
An Adaptive Genetic Algorithm and Application 
in a Luggage Design Center 

 
 

Chen-Fang Tsai 
(Department of Industrial Management & Enterprise Information, Aletheia University 

New Taipei City, Taiwan R.O.C. 
au1204@mail.au.edu.tw) 

 
Weidong Li1 

(Faculty of Engineering and Computing, Coventry University, Coventry, United Kingdom 
weidong.li@coventry.ac.uk) 

 
Anne James 

(Faculty of Engineering and Computing, Coventry University, Coventry, United Kingdom 
csx118@coventry.ac.uk) 

 
 
 

Abstract: This paper presents a new methodology for improving the efficiency and generality 
of Genetic Algorithms (GA). The methodology provides the novel function of adaptive 
parameter adjustment during each evolution generation of GA. The important characteristics of 
the methodology are mainly from the following two aspects: (1) superior performance members 
in GA are preserved and inferior performance members are deteriorated to enhance search 
efficiency towards optimal solutions; (2) adaptive crossover and mutation management is 
applied in GA based on the transformation functions to explore wider spaces so as to improve 
search effectiveness and algorithm robustness. The research was successfully applied for a 
luggage design chain to generate optimal solutions (minimized lifecycle cost). Experiments 
were conducted to compare the work with the prior art to demonstrate the characteristics and 
advantages of the research. 
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1 Introduction  

A main challenge in evolutionary algorithms is parameter setting. For instance, an 
inadequate parameter setting can critically worsen the performance of Genetic 
Algorithms (GA) such as search efficiency [Chen and Liang 11] [Nedjah et al. 08]. 
However, effective rules and methodologies to choose suitable parameters have not 
been developed [Angelova and Pencheva 11] [Schwefel et al. 89] [Felix et al. 08]. 
Recently, studies on parameter setting have become active to pursue better stability 
between exploration (wider search) and exploitation (search refining) in a search 
space. However, this equilibrium is not easy to reach. An important reason is that 
algorithms are usually related to specific applications and problems so that it is not 
always appropriate to use pre-set parameters [Otman and Jaafar 11] [DeJong 07]. 
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Dynamic setting in evolutionary algorithms is a relatively new approach to 
identify better solutions. The motivation of the dynamic setting is to achieve the 
trade-off between exploration and exploitation during the evolution processes of the 
algorithms. For instance, research of adapting operator probabilities based on the 
performance of the operators in GA was conducted [Kapoor et al. 10] [Davis 85] 
[Tahera et al. 08]. A conversion mechanism was used to adjust operator probabilities 
in proportion to the fitness values of chromosomes managed by the operators. The 
results showed a substantial improvement in terms of the performance of GA. 
However, there are still a number of improvement spaces such as algorithm 
robustness for various problems. In this research, it is aimed at developing an 
improved and adaptive mechanism to dynamically set parameters. In the algorithm, 
superior performance members in GA are preserved and inferior performance 
members are deteriorated during search to enhance the algorithm efficiency towards 
optimal solutions. The algorithm also adjusts the crossover and mutation rates in each 
evaluation generation in GA, and new rates are derived from the fitness values during 
evolution in order to prevent premature convergence. Based on the above measures of 
dynamic parameter setting, this new algorithm is adaptive to various problems and 
reinforces the population diversity and effectiveness towards optimal solutions 
[Kapoor et al. 11] [Lu and Xiuxia 11]. 

The improved GA was applied to a lifecycle cost optimization problem in a 
luggage design center to improve the cost-effectiveness of Small Series Production 
[Chao et al. 02]. Experiments showed that the improved algorithm achieved better 
performance than other previous research works in terms of computational efficiency, 
optimal solutions and robustness. 

The rest of the paper is organized as follows. Section 2 is literature review. Section 
3 presents the improved GA mechanism. Section 4 describes the experimental results 
of the algorithm. Section 5 presents the industrial application and results. Section 6 
concludes the research. 

2 Literature Review 

GA is an important evolutionary technique to search optimal or near-optimal solutions 
according to the fitness (i.e., optimization objective function) computing, crossover 
and mutation operations on chromosomes (i.e., problem solutions) in a population 
during every evolution (i.e., an evolution process stands for a generation) [Dongmei et 
al. 11] [Goldberg 89]. A crossover rate is to manage the efficiency to exchange the 
members of the population and the mutation rate is to control the efficiency of random 
change genes. The rational of the algorithm is that the operators combine the better 
parts of chromosomes during evolution and randomly change parts of these in order to 
create solutions with a refined fitness value. More appropriate settings of crossover 
rate and mutation rate can improve the performance of GA significantly. On the other 
hand, the population size of GA is critical. A small population size will lead to pre-
mature convergence and a large population size will deteriorate the efficiency of the 
algorithm from finding a better alternative in a reasonable amount of time [Angelova 
et al. 11]. 

Guidelines were developed for setting the parameters but they are pre-set and 
static values [García-Martínez and Lozano 10] [Smith 96]. On the other hand, 
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researchers attempted alternative approaches of dynamically varying parameter 
settings during the execution of GA [Choubey 10]. Improved performance of 
algorithms was achieved attributing to the adaptive capabilities for various 
applications such that chromesomes and generations were adjusted with different 
fitness values during evolution. In [Schaffer and Morishima 87], a punctuated 
crossover operator with cost penalty was applied for specific problems. This approach 
can identify where better crossover points are located because of the dynamic 
parameter setting. In [Smith 96], a varied mutation rate based on a cooling concept 
was devised and applied for specific problems. In [Whitley 94], the Hamming distance 
between parent solutions was used to improve GA performance but this work was 
most applicable to steady state GA with elitism. It is, therefore, limited in problem 
domains. In [Srinivas and Patnaik 94], the crossover and mutation rates for each 
individual were determined in respect to a function of its fitness. In [Tahera et al. 08], 
research was developed to determine the mutation rate specifically for each solution 
and maintained the exploration without affecting the exploitation properties. Previous 
techniques, however, are still relatively simple to solve more complex problems 
requiring more finely controlled measures. 

In design chain applications, evolutional algorithms have led to innovations [Zhao 
and Wang 11]. Design chains need to be considered by modularization, optimization 
[Qu et al. 11], and substitution of design specification [Chiu 01] [Chao et al. 02] [Liu 
et al. 05]. The applications of evolutional algorithms reduce the operating cost of 
design chains to the optimal level [Anane et al. 02] [Caldentey and Wein 03] [Erel et 
al. 04] [Selwyn 05]. Research is imperative to apply improved GA with dynamically 
adjusting parameters to solve more complex design chain problems [Hongfeng and 
Guanzheng 09]. 

3 An Adaptive Genetic Algorithm 

This research proposed a novel GA to improve the performance and adaptability by 
introducing an adjustable parameter controller to guide the search behaviours in order 
to reach a better solution. The concept has been derived from the control chart theory. 
The theories of statistical quality control have been utilized as a control mechanism 
for process control in various industrial applications [Zhao 07]. Usually a control chart 
is divided into N divisions, which can be used to identify the causes of variations in a 
production process. The corrective action is then based on the cause identified by the 
control chart. This implies that different members in the GA evolution should be 
handled in different ways. So far there is no a generic widely accepted solution to 
solve various problems in a robust means [Alfaro-Cid et al. 09]. Therefore, it is 
important to develop a generic approach of dynamic parameter setting in GA to be 
applied to different problems. 

In this research, adaptive parameter settings in GA adjust the crossover rate and 
mutation rate in each evolution generation. The new rates are derived from the fitness 
value by considering the population diversity and the level of the parents’ fitness. 
During the evolution process it is crucial to examine whether GA is converging to an 
optimum. This research detects convergence by observing the range between the 
maximum and minimum fitness values of the population. If the population starts to 
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converge to a local optimum, the crossover and mutation rates will be adjusted for 
further exploration. 

In the algorithm, at the first stage, the range value of the population is divided into 
N search regions, and in which each region is assigned crossover and mutation rates in 
each generation. The rates are calculated using Procedures 1 and 2 (Tables 1 and 2). 
At the second stage, the members of parent chromosomes and offspring chromosomes 
with the best quality level are allocated to the first region, and the algorithm will keep 
the crossover and mutation rate of this region to protect these best fitness values. 
Meanwhile, a higher crossover and mutation rate will be arranged to other members of 
parent chromesomes and offspring chromesomes. The highest rates will be asigned to 
the Nth search region, which is used to store the chromesomes with the worst fitness 
values. At the final stage, the algorithm will combine the rates based on a 
transformation function. The higher search regions will be provided with lower 
crossover and mutation rates to conserve the superior genes, and the lower search 
regions will be assigned with higher crossover and mutation rates to support 
exploration. In more details, the optimization of the parameters adapted is defined as 
follows: 

 
1. At the first stage, the range value of the population is divided into N’s search 

regions; (R = (Maxvalue – Minvalue) = Zi × standard deviation (Zi= division 1 to N)); 
which are each assigned a range of the crossover and mutation rates for each 
generation. This range is calculated by using Tables 1 and 2. 

2. At the second stage, the members of parents and offspring are allocated to the first 
region which is called the best quality level; the controller will select the crossover 
and mutation rate of the first search region of to protect these best fitness values. 
The highest crossover and mutation rate will be provided to the worst members of 
parents and offspring which are ranked in the Nth search region. 

3. At the final stage, the system will combine the suitable crossover and mutation rates 
based on a transformation function which varies the N’s member positions in the 
search population. The higher search regions will keep the lower crossover and 
mutation rates for exploitation which conserve the superior genes. The lower search 
regions will be assigned the higher crossover and mutation rates to support 
exploration. This approach selects the crossover and mutation rates based on the 
different types of the problems before the search processing of each generation. The 
notation used in Procedures 1&2 are listed below: 

 
1. CR1-N = the crossover rate of the regions (1 to N) 
2. MR1-N = the mutation rate of the regions (1 to N) 
3. D1-N = the individual fitness values of the regions (1 to N) 
4. RC = the crossover rate calculated according to the position of the fitness value 
5. RM = the mutation rate is calculated according to the position of the fitness value 

in a region 
6. C P1-N = the situation factors that are selected to tune crossover rates 
7. M P1-N = the situation factors that are selected to tune mutation rates 
8. FMax = the maximum value in a population 
9. FL = the chromosome with the highest fitness value before crossover or mutation 

operation 
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10. FS = the chromosome with the lowest fitness value before crossover or mutation 
operation 

11. Fmean = the mean fitness value in a population 

12. Fσ
= the standard deviation in a population - (σ  = ( ) iXXi /

2

− ) 
 

An important attempt in this research is the different rate setting for different 
regions. The crossover and mutation rates are calculated by the position of the 
individual fitness value assigned to these regions (as Procedures 1 and 2). The 
chromosomes with the highest and lowest fitness values in a region will be selected 
for the transformation function to determine the value of the crossover rate. The 
situation factors (C PN) are parameters, which are selected to tune the mutation rates 
for specific problems. This will prevent the premature converge of GA. 

 
Upper Bound For Adaptive Parameter Setting of the Crossover Rate 
If Ffitness in crossover > = Fmean, 
Then C PN = [(Fσ

) / (Fmean)]; 
RC = (FMax – FL) / (R) Then CRN = CPN × RC 
Lower Bound For Adaptive Parameter Setting of the Crossover Rate 
If Ffitness in crossover =< Fmean, 
Then C PN = [(Fσ

) / (Fmean)]; 
RC = (FS – FMin) / (R) Then CRN = CPN × RC 

Table 1: Adaptive parameter setting of the crossover rate (Procedure 1) 

Upper Bound For Adaptive Parameter Setting of the Mutation Rate 
If Ffitness in mutation > = Fmean, 
Then M PN = [(Fσ ) / (Fmean)]; 

RM = (FMax – FL) / (R) Then MRN = MPN × RM 
Lower Bound For Adaptive Parameter Setting of the Mutation Rate 
If Ffitness in mutation =< Fmean, 
Then M PN = [(Fσ ) / (Fmean)]; 

RM = (FS – FMin) / (R) Then MRN = MPN × RM 

Table 2: Adaptive parameter setting of the mutation rate (Procedure 2) 

An example with the following data is shown in Table 3: 

1. CR1-6 = the crossover rate of the regions 1 to 6 (N=6) 
2. MR1-6 = the mutation rate of the regions 1 to 6 (N=6) 
3. D1-6 = the individual fitness value of the regions 1 to 6 (N=6) 
4. C P1-6 = the situation factors that are selected to tune the crossover rates (0.95) 
5. M P1-6 = the situation factors that are selected to tune the mutation rates (0.095) 
6. FMax = the maximum fitness value in a population (120) 
7. FMin = the maximum fitness value in a population (20)  
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8. FL = the chromosome with the highest fitness value before crossover or 
mutation operation (80) 

9. FS = the chromosome with the lowest fitness value before crossover or mutation 
operation (30) 

10. Fmean = the mean fitness value in a population (50) 
 

Upper Bound For Adaptive Parameter Setting of the Crossover Rate 
If (Flarger in crossover =80) > = ( Fmean =50) 
Then Rcrossover = [((FMax =120)- (Flarger in crossover=80))/ ((FMax = 120) - (FMin =20))] 

               = [(120-80)/ (120-20))] = 40/100 = 0.4 
CR3 = ((CP1 = 0.95)×( Rcrossover = 0.4)) = 0.38  

If (A > 0, A <= 1/6), Then CRa = ((CP1 = 0.95)×( Rcrossover = 1/6)) 
If (B > 1/6, B <= 2/6), Then CRb = ((CP1 = 0.95)×( Rcrossover = 2/6)) 
If (C > 2/6, C <= 3/6),  Then CRc = ((CP1 = 0.95)×( Rcrossover = 3/6)) 
If (D > 3/6, D <= 4/6), Then CRd = ((CP1 = 0.95)×( Rcrossover = 4/6)) 
If (E > 4/6, E <= 5/6), Then CRe = ((CP1 = 0.95)×( Rcrossover = 5/6)) 
If (F > 5/6),  Then CRf = ((CP1 = 0.95)×( Rcrossover = 6/6)) 
Upper Bound For Adaptive Parameter Setting of the Mutation Rate 
If (Flarger in Mutation =80) > = ( Fmean =50) 
Then RMutation = [((FMax =120)- (Flarger in Mutation=80))/ ((FMax = 120) - (FMin =20))] 

               = [(120-80)/ (120-20))] = 40/100 = 0.4 
CR3 = ((CP1 = 0.095)×( Rcrossover = 0.4)) = 0.038 

If (A > 0, A <= 1/6), Then CRa = ((CP1 = 0.095)×( RMutation = 1/6)) 
If (B > 1/6, B <= 2/6), Then CRb = ((CP1 = 0.095)×( RMutation = 2/6)) 
If (C > 2/6, C <= 3/6),  Then CRc = ((CP1 = 0.095)×( RMutation = 3/6)) 
If (D > 3/6, D <= 4/6), Then CRd = ((CP1 = 0.095)×( RMutation = 4/6)) 
If (E > 4/6, E <= 5/6), Then CRe = ((CP1 = 0.095)×( RMutation = 5/6)) 
If (F > 5/6),  Then CRf = ((CP1 = 0.095)×( RMutation = 6/6)) 

Table 3: Adaptive parameter setting of the crossover and mutation rate (an example) 

The transformation function is followed by the ranking position of the parent and 
offspring chromosomes. The operating policies are that good quality solutions within 
a population should be conserved and poor quality solutions should be improved. The 
actual levels of preservation and improvement depend on the complexity of specific 
problems. There is no standard solution and most results are still problem dependent. 
This is the reason why this research proposes the adaptive parameter setting for GA 
evolutions. Hence, this can be considered to be a novel approach applicable to various 
problems. 

4 Experiments 

Experimental cases from [Jason and konstantinos 02] [GEATbx 06] were selected for 
benchmarking study (see Table 4).T1 is Ackley's Path that is a famous multimodal test 
function (Table 4: Illustrated on Ackley's Path function plot in X-Y axis from -30 to 
30). T2 is AxisParallelHyperellip that is eminent as a weighted bubble model. It is a 
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convex, continious, and unimodal model (Table 4: Illustrated on Moved Axis Parallel 
Hyper-ellipsoid function; design of the function in X-Y axis from -5 to 5). T3 is the 
Rastrigin's function which is a vastly multimodal. The site of the local minima is 
recurrently dispersed. It is also known as a ball model. It is continious, convex and 
unimodal (Table 4: Visualization of Rastrigin's function in X-Y axis from -5 to 5). T4 
is MovedAxisParallelHyperellipsoid that is a special function designed from the axis 
parallel hyper-ellipsoid. This function is a more complicated model than the previous 
function (Table 4: Illustrated on Moved Axis Parallel Hyper-ellipsoid function; draw 
of the different variables, the goal function values were designed from the multi-
dimensional function with others variable set to 0). T5 is Rosenbrock's valley that is a 
typical optimal problem, also known as Banana function. The global optimal value is 
an elongated, and extended shaped basin. It is tricky and has been frequently applied 
in evaluating the presentation of optimization algorithms (Table 4: Illustrated on 
Rosenbrock's function that is full designation range of the function). T6 is a Six-hump 
camel back function with a comprehensive optimal function. The surrounded areas 
include six local minima, and two of them are global minima (Table 4: Illustrated on 
Six-hump camel back function schemed of the region surrounding the minima 
[GEATbx 06]).   
 

T1 = AckleyPath =  
-32.768  x 32.768 
T2 = AxisParallelHyperellip =  
-5.12 5.12 
T3 = Rastrigin =  
-5.12 5.12 
T4 = MovedAxisParallelHyperellipsoid =  
-5.12 5.12 
T5 = Rosenbrock = + (1  
-2.048 2.048 
T6 = Six- humpCamelBack = + + (  
-3  

Table 4: The benchmark functions of [T1-T6] 

These experimental benchmarking functions were used to make a comparison 
between simple adaptive and dynamic parameter settings with different GA operators 
and parameters. The operator settings chosen are the combinations of the best 
experimental results from previous studies [Alfaro-Cid et al. 09] [Jason and 
konstantinos 02]. The selection operator is of either uniform or tournament. The 
mutation operator can have 1 or 8 cross points. The mutation operator has a uniform 
distribution probability for its rate. The replacement operator can be set in either 
uniform, simulated annealing or elitism. A range of ‘rule-of-thumb’ configurations 
were tested with population sizes from 25 to 150 with 25 generations. Selection is 
based on the roulette selection. Crossover rates were set from 0.6 to 0.9 with an 
incremental step 0.05. Mutation rates (Gaussian) were set from 0.05 to 0.45 with an 
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incremental step 0.05. The numbers of generations were set from 30 to 300. All results 
presented were averaged over 150 trials. In published research, GA’s operators and 
parameters presented the experimental configuration for the simple adaptive setting. 
This research was tested on six kinds of different functions and test-suites. The 
experimental results were used to compare the simple adaptive and dynamic adaptive 
setting in terms of the converge generation, the best value, the mean value and the 
standard deviation in the population evolutions. Figures 1-4 show that this research 
achieved better results than those of the previously developed simple adaptive 
methods. 

 

 

Figure 1: The comparison of the converge generations based on the benchmarking 
functions 

 

Figure 2: The comparison of the best values based on the benchmarking functions 
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Figure 3: The comparison of the mean values based on the benchmarking functions 

 

 Figure 4: The comparison of the standard deviations based on the benchmarking 
functions 

5 An Industrial Application 

Companies DCI (China and US), AGILE (Taiwan and China) and THERBLIG 
(Taiwan) form a global chain. The companies have more than 30-year history in 
designing and manufacturing luggage and this supply chain is one of the leading 
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providers in the world. In today’s competitive environment, the companies need to be 
able to respond to the market with the lowest cost. The improved GA was applied to 
minimize the total cost of Product Lifecycle Cost (PLC) in this chain.  

 
PLC = Investment Cost + Setup Cost + Inventory Cost + Manufacturing Cost+ 
Shipping Cost, that is 
 

 
 

 
 

 
 

 
 

 

(Equation 1) 
where, S = Number of suppliers; F = Number of factories; P = Number of products; Q 
=Quantity of design part; IV = Unit Investment Cost of design part ; SC = Unit Setup 
Cost of design part; IC = Unit Inventory cost of design part ; MC = Unit 
Manufacturing Cost of design part; ShC = Unit Shipping Cost of design part; AR = 
Availability Ratio of design part; z  = service level of the demand of design part 
during lead-time of Part i ; dσ   =  the standard deviation of the demand of design 
part; 

LTσ  = the standard deviation of lead-time of design part. 
 
The process of the application of the improved GA for this optimization problem is 
below and shown in Table 5: 

 
(1) Determine initial populations through GA selection. 
(2) Define chromosomes and their fitness functions for this application 
(3) Execute the GA to find the optimal cost 
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(4)Conduct the comparisons of the simple adaptive and dynamic adaptive function 
based on practical experimental results 

 
Initial Populations (Chromosomes)  

 
Fitness Function Computing: (Chromosome) 

 
PLC = Investment Cost + Setup Cost + Inventory Cost 

+ Manufacturing Cost + Shipping Cost. 
 

PLC = (IV) + (SC) + (IC) + (MC) + (ShC) 
 

 
 
The Chromosome is (Quantity Amount (Qp)):((IV(Qp);  SC(Qp); IC(Qp); MC (Qp); 
ShC(Qp)): (136,82,43,62,372) 
 
The Chromosome is: 1011011001000100001110110 

 
The optimal settings of GA parameters 

 
The simple adaptive function 
(Based on previous research 

work) 

Dynamic Adaptive Function 
 (Based on this research work) 

Crossover rates ranging from 
0.6 to 0.9 with an incremental 
step 0.05. 
Mutation rates (Gaussian) 
ranging from 0.05 to 0.45 with 
an incremental step 0.05. 

Adaptive Parameter Setting of the Crossover 
Rate 
RC = (FMax – FL) / (R) Then CRN = CPN × RC 
 
Adaptive Parameter Setting of the Mutation Rate 
RM = (FMax – FL) / (R) Then MRN = MPN × RM 

The comparisons on the simple and dynamic adaptive function on 
experimental results optimal solution on GA evolutions 

Table 5: The architecture of the improved GA for the luggage design centre problem 

The simulation results of the simple and dynamic adaptive function are shown in 
Table 6. The experimental results have shown that the adaptive function (The total 
cost: 75376) produces a better value than the than simple adaptive function (The total 
cost: 90707). 
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The simulation results on The Simple Adaptive Function 
EXAMPLE: 
The Chromosome is (Quantity Amount (Qp)): 
427,82,43,364,372,52,146,128,70,469,39,239,243,221,140,512,364,337,251,567,24
3,525,212,27,35,196,244,496,77,397,415,38,420,232,165,182,358,333,173,372, 
Vendor: v1 
The product item: p2 The unit Cost:6.5  Quantity Amount: 82    
Total Cost:533.0 
The product item: p3 The unit Cost:8.5  Quantity Amount: 43    
Total Cost:365.5 
Vendor: v2 
The product item: p1 The unit Cost:20.5 Quantity Amount: 364  
Total Cost:7462.0 
The product item: p2 The unit Cost:7.5 Quantity Amount: 372  
Total Cost:2790.0 
The product item: p3 The unit Cost:7.5 Quantity Amount: 52  
Total Cost:390.0 

The total cost: 90707 
 
The simulation results on Dynamic Adaptive Function 
EXAMPLE: 
The Chromosome is (Quantity Amount (Qp)): 
136,82,43,62,372,52,146,128,70,469,39,509,243,221,479,76,364,337,251,567,243,5
25,212,27,35,196,244,496,77,397,415,38,420,232,165,182,358,333,173,372, 
 
Vendor: v1 
The product item: p1 The unit Cost:10.5 Quantity Amount: 136  Total Cost:1428.0 
The product item: p2 The unit Cost:6.5 Quantity Amount: 82  
Total Cost:533.0 
The product item: p3 The unit Cost:8.5 Quantity Amount: 43  
Total Cost:365.5 
Vendor: v2 
The product item: p1 The unit Cost:20.5 Quantity Amount: 62  
Total Cost:1271.0 
The product item: p2 The unit Cost:7.5 Quantity Amount: 372  
Total Cost:2790.0 
The product item: p3 The unit Cost:7.5 Quantity Amount: 52  
Total Cost:390.0 

The total cost : 75376 

Table 6: The simulation results of the simple adaptive and dynamic adaptive 
parameters in GA 
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To understand the individual cost change during the execution process of the 
algorithm, a cost reduction index is defined below:  

 
Change ratio = Cost Total

Cost)t (Investmen )Cost (Setup or

             (Equation 2) 
 
If the investment cost and inventory cost are fixed, the change rates of investment 

cost/inventory cost vs. the total cost (TC) are shown in Figures 5 and 6. It can be 
interoperated that the fixed part of the cost in the total cost is increased, and other 
variable parts of the cost such as setup, machining and shipping will be optimized to 
lower levels. 
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Figure 5: Change rate of investment cost vs. total cost (TC) 

0
20
40
60

1 3 5 7 9 11 13 15 17 19

%
 C

ha
ng

e R
ate

 o
f T

C

% Change  Rate of Inventory Cost
 

Figure 6: Change rate of inventory cost vs. total cost (TC) 
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6 Conclusions 

In order to improve the performance of GA, this research proposed dynamically 
adaptive parameter setting. Adaptive crossover and mutation strategies were designed 
and applied in GA based on transformation functions to pursue better stability 
between exploration and exploitation in a search space so as to improve both search 
effectiveness and algorithm robustness. Experimental results showed that the new 
algorithm was enhanced signficantly in terms of computational efficiency, optimal 
solutions and robustness. This research was successfully applied to a luggage design 
centre for lifecycle cost reduction in new product development in luggage chains. 
Simulation results for the application showed that this approach can obtain the lower 
cost selections for supply chain management. It therefore concludes that this dynamic 
adaptive GA can perform better than the one with a simple adaptive GA.  

Future research will be conducted to explore non-linear models to improve GA 
search in complex optimization problems. Meanwhile, further experiments are 
expected to apply the algorithm to wider applications such as the electronics industry, 
in which various high precision processes need to be optimized.  
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