FQAs must be modeled separately and only

Pinto M., Fuentes L.: Modeling Quality Attributes ... 645

______ Persistency
[y Tt
LY -
Pecesibility A Y . '
) v T

LY -
[y e

Context
Lo arenes

Cortext

Eequisition

Walidation
Cortext
Helo

application
Specific
Corkext

Fault Faut
Forecasting Removal
Fadlt
EBalance

Access Control
Jauthoeiz ation

Fadt
Processig
Tnkeraction Eaul
Complexity Treatment

Figure 2: Concern and Dependencies Quality Attribute Graph.

Caupling
Strerght

once. It is also important that the decomposition of concerns for each FQA
should be independent of the application, and therefore it will be possible to de-
fine a repository of (re)usable solutions (reusable architectural pattern) for each
FQA. Also, the relationships between different FQAs normally do not depend
on the final application, so they can also be modeled as pre-fabricated solu-
tions (reusable architectural patterns). But there are situations in which these
architectural patterns need to be parameterized. We have identified at least two
situations: (1) applications may demand different levels of quality (i.e. only a
subset of concerns of a FQA should be incorporated into the application); (2)
some components modeling a concern, require data that must be provided by the
application. In the first case, it would be better to provide solutions by means of
a family of FQAs, adaptable to the necessities of final applications. Therefore,
it should be possible to generate specific FQA configurations from a family of
architectural patterns. One possible solution to instantiate a configuration of
a family of FQAS is the parameterizations of architectural patterns, by means
of optional concerns. The second situation that needs parameterizations is that
components of the detailed model of an FQA concern depend on the character-
istics of each particular application, — i.e. the designs and/or implementations
of the services provided/required by that component cannot be directly reused
without particularizing them for each core application. For instance, the data
formatting and the data consistency concerns of the usability FQA will have to
be provided by each particular application because they will depend on the type

646 Pinto M., Fuentes L.: Modeling Quality Attributes ...

of data being manipulated by each application. This can be indicated by using
parameters in the definition of those concerns. The parameters are then instan-
tiated with particular interfaces/components when the FQA solution is used in
a particular context. In this paper we focus on the latter situation.

2.3 Dependencies of FQAs and base applications

In this section we discuss a component-based modeling versus an aspect-oriented
modeling of FQAs. We distinguish between core components and quality-related
components. The former are the components that model the core functionality
of the system, without any consideration of quality attributes. The latter are the
components that model the additional functionality that needs to be incorpo-
rated for satisfying the system quality attributes. For instance, in a shopping cart
application, the ShoppingCart, ClientCredit and ProductStock components would be
the core components. If usability is required, and a Feedbacker component is
incorporated to achieve it, this would be a quality-related component.

As will be shown with the examples below, in a component-based (CB) soft-
ware architecture, the core and the quality-related components are highly cou-
pled. For instance, if the feedback property needs to be included in a system, the
core components are responsible for sending the information to be fed back and
for the views showing this feedback information, which are sent by the model to
the user. However, this involves modifying the interfaces and behaviors of core
components when a new functionality related to the quality attributes needs to
be incorporated or updated.

In Figure 3 we have modeled in UML 2.0 the feedback architectural pattern
defined in [Juristo et al., 2003]. Applying this pattern to the shopping cart ap-
plication, the ShoppingCart, ProductStock and Credit components are the active
processes that generate the information that needs to be fed back to the user.
The feedback functionality in the user view is represented by the FeedbacklInfo
interface, according also to the pattern in [Juristo et al., 2003]. Finally, the Feed-
backer component may require updating not only the user view but also other
components in the model (represented by System components, once again accord-
ing to the pattern in [Juristo et al., 2003]). Observing this pattern we detect that
feedback is clearly a crosscutting concern:

1. It is tangled with all the active processes in the application model, which
need to be aware of the events that need to be fed back to the users.

(a) All the active processes require the FeedbackEvents interface, including,
for instance, the alert() event.

(b) The ShoppingCart component may generate the alerts: alert(” Adding new
product”) or alert(” Deleting product”). The ProductStock component may
generate the alerts: alert(” Checking stock”) or alert(” Not enough stock”).

Pinto M., Fuentes L.: Modeling Quality Attributes ... 647

<<component>> E]
Core Model

| |
| |
| |
<<component>%7| <<component>>] <<component>>] |
! Core View Active Process Active Process
|
|
I pa il I
| <<dele/gate>> - |
_ - <<component>> | |
| / ~ System
| / “ |
~<<delegate>> il
| - LT |

—p<sdelegafe>>

ModelFeedbackInfo

Figure 3: UML 2.0 adaptation of the Feedback pattern described
in [Juristo et al., 2003].

(¢) This dependency between the core and the quality components would oc-
cur even if the architectural pattern is later designed and implemented
using monitor components [Buschmann et al., 1996], or using architec-
tural styles such as the blackboard style that allows asynchronous mes-
saging [Buschmann et al., 1996].

2. It is tangled with the core components in the application view. Feedback-
specific view interfaces (see the FeedBackInfo interface in Figure 3) need to
be defined to provide the feedback information to the user.

3. It may be tangled with other components in the application model that,
without being active processes generating feedback information, need to be
aware of the feedback information generated in other parts of the system
(see ModelFeedBackinfo in Figure 3).

Modeling feedback is even more complicated if we consider that according to
the usability framework in Figure 1, this property must be decomposed into sev-
eral functionalities, such as progress indication, alerts, status indication and his-
tory logging. Moreover, these components would have different behaviors, moni-
toring different kinds of feedback-related events that may occur in the model and
they would show different kinds of information to the user. This means that the
model is even more complicated, and the Feedbacker component should be in fact
modeled as a composite component that includes the Progressindication, Alerts,
StatusIndication and HistoryLogging sub-components, able to monitor different sets

648 Pinto M., Fuentes L.: Modeling Quality Attributes ...

<<component>> =]
ShoppingCart Core Model

Credint O <<9omponer?[>g]
>> &) ClientCredit
+checkCredLl’$?
[] art [] I

|
| <<component>>
| |ShoppingCart Core View
/
| ShopCartint OA/ Helegate>> N N
+addProduct()
| +deleteProduct() Stogkint O <<component>£7]
| +updateProduct() +checkStock(ProductStock
I N 7=
N 7
! ointcut:: N 4
| p o X <<advice>»
alert-feedback():: execution(ShopCartint.*(..)) || \ <<advice>> Ve
| execution(CredInt.checkCredit(..)) || -\ 4 e .
| execution(Stockint.check*(..)) \ / 7 <<advice>>
advice:: \ e
| before alert-feedback(): Alertint.Alert() \ /,z 4
= CAletintAlert) |—m = = == = = — - — - = — = — — — -~
|
| <<advice>> At ©
T O +Alert() Q O
O Progregsindint ? 'L] Histdryint
1
® PO T g
|

| | FeedBack Model

|
<<c;)mpoknem>>g] <<C E > < <<de|%jne>>
FeedBack View
[—[<<component>>]| |<<component>5J] t>> 5] ponent>>5J]
Progress Indication Alert Status Indication History Logging

I-
[

H

Figure 4: Use of the AO Feedback Property in a ShoppingCart Application.

of events for each variant of the feedback property. This approach would compli-
cate even more the design of the active processes defined in [Juristo et al., 2003].

Aspect-oriented (AO) software architectures avoid this shortcoming by mod-
eling the core components of the application and the quality-related components
completely independently of each other. This means that the required interface
named FeedbackEvents that appears in the active processes of Figure 3 is no longer
required in the AO version of the modeling (see top right of Figure 4), where
the core components of the system make no explicit reference to the feedback
property, neither in the view nor on the model. Instead, the focus is now put
on the sub-components modeling the core application and in the interactions
among them.

In Figure 4 we have modeled the relationship between the feedback compo-
nents and the core components as follows:

1. In the shopping cart application we model the interaction between the view
and the model (interface ShopCartint), the interaction between the Shopping-
Cart and the ClientCredit component (Credint interface) and the interaction
between the ShoppingCart and the ProductStock component (interface Stock-
Int). In the AOSD terminology these are examples of join points — i.e. points
of a model or programming language that can be intercepted by aspects.
At the architectural level, examples of join points are the interaction be-
tween two components through a particular interface, the reception of a

Pinto M., Fuentes L.: Modeling Quality Attributes ... 649

message/event in a particular component, the modification of a component
state attribute, etc. The only constraint is that following a black-box com-
ponent model [Buschmann et al., 1996], at the architectural level, only the
join points explicitly exposed by the public interfaces of components can be
part of the join point model.

2. All the sub-components in the Feedback Model composite component model
aspects. Their provided interfaces (the Progressindint, Alertint, Statusint and
Historylnt interfaces) model the aspect advice. In the AOSD terminology, the
aspect advice is the behavior that is injected by the aspect into the core
model. In Figure 4, we have used a UML dependency relationship with the
<<advice>> stereotype to indicate this special kind of relationship between
the quality-related components and the core components. Notice that there
are different AO extensions to UML following different approaches to model
the AO concepts [Chitchyan and et. al., 2005]. Here, our only purpose is to
explain the motivation of our approach. In section 4 we describe how to
represent these concepts in our AO-ADL language.

3. The anchor note linked to these dependency relationships specifies a point-
cut. In the AOSD terminology, a pointcut specification captures one or more
join points that need(s) to be advised by an aspect. In our example, the join
points affected by the Alert component are: (1) the reception of any mes-
sage defined in the ShopCartint interface; (2) the reception of the checkCredit()
message in the Checkint interface, and (3) the reception of any message be-
ginning with check in the Creditint. We have used the notation defined by
AspectJ [Laddad, 2003], one of the most popular AOP languages.

4. The advice specifications in the anchor note indicate that the alert() message
in the AlertInt interface will be injected before and after the join points
specified in the pointcut specification. In the AOSD terminology, the type
of advice specifies the place in which the aspect advice is injected into the
core behavior. There are different types of advice, though the most com-
mon are before, after and around the core behavior. In our example, this
means that the alert() advice in the Alert aspect will be executed before
the addProduct(), delProduct() or updateProduct() messages are received by the
ShoppingCart component. The same advice will also be executed after the
messages are processed by the ShoppingCart component. Moreover, it will
also be executed before and after the checkCredit() message is received by
the ClientCredit component and before and after the ProductStock component
receives any message with a name beginning with "check”.

In summary, the core components in the AO version do not need an explicit
reference to feedback because aspects are able to intercept the traditional in-
teractions or communications between components (for instance, the interaction

650 Pinto M., Fuentes L.: Modeling Quality Attributes ...

between the view and the model using the ShopCartint), and more importantly,
the components are completely unaware of these actions.

Therefore, one of the primary aims of this work is to review the architectural
patterns identified in [Folmer, 2005], providing aspect-oriented versions of such
patterns using the AO-ADL aspect-oriented architectural description language.

3 AO Modeling Process

Figure 5 shows an AO Modeling Process that defines the main tasks to model
an AO architectural solution (previous versions at [Pinto and Fuentes, 20083a]
[Pinto and Fuentes, 2008b]). This process was defined independently of a partic-
ular aspect-oriented modeling language. As we already stated in the introduction,
most aspect-oriented solutions model FQAs focusing only on their crosscutting
nature. So, these solutions normally propose to model a FQA by a more or less
complex aspectual component. In this process we explicitly define some tasks for
documenting important information and decisions that need to be considered to
identify aspect-oriented architectural solutions. This process takes into account
all the types of dependencies identified in Section 2 and in particular, it enforces
the (re)use of previously defined aspect-oriented architectural patterns modeling
FQAs. So, the main contribution of this process is to serve as a guide to model
FQAs using any aspect-oriented architectural approach. In this section we will
illustrate the different tasks of this process in modeling the usability FQA. For
simplicity we will only model a subset of concerns comprising the usability FQA
defined in previous sections.

The input to our process is the usability taxonomy shown in Figure 1. This is
an iterative process where the specification of a reusable model for each relevant
concern of the usability FQA is the central activity of the process. In order to
illustrate the activities of Model the concern task, we will describe the contex-
tual help concern. Table 1 and Figure 6 show the architectural implications, the
tangled /scattered behavior, the dependencies with other usability concerns, the
dependencies with other FQAs and the dependencies with the core application
for this concern.

Architectural implications. In this task we will identify the functionality
that a concern must provide, and the corresponding decomposition into compo-
nents. Specifically, we separate the functionality of the contextual help concern
into three main components, according to a classical 3-tier architectural style.
The Contextual Help View component models the graphical information with which
an application needs to be extended in order to incorporate this concern. The
Help Content component models the help information that will be displayed for
a specific application. Finally, the component Contextual Help Aspect is in charge

Pinto M., Fuentes L.: Modeling Quality Attributes ... 651

taxonomy (5|

Reuse/Define
Taxonomy of Concerns

Are there an important number of concerns
with functional implications

No >®

Are there an important number of No

crosscutting concerns?

Quality
Attribute
Documentation
Table

No

Are there more concerns?

Model the Concern

Identify Existing Identify Identify

@ | solutions to Address Architectural Tangled
the Concern

[[

AO solutions non-AO solutions

Identify
Scattered

Identify
ies with
other Concerns

Identify An
Archi
Solution

Are there more
solutions?

<<structured>>
Model the Architectural Solution

Identify Dependencies
with other
Functional Quality Attributes

Extend Model with
core Application
Constraints

<>

Reusable Solution

[T otherFQA [}

is possible?
JI Yes Model Reusable <<datastore>>
Arch Solution Solution | AO Architectural
D other FOA] | Repository
Table | P —
t
S — e R VR

Figure 5: Activity Diagram of the AO Modeling Process

of intercepting the operations of the application that need help. In addition,
since the help information displayed depends on the context, it will also have to
intercept operations of other FQA concerns related to the context (e.g. user role
obtained by the security FQA). In the next step we will decide if the relationships
between the Contextual Help Aspect component and both the core application and
other FQAs will be aspectual or non aspectual. All these components form the
Contextual Help Model of Figure 6.

Tangled /Scattered Behavior. In this step we have to identify if the func-
tionality of the Contextual Help Model composite component crosscuts the core
application, as well as components modeling other usability concerns and other
FQAs (see Figure 6). In order to inject the usability framework into the appli-
cation in a non intrusive way, we will define aspectual relationships between the
usability framework concerns and the rest of the application components. Firstly,
any operation/service of the core application for which contextual help has to
be provided will be intercepted by the aspectual sub-component Contextual Help
Aspect of the Contextual Help Model component. This relationship is stereotyped
with <<advice>> denoting that the advice StatusContext will be executed for

652 Pinto M., Fuentes L.: Modeling Quality Attributes ...
Table 1: Relevant Information for the Contextual Help Model
Contextint (O

+UserContext()

+StatusContext()
7
|

<<component>> <<component>> g] Contcili O <<component>>g]

Contextual Help View

%]4©4

Contextual Help Aspect

getHelpContent(Context P CoiE®

Architectural implications

- 3-layer architecture to model contextual help: Data/Model (Help Con-
tent), View (Contextual Help View) and Controller (Contextual Help As-
pect).

- The context must be defined in terms of user information and application
status.

- Help content provided based on user/status context.

Tangled/scattered
behaviour

- This sub-concern crosscuts all the components in the core application, as
well as other usability sub-concerns and other FQAs.

Dependencies with other
usability concerns

Help information needs to be provided for the new functionalities incorpo-
rated by the rest of Usability concerns.

Dependencies with
other FQAs

Dependencies with the Security FQA:
- Users need to be enrolled in the application.

- Information about the role played by the user needs to be available to
achieve this concern.

Dependencies with the functionalities incorporated by any other FQA.

- The Contextual Help Aspect will advice any service provided/required by
the core application susceptible to need help information.

- The core view needs to be augmented with the contextual help view.

- Reference to a particular security framework versus a generic representa-
tion of security by parameterization and later instantiation with different
security framework candidates.

- Advice-like dependency between contextual help and security versus
interaction-like dependency.

Dependencies with the
core application

Alternative architectural
solutions

every operation requiring contextual help. Also, the graphical interface of the
core application must be extended with the functionality encapsulated by the
Contextual Help View sub-component of the Contextual Help Model component. In
aspect-orientation this can be done in a non intrusive way by using the rela-
tionship stereotyped as <<introduction>>, able to ’introduce’ new behavior to a
component without modifying it. Below, we will comment on the ’crosscutting’
relationships between this concern and other concerns from the same or from
different FQAs.

Dependencies with other usability concerns. Now we have to specify
the connections (dependencies) between all the components of the usability FQA.
These connections could be aspectual or non aspectual. Basically, three kinds of
dependencies between concerns have been identified at the architectural level:
(1) a concern requires a service from other concern(s); (2) a concern provides a
service to other concern(s), or (3) a concern is composed with other concern(s)
in an aspectual manner (<<advice>> relationship). In our example, only aspec-
tual dependencies of type (3) were identified (e.g. between the contextual help

Pinto M., Fuentes L.: Modeling Quality Attributes ... 653

| | Usability Framework
<<delegate>>

,,,,,,,,,,,,,,,,,,,,, —
(Core Model Constramtsi
| <<component>>] <<component>>| |
| |<View Componentl> 7@4 <Component1>
|
i /1 7 \
| | <<advicg>> after |
| <<advice>> before / / SEENED)
| ‘ / +<getState>() I
| Vi / +<setState>() |
\ - - - 4 . A———= _ — —
T ~, 7z
<<introduction>3) Cancellnt o| - / -
|| +beforeCancellableOp(3i 4 7
|| rafterCancellableOp() P -
| 7 .
‘ 1 innd
| L/F‘ %‘ <<component>> E]
|

+StatusContexlt() ¢ - = — — —

I

| <<advice>>
<<advice>>|— — — — — — |

<<component>>] <<component>>] <<component>>] S <<cton::ponem>>k Gl
Cancelation Model Contextual Help Model Data Formatting Model ecurity Framewor
1
' delegate>> T ' |LJ
<<del <<delegate>> <<delegate>>
! Lr“j ™ I
! ¢
‘ 47 Enrolimentint O)
¥ | | Contextint O A <<advice>>
. — = ice>s— — — — — — — — — Sgrenroll() 9
| <<advice>> | [+UserContext() 9 <auvice>>"] <<advice>>[4changeRole()
|
|
|
|

77777777777777777777777777 ~
| é Core Model Constraints
| <Provided Interface> <Required Interface>
]

<<component>> g] <<componem>g]
<View Component> <Component>

Figure 6: An example of the dependencies identified for Usability

concern and the rest of the usability concerns). The contextual help concern
crosscuts those concerns for which help information needs to be provided. As an
example, in Figure 6 we show that the contextual help concern also intercepts
operations of the cancelation and the data formatting concerns.

Dependencies with other FQAs. In the motivation section we already
identified dependencies between different FQAs as an important task. Coming
back to our example, in Figure 6 we only modeled the dependency between the
contextual help concern and the security FQA, for reasons of simplicity. Specifi-
cally, the user needs to be enrolled in the system and information about the role
played by the user is required in order to contextualize the help provided. So,
the role of the user (Enrollmentint interface) will be used by the contextual help
component to show the help information according to the user expertise. At this
point we decided to compose the security framework with an <<advice>> rela-

654 Pinto M., Fuentes L.: Modeling Quality Attributes ...

tionship, in order to capture the user role without the knowledge of the security
framework concerns.

Dependencies with the core application. The composition of an FQA
model and the architectural model of the core functionality of an application
may require that this core architecture satisfies certain constraints (e.g. that
it exposes their components’ state). As previously mentioned, these constraints
should also be modeled and documented when modeling the FQA. At this point
we should identify which part of the architectural solution for the usability FQA
can be added (i.e. reused, Reusable Solution) to the application as it is, or if some
kind of parameterizations are needed (Parameterizable Solution). We will focus on
those cases needing parametrization. We use <> to indicate that a name of a
component /interface/operation is a parameter. In our example, in the Contextual
Help Model component, the Help Content will be provided by the core application,
which needs to provide the file (or any data store) with the appropriate help
information, by means of a parameter of this component. In the lower part of
Figure 6, the <View component> is defined as a parameter of the Contextual Help
view sub-component that will extend it. Similarly, application components requir-
ing help information will be defined as parameters of the Contextual Help Model
component. Then, these parameters will be instantiated to application-specific
components, interfaces and operations for each application to which usability is
added. More complex dependencies with the core application can also be mod-
eled. As an example, upper part of Figure 6 also shows the dependencies of the
cancelation concern with the core application. Concretely, canceling an action is
not possible unless components affected by the cancelation expose their state. If
as a best practice, all components specify a ’setState’ and ’getState’ operation,
then it is possible to reuse the cancelation concern as it is. But, if we are not
sure of this, then it is possible to define an interface specifying the components
state as a parameter (<Statelnt>). Finally, the complete FQA specification needs
to be stored in an AO repository of (re)usable architectural solutions. This is
an important contribution that considerably increases the possibilities of reusing
the FQA models in different contexts, since all the dependencies either with the
core application or with other FQA concerns are considered. Moreover, models
are available to be directly (re)used by parametrization and instantiation for
different core applications.

Of course, there is no single architectural solution to model FQA concerns.
Alternative solutions may also be considered when modeling the same concern.
As an example, for the contextual help concern an alternative solution will be:
instead of defining an advice-like dependency between contextual help and secu-
rity, an interaction-like dependency can be defined. This means that the usability

Pinto M., Fuentes L.: Modeling Quality Attributes ...

655

Table 2: AO-ADL support

Architectural implications

AO-ADL is an AO architecture description language to model the com-
ponent&connector view of software architectures. The main architectural
building blocks are components, connectors and configurations.

- Using composite components different levels of abstractions can be mod-
eled.

- Using aspectual connectors the aspectual interactions between base and
aspectual components can be modeled.

- Configurations model particular architectural solutions.

Tangled /scattered
behaviour

- The semantic of AO-ADL connectors is extended to model aspect-
oriented information. The <<advice>> relationship is modeled using the
aspectual role and the aspectual binding extensions of connectors.

- The <<introduction>> relationship is modeled using composite com-
ponents.

Dependencies with other
concerns of the same FQA

Connectors are used to model these dependencies.
- Traditional connectors are used to model interaction-like dependencies.
- Aspectual connectors are used to model advice-like dependencies.

Composite components are used to model high-level representations
of other concerns of the same FQAs and of other FQAs.

Dependencies with
other FQAs

Ditto for ’Dependencies with other concerns of the same FQA’. Addition-
ally, the models of other FQAs may be parameterized in order to postpone
the decision of which particular FQA framework to instantiate.

Dependencies with
the core application

Ditto for ’Dependencies with other concerns of the same FQA’. Addi-
tionally, in this case, the elements (operations, interfaces, components)
modeling the core constraints need to be parameterized.

Alternative architectural
solutions

The different alternatives to model an FQA can be stored in the AO-ADL
architectural templates repository ready to be instantiated and (re)used.

concern would require the security service by directly interacting with it.

4 The AO-ADL Approach

In order to support the AO software process described in the previous section,
we need to use an architectural modeling approach able to manage all the issues
discussed in Table 1 (see first column). In this section we discuss how the AO-
ADL [Pinto and Fuentes, 2007] language satisfies these requirements (see Ta-
ble 2).

Architectural Implications with AO-ADL. AO-ADL is an aspect-ori-
ented architecture description language that allows the specification of the com-
ponent&connector view of software architectures. In AO-ADL both crosscutting
and non-crosscutting concerns are modeled by components. Thus, similarly to
other ADLs the main elements of AO-ADL are interfaces, components, connec-
tors and configurations. In Figure 7 we partially show the AO-ADL specification
of the contextual help model shown in Table 1. We can observe that components
are specified by means of their ports (ports are like interfaces), which can be pro-
vided or required (label 1 in the XML code). Each port is linked to a particular
interface (label 2 in the XML code). Components can be single or composite ones.
Composite components allow creating models at different levels of abstraction.

656 Pinto M., Fuentes L.: Modeling Quality Attributes ...

They are also defined in terms of their provided and required interfaces, where
each of their ports is attached to the internal subcomponents (label 3 in the
XML code). Connectors (label 4 in the XML code) encapsulate the communica-
tion and interaction between components. The interfaces of connectors that bind
components’ ports are called roles (more details of these are provided below).
Finally, configurations allow the specification of a sub-architecture comprising
the set of component and connector instances and the attachments among them.
The syntaxis of configurations is similar to the configuration section of compos-
ite components (label 3 in the XML code), so the configuration of the usability
framework in AO-ADL is not shown here.

Tangled/Scattered Behavior with AO-ADL. There are at least two
main issues to be considered in an aspect-oriented approach: (1) how the tan-
gled/scattered behavior is modeled, and (2) how the aspectual relationships are
modeled. Regarding the first issue, since in AO-ADL the same building block
is used to model base and aspectual behavior, the distinction as to whether a
component is acting as a base or aspectual component is performed depending
on the particular 'role’ the component is playing in a particular composition.
"Base components’ are those connected to either a provided role or to a required
role of a connector, as in traditional ADLs [Medvidovic and Taylor, 2000]. For
instance, the |Component and [Security Framework components in Figure 7 are base
components connected to the provided/required roles of the Help Aspectual Con-
nector connector (lines 4.2 to 4.4 in the XML code). Components are considered
to be ’aspectual’ when they are connected to an aspectual role of a connector —
i.e. the semantics of connectors is extended with a new kind of role, the aspec-
tual role. An example of an aspectual component is the Contextual Help Aspect
component connected to the aspectual role HelpContextRole of the Help Aspectual
Connector connector (lines 4.6).

Regarding the second issue, AO-ADL connectors include an aspectual bind-
ings section used to model the advice relationship of section 3. These bindings
specify both the places where the aspectual behavior will be injected into the
base components — i.e. the pointcut specifications, and the aspectual behavior
that will be injected — i.e. the advice specification. For instance, the specifica-
tion of the Help Aspectual Connector connector in Figure 7 defines two aspectual
bindings, the SecurityBinding (line 4.9) and the CoreApplicationBinding (line 4.19).
An aspectual binding specifies the set of join points that will be intercepted
(<pointcut-specification>) and the when the aspectual behavior (the advice) will
be injected (binding order). In AO-ADL, it is possible to use wildcards like "*’ to
specify names of components, interfaces, etc. that are part of a pointcut defini-
tion. The type of advices that are possible to use in AO-ADL are similar to those
of AspectJ, like before, after, etc. (see line 4.13). We will explain the meaning of

Pinto M., Fuentes L.: Modeling Quality Attributes ... 657

r "
[lenrollf.) 1
| [changeRole{...) |

T

RequiredRole

Help
Aspectual
Connector

|Component SecurityRole |Security

Framework

®

|NewView Component

i [CorgViewlnt
|View lf@ ,,,,,,,, @
1
Ca—

Component
Contextual ViewCantrol Contextual Help ControlData [Help
Help View Connector Aspect Connector Content

TLegend

1 aspectual component connector _C requir I
... M(...): Method with any number of parameters of equired role
! any lype thal relurns a value of any lype [1 base component _C aspectual role ——) provided role

} |Name: Parameterized componentfinterface
,,, a

<component name="ContextualHelpAspect"> <compositeComponent name="|NewView Component'>
<provided interface <provided interface type="MSG"
uri="//interface[@name='ContextInt']" portName="HelpViewInt">
portName="AspectualPort"/> <attachment component="ContextualHelpView"/>
<required interface uri="..." @ </provided_interface>
portName="ContentPort"/> <provided interface type="MsSG"
<required interface uri="..." portName="|CoreViewInt"> @
portName="ViewPort"/> <attachment component="ViewComponent"/>
</component> </provided_interface>
<configuration>
<interface name="ContextInt"> <component j_nstanceiname:"ContextualHelpView”,">
<operation name="UserContext"/> @ <component instance name="|ViewComponent"/>
<operation name="StatusContext"/> </configuration> -
</interface> </ positeComg >

<connector name="HelpAspectualConnector">
4.2 <provided role roleName="|ProvidedRole"/>
4.3 <required role roleName="|RequiredRole"/>
4.4 <required_role roleName="|SecurityRole"
role specification="methods_of[//interface[@name='SecurityInt']]"/>
4.6 <aspectual_role roleName="HelpContextRole"
role_specification="//interface[@name='ContextInt']" />

<aspectualBindings>
4.9 <aspectual_binding name="SecurityBinding">
4.10 <peintcut_specification>

<pointcut>//required_role[@name='|SecurityRole'] and //operation[@name='*']</pointcut>
</pointcut_specification>

4.13 <binding order="first" operator="after">
4.14 <aspectual_component aspectual_role name="HelpContextRole'>
4,15 <advice label="UserContext"/>

</aspectual_component>

</binding>
</aspectual_binding>

4.19 <aspectual_binding name="CoreApplicaticnBinding"> @
4.20 <pointcut_specification>

<pointcut>//provided role[@name='|ProvidedRole'] or
//required reole[@name='|RequiredRoleole']</pointcut>
</pointcut_specification>

4.24 <binding operator="before">
4.25 <aspectual comg t pectual_role name="HelpContextRole'>
4.26 <advice label="StatusContext"/>
</aspectual component>
</binding>

</aspectual binding>
</aspectualBindings>
</connector>

Figure 7: Architectural template in AO-ADL for the Contextual Help Model

these two bindings in the context of the example described above.

Dependencies with other concerns of the same FQAs. In AO-ADL,
these dependencies are modeled in connectors. The connector will be an aspec-

658 Pinto M., Fuentes L.: Modeling Quality Attributes ...

tual connector (with aspectual roles and aspectual bindings sections) when the
dependency is identified as an advice-like dependency. Otherwise, a traditional
connector will be used. When needed, composite components will be used to
model high-level representations of part of the models. In Figure 6 the Contex-
tual Help Model has a dependency with the Cancelation Model and the Data For-
matting Model components. Instead of defining separate bindings between these
components and the Help Aspectual Connector we define one single binding, in
which the component requiring help as well as the corresponding provided and
required roles where the component must be attached are defined as parameters.
So, later, the |Component, |ProvidedRole and |RequiredRole parameters will be in-
stantiated with the Cancelation Model and the Data Formatting Model components
affected by the contextual help concern. We use | before the names of roles,
components, etc. to indicate that this is a parameter. This is only a syntactic
sugar used to simplify the description of the templates. In the next section we
describe how AO-ADL templates are implemented in our toolkit.

Dependencies with other FQAs. These dependencies are modeled in
the same way as the dependencies with other concerns of the same FQAs. In
our example, the Security Framework component provides information to the
Contextual Help Aspect component, through the aspectual binding SecurityBinding
(line 4.9). This binding specification indicates that the UserContext advice (lines
4.14-4.15) is injected ’after’ (after operator in line 4.13) the interception of ’any
operation of the required role’ SecurityRole (pointcut specification in line 4.10). In
other words, user information needed to provide contextual help is intercepted
by this aspectual component ’after’ the user is enrolled in the system or his/her
role changes. Note that in this case, to postpone the decision of which particular
Security FQA framework to instantiate, we define the |Security Framework com-
ponent and the operations associated to the SecurityRole role as parameters. This
kind of parametrization could be applied to any other FQA.

Dependencies with the core application. Once again, these dependen-
cies are modeled similarly to the dependencies with other concerns of the same
FQA. In our example, as other concerns of the usability FQA, components of
the core application also require contextual help. Since the architectural solution
already proposed for other usability concerns is parameterizable, it can be reused
for all the components of the core application. Thanks to the parametrization
therefore we have defined a generic and (re)usable architectural solution for the
contextual help concern, which can be (re)used for any kind of architectural com-
ponents. Any component (denoted by |Component) attached to the |ProvidedRole
and |RequiredRole roles of the Help Aspectual Connector connector will be composed
by the aspectual binding CoreApplicationBinding (lines 4.19—4.26). This aspectual

Pinto M., Fuentes L.: Modeling Quality Attributes ... 659

binding specifies how the StatusContext advice intercepts the join points in the
core application, or in any other components, in order to provide the appro-
priate contextual help. The other aspectual relationship (the introduction) is
modeled in AO-ADL creating a new composite component that encapsulates as
internal components the two components participating in the relationship (see
the [NewView Component, label 3, in Figure 7), which encapsulates the Contextual-
HelpView component and the |View Component component in the core application.

Summarizing, the most important contributions of AO-ADL, which make
it suitable to model complex FQAs, are aspectual connectors and architectural
templates. As shown in the examples, architectural templates model a reusable
sub-architecture (or ’configuration’ in the ADL terminology) for a particular
quality attribute or complex concern. Architectural templates allow a high level
of parametrization since interfaces, components, connectors and even the at-
tachments among them can be parameters of a given sub-architecture. Template
parameters will be later instantiated for a particular application domain, by the
AO-ADL toolkit, allowing the complete reuse of the aspectual bindings in dif-
ferent contexts. Moreover, different alternative templates for the same FQA can
be modeled and made available through the repositories of the AO-ADL toolkit.
The AO-ADL toolkit is detailed in the next section.

5 The AO-ADL Tool Suite

The AO-ADL language is supported by the AO-ADL Tool Suite, implemented
as an Eclipse plug-in 2. As shown in Figure 8, the toolkit is organized in several
modules that communicate by means of different repositories.

Firstly, the toolkit provides support to specify software architectures in AO-
ADL using the Component&Connector Editor and the Architecture Configuration Ed-
itor modules. The main responsibility of the Component&Connector Editor is the
definition of (re)usable components and connectors, which are stored in the Com-
ponent&Connector Repository. These architectural building blocks can be imported
through the Architecture Configuration Editor during the description of a software
architecture configuration.

Secondly, the same editors can also be used for the definition of (re)usable ar-
chitectural templates, which are stored in the Architecture Template Repository. Any
element of an AO-ADL configuration (interfaces, components and connectors)
may be defined as a ’parameter’ to be later instantiated. As shown in Figure 9
(label 1), an architectural element is defined as a parameter by only marking a
box named parameter beside each parameterizable element. The toolkit uses JET
code to define and instantiate the parameters of AO-ADL templates, and embeds

2 Tt can be downloaded and installed from http://caosd.lcc.uma.es/AO-ADLUpdate

660 Pinto M., Fuentes L.: Modeling Quality Attributes ...

A0-A0L Tool Suite Edipss plug-in Q
Companent & CA&C Repository
Connector ||
Editar
Architecture
Template
;J Instantiator
(JET engine)
. Architecture
Architecture Templates
Configuration |+ Repositary
Editar
Ty
N
Architecture
Configuration
R epostary
Architecture to Design Architecture to Code
Generator Generator
(MDDVATL process) (MDD process)
Theme/UML UMLZ0 AOP JBoss Aspect)
Design Dresign

Figure 8: AO-ADL Toolkit

it in the XML definition of the element being defined (label 2). As an example,
at the bottom of Figure 9 (label 2), we can observe the JET code automatically
generated for the parameters of the connector template of Figure 7.

Thirdly, the Architecture Template Instantiator module semi-automatically in-
stantiates the architectural templates previously stored in the Architecture Tem-
plate Repository. Basically, this module selects the appropriate configuration tem-
plate from the repository and instantiates it substituting the formal parameters
with the domain specific parameters. The AO-ADL toolkit provides a wizard to
guide this instantiation process.

An additional contribution of the AO-ADL toolkit is the use of MDD (Model-
Driven Development) [Beydeda et al., 2005] technology to propagate the deci-
sions taken at the architectural level to lower levels of the software life cycle.
Concretely, the Architecture to Design Generator module provides support for the
automatic transformation of AO-ADL software architectures to UML 2.0, ei-
ther plain UML 2.0 or aspect-oriented extensions of UML 2.0 as is the case of
Theme/UML. These transformations are defined using ATL (Atlas Transforma-
tion Language) [Jouault and Kurtev, 2005], which is an Eclipse plug-in for the
definition of model-to-model transformation rules. Moreover, the Architecture to
Code Generator module also uses MDD technologies to automatically generate
a code skeleton in two aspect-oriented languages, AspectJ [Laddad, 2003] and
AOP JBoss [JBosss AOP, 2010].

Pinto M., Fuentes L.: Modeling Quality Attributes ... 661

S ORI ool ST RGN DEImEnt s d Set DEsIMomcalW e DEumEntosimpal DR 0] DAConPresosies L_i Lﬂ @
File Edit Mavigate Search Project AC-ADL Run Window Help

i NTEO i QA \ T |)¢ A0-ADL Tool ...
¥ Component/Connectors Reposito B} *HelpAspectualConnector £ =08
N -] » @ - =
B~ & o1 Narne: HelpAspectual-onnector
= (= Workspace e [CJparameter
i# = architectures @
1* = components Description:

L= connectors URI:

1# = interfaces (— f
== templates | Provided Role | Required Role | Aspectual Rele | [Component Binding | Aspectusl Binding | [l <]

» - ContextualHelpModel Required ole Info

Role Marm
B2 HelpAspectualConnector Sl | -
MNewyigwCamponent Required_Role Role Namd
L P SecurityRaole = —
Type: {)

Role Specification;

MinQccurg: MaxOccurs:

JET code
(adtomatically generatefd)

[Add] [Modify] [Remove]

Connector Yiew | Tree View | XML View

<connector name="++=tp.getXPathElement (doc,

5//instance [@name='HelpAspectualConnector']/instance_namg$$$) --">
<required_role type="MSG"
roleName="++=tp.getXPathElement (doc, @ ‘
$$5//instance/required_role[Ename='Required Role']
/instance_name$$$)--"/>

</connector>

Figure 9: Snapshot of the AO-ADL Tool Suite.

6 Discussion and Related Work

We evaluate our proposal from two points of view. Firstly, we compare our
approach with other solutions that also focus on modeling FQAs from early
stages of the development. Secondly, we discuss some lessons learned after adding
usability to the software architecture of several applications specified in AO-
ADL.

6.1 Comparison with Existing Solutions

As we already mentioned in the introduction, our approach is only applicable
to those QAs that have important functional implications. For some QAs such
as the ones discussed in this paper (usability, security, etc.), which appear in
Figure 2, these functional implications are evident. For others, such as cost or
standards support, it is clear that there are no functional implications. Finally,
there are some QAs [Barbacci and et. al., 1995] that may have some functional

662 Pinto M., Fuentes L.: Modeling Quality Attributes ...

implications, but some kind of architectural decisions must also be taken in order
to satisfy the QA completely. Examples of these QAs are safety, performance, or
dependability, where the functional implications are not very evident and there-
fore not considered in our approach. For instance, even though there are some
functional implications associated to the performance attribute, such as resource
allocation, queueing and scheduling, most of the performance concerns are non-
functional ones and thus not suitable to be modeled following our approach. For
example, a more powerful processor, or any other improvement in the hardware
would undoubtedly improve the performance, but would not have any effect on
the application architecture.

The importance of modeling the functional part of QAs at the architec-
tural level has been identified in both the AO and the non-AO communities.
Examples in the AO community are the studies of crosscutting concerns in
[Tanter et al., 2006] [Geebelen and et. al., 2008], which include security, persis-
tence, context awareness and mobility. An example in the non-AO community
is [Juristo et al., 2003] [Juristo et al., 2007] where all the functional implications
of the usability attribute have been studied and documented. They propose a
usability framework that relates abstract usability attributes, such as satisfac-
tion and learnability, with specific functionalities (e.g. wizards, alerts, etc.) and
architectural patterns in the system. Further examples are the reports generated
from QA workshops [Barbacci and et. al., 1995], where a taxonomy of concerns
and factors that influence the satisfaction of those concerns have been defined for
security, safety, dependability and performance. These works about FQA tax-
onomies are a good starting point to formally specify FQAs at the architectural
level.

Although it is crucial to start from an accurate and complete taxonomy of
concerns modeling FQAs, sometimes this is not enough. Often the frameworks
that model FQAs fail to specify at the architectural level all the concerns and de-
pendency relationships identified in the taxonomy. This happens especially in the
aspect-oriented approaches. Indeed, one of the contributions of our approach is
the definition of an AO process that highlights the necessity of carefully consider-
ing the AO modeling of FQAs, specifying both crosscutting and non crosscutting
concerns that comprise a given FQA. For example, we have found that experts
on persistence have identified concerns such as caching and schema evolution.
But these concerns are not usually modeled in AO approaches. Basically, the
problem with current AO approaches is that they focus on modeling crosscut-
ting concerns of an FQA, leaving aside those concerns that are not crosscutting,
but are required for modeling complete solutions for the FQAs. In our approach
we provide complete architectural solutions modeling both the crosscutting and
non-crosscutting functionalities required to satisfy a particular FQA. Similarly
to our approach, the work in [Landuyt et al., 2009] defines an AO method that

Pinto M., Fuentes L.: Modeling Quality Attributes ... 663

tries to improve the modularization and composition of crosscutting concerns at
the early stages of the development. Concretely, this method is defined at the
requirements and architecture levels focused especially on defining more stable
pointcut specifications.

As described throughout the paper, another problem of existing solutions
is that they sometimes fail to define completely (re)usable solutions. This is
basically because it is not always trivial how the different alternatives for a
given FQA must be specified. Firstly, although the software architect may define
a complete solution modeling all the concerns of an FQA, then only a subset
of those concerns may be required in a particular context. In our approach
this is solved using AO-ADL to define different patterns to model the same
FQA. Also, with our approach it is possible to instantiate only a subset of the
concerns that comprise an architectural pattern modeling an FQA. So, it is
possible to define complete architectural patterns for a given FQA, encompassing
many concerns following different alternatives, and to instantiate only part of
this pattern according to the application requirements. Secondly, some solutions
strongly depend on contextual information that must be provided by the core
application or by the environment. When this information is not available, that
particular solution can not be considered. Finally, some concerns are shared
by several FQAs and they should not be repeated in several FQA frameworks.
However, after analyzing existing FQA frameworks we have realized that those
concerns shared by several FQA are specified repeatedly in each framework.

An example of the above situation is the authorization concern specified
in [Geebelen and et. al., 2008]. The description of this concern states that “there
are multiple authorization scenarios and thus the reference monitor can take
the decision based on the user secret, on more general information (time or
location for example) or on application-specific information’. Although several
alternatives for specifying authorization are described here, the reference archi-
tecture that is finally provided in [Geebelen and et. al., 2008] only includes an
Authorization, Session Handler and ExceptionHandler components. So, the different
alternatives for authorization were encapsulated in only one component (i.e. Au-
thorization). Thus, it can be deduced that: (1) it will be difficult to define a com-
pletely reusable architectural pattern coping with authorization under certain
circumstances; (2) in the alternative for controlling access based on contextual
information such as location, a dependency with the context awareness FQA has
been identified. So, instead of defining the location concern as part of the secu-
rity FQA, at least part of the context aware FQA (dealing with location) must
be included here; and (3) for control access based on application-specific infor-
mation, the relationship with the core application is not clear. In our approach
all these problems can be faced by using parameterizable templates, defining for
instance, the application dependant information needed to authorize the users

664 Pinto M., Fuentes L.: Modeling Quality Attributes ...

as a parameter. Since it is possible to define different sub-architectures for a
given FQA, in our proposal it is also possible to define different alternatives to
control access, and all these alternatives will be available through the AO-ADL
repository.

But not only the AO-ADL language can be used to support our process for
modeling FQAs. Other modeling languages can also be used, but they must
support: (1) the separate modeling of crosscutting concerns (preferably using
an aspect-oriented approach) and, (2) the parametrization of software architec-
tures. UML 2.0 provides support to define templates, so it fulfills the second
requirement but not the first one. Several AO extensions of UML exist, one of
the most representatives ones being Theme/UML [Clarke and Baniassad, 2006].
Concretely, Theme/UML uses UML templates in the specification of aspects, so
it can be used as an alternative to AO-ADL. But, Theme/UML was not designed
to model software architectures, being particularly well suited for the detailed
design phase. Therefore, we have incorporated Theme/UML into our proposal, to
refine the initial architecture specified in AO-ADL with more specific details. The
AO-ADL Tool Suite defines an MDD transformation to automatically generate a
Theme/UML representation of AO-ADL software architectures. Finally, several
AO architecture description languages exist nowadays [Pérez and et. al., 2003]
[Garcia and et. al., 2006] [Navasa et al., 2005] [Pessemier et al., 2006]. The main
inconvenience is that most of them do not provide enough tool support to define
templates and to create the repository of solutions required by our approach.

6.2 Adding Usability to Existing Applications

We have applied the AO architectural patterns defined for usability to the
software architecture of a Toll Gate System (TG) [Pinto and et. al., 2008], a
Health-Watcher Application (HW) [Pinto et al., 2007] and an Auction System
(AS) [Chitchyan and et.al., 2006]. For these applications, an AO software ar-
chitecture was already available in AO-ADL, but the usability FQA was not
explicitly part of these architectures. We have focused on analyzing if the core
architecture: (1) already provided some functionality related to usability or not;
(2) satisfied all the constraints imposed by the usability architectural patterns,
and (3) already modeled some crosscutting concerns related to usability (Table
3). Also, some lessons learned after using the AO-ADL language on supporting
our process are discussed in this section.

In the first column of Table 3 we can observe that the TG and the HW al-
ready included some functionality related to usability. Concretely, the software
architecture of the TG provided some level of user feedback, including two aspec-
tual components in charge of intercepting events of interest and showing them
to the user in their corresponding displays. It also includes an error handling
aspectual component. For the HW [Pinto et al., 2007] several security concerns

Pinto M., Fuentes L.: Modeling Quality Attributes ... 665

Table 3: Incorporating usability to existing software architectures

Provides Usability Satisfy All Attributes From Scratch
Constraints
TG Feedback, Error Handling No (Cancelation) Usability, Security, Fault Tolerance,

Persistence

HW Consistency, Data Yes Usability, Security, Fault Tolerance,
Formatting, Error Handling Persistence
AS No Yes Security, Fault Tolerance, Persistence

(authentication and enrollment), one error handling concern and several usabil-
ity concerns (consistency and data formatting) were identified and modeled from
scratch. The requirements of the AS however did not include any reference to us-
ability, and thus, any usability related functionality was present in the software
architecture defined in [Chitchyan and et.al., 2006].

A software architect that was not involved in the specification of any of these
case studies was in charge of adding the architectural patterns for usability
defined in this paper. The AS case study does not include any concern related
to usability, and thus the pattern was added without needing to modify the
core functionality of the system. But, in the other case studies, in which some
concerns related to usability were already defined, some level of modification in
the core architecture was required. These modifications consisted of removing the
components modeling the usability related concerns from the core functionality.
But, this only will happen if we are refactoring a software architecture for adding
new FQAs. In other cases, following the process proposed in this paper, we would
have already identified during the requirement phase that some concerns of the
core application also helped to satisfy an FQA, and consequently they could be
imported from the repository of FQA architectures of the AO-ADL toolkit. For
instance, the data formatting concern identified in the requirements of the health
watcher would be an instantiation of the data validation model in Figure 6.

The information in the second column of the table is the result of the in-
corporation of the usability concerns that impose some constraints on the core
application. Here, some limitations where found when we tried to add the can-
celation concern to the TG. The problem was that in the architecture we were
refactoring, the components implementing the principal actions of the TG sys-
tem, do not expose their state, so the cancelation concern of the usability pattern
was not able to cancel these actions. Fortunately, this constraint on the core ap-
plication was well-documented both in the process tables and in the proposed
architectural solution so we were able to clearly identify that in order to reuse
this pattern the original software architecture has to be extended by adding
methods exposing the components’ state.

666 Pinto M., Fuentes L.: Modeling Quality Attributes ...

Finally, the third column shows that not only the usability attribute was
identified in these software architectures. Other FQAs such as security, fault
tolerance and persistence were also identified and could benefit from the software
process defined in this paper.

Regarding the use of AO-ADL to support our approach, we have been able to
specify (re)usable and parameterizable architectural patterns for most usability
concerns, although two main limitations have also been identified. The first one
is that more mechanisms to model variability in AO-ADL are needed. Thus, al-
though we can use the parametrization of concerns in AO-ADL to model a family
of FQAs, AO-ADL was not explicitly defined to model variable software architec-
tures, as in software product lines approaches. In order to solve this limitation we
are currently working on combining AO-ADL with VML [Sénchez et al., 2009],
a variability modeling language that provides support to instantiate a configu-
ration of a family of products.

The second limitation that have been identified is that a new kind of advice,
which is not included yet in AO-ADL, is needed in order to model complex cross-
cutting behaviors at the architectural level. Concretely, an advice like the cflow
advice of Aspect] [Laddad, 2003] is needed in order to model the cancelation
concern of the usability FQA. Basically, the model of the cancelation concern
includes an aspectual component that will intercept the cancelable actions and
will restore the state of the affected components when that action is canceled.
However, since an action in one component will normally imply new interac-
tions with other components, canceling that action will also imply canceling the
actions generated by those interactions. In this sense, cflow is an advice that
allows capturing join points that occur in the control flow of another join point.
That is, the aspectual component will intercept the interaction between any two
components in the system, but only when they occur inside an action that is
considered as cancelable.

7 Conclusions

Modeling an FQA is not a straightforward task, since it can be decomposed into
several concerns, with many dependency relationships. One of these dependencies
is that part of those concerns can be crosscutting with the core or with other
FQAs concerns. In order to mitigate the defects caused by crosscutting concerns,
this paper proposes using aspect-orientation as a complementary approach to
traditional architectural approaches. An aspect-oriented approach can help to
achieve a better modularization by decoupling the core and the quality-related
components. We have illustrated the complexity of modeling an FQA, and have
defined a process to guide software architects in the use of AOSD to model FQAs
that have both a crosscutting nature and important functional implications. This

Pinto M., Fuentes L.: Modeling Quality Attributes ... 667

process makes explicit all kinds of dependencies between the concerns modeling
an FQA, other FQAs and the core application, proposing architectural solutions
to each of them, normally based on AO and parametrization. So, this process and
the generated documentation promotes the understanding of FQAs and increases
their reusability in different contexts by providing parameterizable architectural
solutions. We have illustrated how the AO-ADL Tool Suite was used for this
purpose, though other AO architectural approaches satisfying the requirements
imposed by our process may also be used.

References

[Bachmann et al., 2005] Bachmann, F., Bass, L., Klein, M., and Shelton, C. (2005).
Designing software architectures to achieve quality attribute requirements. IEE Pro-
ceedings, 152(4):153-165.

[Barbacci and et. al., 1995] Barbacci, M. and et. al. (1995). Quality attributes. Tech-
nical Report CMU /SEI-95-TR-021.

[Beydeda et al., 2005] Beydeda, S., Book, M., and Gruhn, V., editors (2005). Model-
Driven Software Development. Springer.

[Buschmann et al., 1996] Buschmann, F., Meunir, R., Rohnert, H., and Sommerlad, P.
(1996). Pattern-Oriented Software Architecture:A System of Patterns. John Wiley
& Sons.

[Chitchyan and et. al., 2005] Chitchyan, R. and et. al. (2005). Report synthesizing
state-of-the-art in aspect-oriented requirements engineering, architectures and de-
sign. Technical Report AOSD-Europe Deliverable D11, AOSD-Europe-ULANC-9,
Lancaster University.

[Chitchyan and et.al., 2006] Chitchyan, R. and et.al. (2006). Mapping and refinement
of requirements level aspects. AOSD-Europe NoE Public Documents (AOSD-Europe-
ULANC-24).

[Clarke and Baniassad, 2006] Clarke, S. and Baniassad, E. (2006). Aspect-Oriented
Analysis and Design: The Theme Approach. Addison-Wesley.

[Cysneiros et al., 2005] Cysneiros, L. M., Werneck, V. M., and Kushniruk, A. (2005).
Reusable knowledge for satisficing usability requirements. In RE’05.

[Folmer, 2005] Folmer, E. (2005). Software Architecture Analysis of Usability. PhD
thesis, University of Groningen,.

[Folmer and Bosch, 2004] Folmer, E. and Bosch, J. (2004). Architecting for usability;
a survey. Journal of Systems and Software, 70(1):61-78.

[Garcia and et. al., 2006] Garcia, A. and et. al. (2006). On the modular representa-
tion of architectural aspects. In 3rd. Furopean Workshop on Software Architecture
(EWSA’06).

[Geebelen and et. al., 2008] Geebelen, K. and et. al. (2008). Design of frameworks for
aspects addressing 2 additional key concerns. Technical Report AOSD-Europe D117,
AOSD-Europe-KUL-14.

[Harrison and Avgeriou, 2007] Harrison, N. B. and Avgeriou, P. (2007). Leveraging
architecture patterns to satisfy quality attributes. In FCSA, number 4758 in Lecture
Notes in Computer Science, pages 263-270. Springer-Verlag.

[ISO 9126-1, 2000] ISO 9126-1 (2000). Software engineering - product quality - part
1: Quality model.

[ISO 9241-11, 1994] ISO 9241-11 (1994). Ergonomic requirements for office work with
visual display terminals (vdts) — part 11: Guidance on usability.

[JBosss AOP, 2010] JBosss AOP (2010). Framework for organizing cross cutting con-
cerns. Last visited: March 2010.

668 Pinto M., Fuentes L.: Modeling Quality Attributes ...

[John et al., 2004] John, B. E., Bass, L., Sanchez, M. 1., and Adams, R. J. (2004).
Bringing usability concerns to the design of software architecture. In Proceedings of
the 9th IFIP Working Conference on Engineering for Human-Computer Interaction
and the 11 th International Workshop on Design, Specification and Verification of
Interactive Systems, pages 11-13.

[Jouault and Kurtev, 2005] Jouault, F. and Kurtev, I. (2005). Transforming Models
with ATL. In Bruel, J.-M., editor, Satellite Events at the MoDELS Conference,
volume 3844 of LNCS, pages 128-138, Montego Bay (Jamaica).

[Juristo et al., 2003] Juristo, N., Lopez, M., Moreno, A. M., and Sanchez, M.-1. (2003).
Improving software usability through architectural patterns. In ICSE Workshop on
SE-HCI, pages 12-19.

[Juristo et al., 2007] Juristo, N., Moreno, A. M., and Sanchez, M.-1. (2007). Guidelines
for eliciting usability functionalities. IEEE Transactions on Software Engineering,
33(11):744-757.

[Laddad, 2003] Laddad, R. (2003). AspectJ in Action: Practical Aspect-Oriented Pro-
gramming. Manning Publications.

[Landuyt et al., 2009] Landuyt, D. V., de beeck, S. O., Truyen, E., and Joosen, W.
(2009). Domain-driven discovery of stable abstractions for pointcut interfaces. In
Proc. of AOSD 2009, pages 75-86.

[Medvidovic and Taylor, 2000] Medvidovic, N. and Taylor, R. (2000). A classification
and comparison framework for software architecture description languages. IEEE
Transaction on Software Engineering, 26(1):70 — 93.

[Moreira et al., 2002] Moreira, A., Jo ao Araijo, J., and Brito, I. (2002). Crosscutting
quality attributes for requirements engineering. In SEKFE ’02: Proceedings of the 14th
international conference on Software engineering and knowledge engineering, pages
167-174, New York, NY, USA. ACM.

[Navasa et al., 2005] Navasa, A., Pérez, M. A., and Murillo, J. (2005). Aspect mod-
elling at architecture design. In 2nd European Workshop EWSA’05, pages 41-58.
[Noda and Kishi, 1999] Noda, N. and Kishi, T. (1999). On aspect-oriented design: An
approach to designing quality attributes. Asia-Pacific Software Engineering Confer-

ence.

[Pérez and et. al., 2003] Pérez, J. and et. al. (2003). PRISMA :towards quality, aspect-
oriented and dynamic software architectures. In 3rd IEEE Intl Conf. on Quality
Software.

[Pessemier et al., 2006] Pessemier, N., Seinturier, L., Coupaye, T., and Duchien, L.
(2006). A model for developing component-based and aspect-oriented systems. In
SC’06, pages 259-274.

[Pinto and et. al., 2008] Pinto, M. and et. al. (2008). Report on case study results.
Technical Report AOSD-Europe D118, AOSD-Europe-Siemens-11.

[Pinto and Fuentes, 2007] Pinto, M. and Fuentes, L. (2007). AO-ADL: An ADL for
describing aspect-oriented architectures. In Farly Aspect Workshop at AOSD 2007.

[Pinto and Fuentes, 2008a] Pinto, M. and Fuentes, L. (2008a). Aspect-oriented mod-
eling of quality attributes. In Meersman, R., Tari, Z., and Herrero, P., editors, Proc.
of IWSSA 2008, volume 5333 of LNCS, pages 334-343. Springer-Verlag.

[Pinto and Fuentes, 2008b] Pinto, M. and Fuentes, L. (2008b). Towards a software
process for aspect-oriented modeling of quality attributes. In Proc. of ECSA 2008,
volume 5292, pages 334-337. Springer-Verlag.

[Pinto et al., 2007] Pinto, M., Gdmez, N., and Fuentes, L. (2007). Towards the ar-
chitectural definition of the health watcher system with AO-ADL. In Early Aspect
Workshop at ICSE.

[Sanchez et al., 2009] Sanchez, P., Loughran, N., Fuentes, L., and Garcia, A. (2009).
Engineering languages for specifying product-derivation processes in software product
lines. pages 188-207.

[Tanter et al., 2006] Tanter, E., Gybels, K., Denker, M., and Bergel, A. (2006).
Context-aware aspects. In SC’06, pages 227-242. Springer-Verlag.

Pinto M., Fuentes L.: Modeling Quality Attributes ... 669

[Welie, 2007] Welie, M. V. (2007). The amsterdam collection of patterns in user inter-
face design.

