Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 17 / Issue 14

available in:   PDF (367 kB) PS (490 kB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-017-14-2029


An Adaptive Genetic Algorithm and Application in a Luggage Design Center

Chen-Fang Tsai (Aletheia University, Taiwan R.O.C.)

Weidong Li (Coventry University, United Kingdom)

Anne James (Coventry University, United Kingdom)

Abstract: This paper presents a new methodology for improving the efficiency and generality of Genetic Algorithms (GA). The methodology provides the novel function of adaptive parameter adjustment during each evolution generation of GA. The important characteristics of the methodology are mainly from the following two aspects: (1) superior performance members in GA are preserved and inferior performance members are deteriorated to enhance search efficiency towards optimal solutions; (2) adaptive crossover and mutation management is applied in GA based on the transformation functions to explore wider spaces so as to improve search effectiveness and algorithm robustness. The research was successfully applied for a luggage design chain to generate optimal solutions (minimized lifecycle cost). Experiments were conducted to compare the work with the prior art to demonstrate the characteristics and advantages of the research.

Keywords: genetic algorithm, optimization, search

Categories: F.2.0, G.1.6, I.2.8