
Achieving Transparent & Real-time Collaboration in Co-
AutoCAD Application

Liping Gao
(University of Shanghai for Science and Technology, Shanghai, PR China

Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, PR China
lipinggao@fudan.edu.cn)

Tun Lu

(Fudan University, Shanghai, PR China
lutun@fudan.edu.cn)

Abstract: In order to support the real-time collaboration between geographically distributed
designers, the single-user application AutoCAD is required to be transformed transparently into
groupware system by adopting fully replicated architecture. As the core issue to maintain the
consistency of the distributed replicas, traditional consistency maintenance algorithms (such as
Operation Transformation and Address Space Transformation algorithms), however, support
only linear data model, and may lead to low algorithm efficiency and small operation types
when adapted to the collaborative design field. In this paper, a novel layered document model is
proposed to abstract the document model of AutoCAD, and the AST algorithm is adapted
according to the model to achieve transparent & real-time collaboration. Moreover, the Update
conflicts resolution based on child-precedence strategy, and the database listening technique
used to grasp the semantics of interface operations to realize operation adaptation are also
presented. Efficiency analysis of the Layer-AST algorithm is given, showing the improved
performance of the algorithm. Finally, the system architecture of Co-AutoCAD using this
strategy is detailed to guide the application.

Keywords: Layered document model, Data model transformation, Operation adaptation,
Consistency maintenance, Conflict resolution
Categories: J.6

1 Introduction

Traditional consistency maintenance algorithms (such as operation transformation
(OT) technology [Ellis and Gibbs,1989;Sun et al.,1998,2006; Li and Li,2004;Shao et
al.,2010] and address space transformation (AST) technology [Gu et al.,2005; Yang et
al.,2005] in replicated groupware environments[Ellis and Gibbs,1989; Sun et al.]
usually assume the document model as linear structure, which use the index value of
the object node as the unique identifier of the object. With this model, transparent
adaptation (TA) technology [Xia et al. 2004; Sun et al. 2005] provides the possibility
to transform current off-the-shelf single-user applications into groupware systems
without modifying the applications’ source codes. TA technology makes use of the
API (Application Programming Interface) of the applications to interpret and
decompose the interface instructions, maps the application document model into
linear structure, and translates the remote operations into ones that can be

Journal of Universal Computer Science, vol. 17, no. 14 (2011), 1887-1912
submitted: 15/05/11, accepted: 28/9/11, appeared: 1/10/11 © J.UCS

implemented by evoking the applications’ APIs. TA technology provides a solution to
bridge different applications with unified engine layer, thus improving the reuse of the
consistency maintenance algorithm.

TA technology is mainly used in text editor field, with linear structure as the data
model of its engine algorithm (i.e. OT algorithm), leading to the low efficiency and
neglecting the logical data models of specific applications. Sun et. al have discussed
the TA technology in text editor field in detail [Xia et al. 2004; Sun et al., 2005; Lin et
al. 2007; Shen et al., 2007]. They propose to map the document model of the editor
field into linear structure, use OT technology to maintain the document consistency,
and analyse the API interface of the applications and provides strategies to interpret
interface instructions.

In order to adapt this technology to the CAD environment, however, three key
issues must be re-discussed: data model transformation, consistency maintenance
algorithm and operation adaptation, since the logical document model and the APIs in
CAD environment are quite different with those of text editor field, where formatting
all documents models into linear structure will lead to low algorithm efficiency. Data
model transformation is responsible for mapping the CAD document model into the
layered document model in order to improve the algorithm efficiency and enrich the
operations types the engine algorithm can support. Consistency maintenance is the
core module of the engine layer which needs to be modified according to the new data
model. Meanwhile, operation adaptation is responsible for intercepting the
instructions released from the user interface of AutoCAD and changing their formats
so as to be adapted to the engine algorithm.

This paper analyses the logical document model of AutoCAD, proposes to abstract
it into a layered document model and modifies AST algorithm to support this new
model. Based on this model, the paper proposes to use database listening technique to
intercept user instructions and backup technology to access the parameters of the
Update operations by comparing the old and new document states.

The rest of this paper is organized as follows. Section 2 surveys the related work
of collaboration between applications. Section 3 gives a brief description of TA
technology. Section 4 describes the novel data model transformation process from
CAD document model to the layered document model. Section 5 describes how the
AST algorithm is adapted to the new data model. Section 6 elaborates on the
operation adaptation process and introduces child-precedence strategy to solve Update
conflicts in the layered document model. Section 7 discusses the Co-AutoCAD
system architecture and Section 8 summarizes the paper and gives an outlook for the
future work.

2 Related work

There have been many efforts in the research field of cooperation between
applications. The DistEdit [Knister and Prakash, 1990] provides a set of primitives to
be added to the applications to provide collaboration support, without dealing with
distributed system issues. Although the primitives provided by toolkits are generic
enough to support editors with different user interfaces, it adopts not the replicated
architecture but the client/server one, which means it can only support loosely-
coupled collaboration but not tightly-coupled collaboration. Dewan and A. Sharma

1888 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

(1999) have done series of experiments in order to export protocols, techniques and
lessons as for the interoperation between multiple users and proposed to use a
language-independent system such as CORBA to allow different systems to
communicate with each other. However, this method can only be used between
applications that use the compatible communication protocols. The PSI [Palfreyman
et al., 1999] combines a simple data model with active sharing mechanisms to
construct an active sharing infrastructure to support information sharing across a
number of distributed applications. The platform is realized as an active layer on top
of an extended space. The Placement Documents [LaMarca et al.,1999] is somewhat
similar with PSI in that it also needs a data repository to store the edited documents
and a middleware to monitor the change of the common data. Both PSI and Placement
Document perform well in loosely-coupled environment. On the contrary, in tightly-
couple environment such as the CAD engineering process, where the control objects’
granularity should be as small as possible, they don’t work very well. Besides that,
because of the common data repository, the replicated architecture cannot be
supported naturally. The Disciple framework [Krebs et al., 2003], presents a
framework for building collaborative applications for clients with different display
and processing capabilities. However, its main purpose is to reduce the influence of
the slow and/or unreliable connections of different clients and its structure is also
based on client/server architecture. Li and Li(2002) proposes intelligent collaboration
transparency technology, which is based on application black box assumption to
transform single-user applications into collaborative groupware by series of steps,
such as event capture, event reduction, consistency maintenance, event reproduction
and event replay. This method can solve the conversion of some relatively easy
application with simple function set. However, to realize the powerful functions of
commercial off-the-shelf applications by event capturing is almost impossible. Li and
Lu (2006), later, modified the former method by replacing the event capture strategy
with series of document state accesses and state playbacks. However, not all
applications support the CTRL +A, CTRL +C, CTRL +V or CTRL+SHIFT+HOME,
CTRL+SHIFT+END key-board shortcuts.

Since many mature commercial applications have provided plenty of APIs, Sun et.
al (2004) first introduces the idea of transparent leverage of single-user application to
multi-user application. However, in order to use the OT framework [Xia et al. 2004;
Sun et al., 2005; Lin et al. 2007; Shen et al., 2007, Zheng et al., 2009], he formats all
the document models both in text editor field and graphical editor field into linear
structures, thus reducing the algorithm efficiency greatly. Our previous work [Gao et
al., 2008] tries to adapt the consistency maintenance technology from text editor field
to CAD groupware field; however, the main focus in that work is to deal with the
heterogeneity of different applications, also neglecting the algorithm optimization.

3 TA technology

TA technology [Xia et al. 2004; Sun et al. 2005] doesn’t need to modify the source
codes of the application. It realizes transparent adaptation by interacting with the API
interface and performing series of operation decompositions and reconstructions. TA
technology is composed of three layers: Single-user Application Layer (SA),
Collaboration Adaptor (CA) and Generic Collaborative Engine (GCE), with SA

1889Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

indicating current single-user applications, CA bridging SA and GCE by smoothing
the differences of data models and operation formats between them as the middle
ware, so as to reach the purpose of transparent adaptation (see Fig. 1).

Since different applications have different APIs and different data models, it’s
hard to construct a common middleware as the CA components for all applications. It
must be designed according to different APIs, different data models and different
algorithms the engine layer adopts. In this paper, the document model of the CAD
environment is first analyzed and then mapped into layered structure in order to
achieve high efficiency of consistency maintenance algorithm. Based on the layered
document model, AST algorithm is modified to support this new model and database
listening technology is adopted to get the necessary parameters of the operations.

Figure 1: TA transformation framework [Xia et al. 2004; Sun et al. 2005]

4 Data model transformation

This section describes the logical document model of CAD, gives the definition of the
layered document model, and describes the mapping process from the logical
document structure of CAD to the layered structure.

4.1 The layered document model

The document of AutoCAD application is composed of multiple layers (see Fig. 2).
Every Document comprises multiple Layers. Every Layer comprises one or several
simple or complex Entities and Blocks, with each Block comprising one or several
simple or complex Entities. Simple Entity is composed of multiple Vertexes, whose
information can be got by retrieving the attributes information of the Entity.
Designers can release Insert, Delete and Update operation targeted at each layer node
object and the interface operations can be decomposed into multiple operations with
target objects being distributed over different layers. For instance, after a Trim
operation is executed by a Pline object upon another one, the latter Pline object is

1890 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

decomposed into two Pline ones. Thus，the Trim operation should be divided into
the Update and Delete operations of the Vertex object as well as the Insert operation
of a new Pline object (Fig. 3).

Figure 2: The logical document structure of AutoCAD

Figure 3: The Pline object is decomposed into two objects by the Trim Operation

The paper introduces to map the logical document model of CAD into the layered
document model (Fig. 4). In this model, every Node is composed of one or several
Elements, with each Element attached with a linear operation history list indexed by
its timestamp. The unique identifier of every Node Element is defined as
<P1,P2,…,Pi> (1≤i≤5), with Pj (1≤j≤i-1) indicating the index value of the Node’s
parent Node Elements at layer j, Pi indicating the index value of the Element at
current Node. As can be seen in Fig. 4, P1 indicates the index of the Document layer,
P2 indicates the index of the Layer layer, P3 indicates the index of the Block layer, P4
indicates the index of the Entity layer and P5 indicates the index of the Vertex layer.
For example, the Node Element Vertex <2,1,1,2,4> of Fig. 4 indicates the 2th
Document’s 1th Layer’s 1th Block’s 2th Entity’s 4th Vertex.

It must be pointed out that the identifier of the Node Element is relevant with
specific document status. Node Elements may have different identifiers in different
contexts. For example, if a Delete operation is executed on Entity <2,1,1,1> (Fig. 4),

1891Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

the identifier of Entity<2,1,1,2> will change to Entity<2,1,1,1>, and the child Node
Elements of Entity<2,1,1,2> Vertex<2,1,1,2,1>, Vertex<2,1,1,2,2>,
Vertex<2,1,1,2,3> and Vertex<2,1,1,2,4> will change to Vertex<2,1,1,1,1>,
Vertex<2,1,1,1,2>, Vertex<2,1,1,1,3> and Vertex<2,1,1,1,4> respectively.

Figure 4: The layered document model

The Node definition is described in Definition 1 and the Layered Document
Model definition is given in Definition 2.

Figure 5: The Node Element’s Structure

Definition 1: Node
In the layered document model (Fig. 4), Node N is the linear structure {E1, E2, …,

En}, with every Element E=<level, childPtr, entityID, historyPtr ,mark>:

1892 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

1) level: Presenting the layer index of N, with level = 1, 2, 3, 4 and 5, indicating
Document, Layer, Block, Entity and Vertex respectively.

2) childPtr: Indicating the pointer of the direct child Node of the current Node
Element.

3) entityID: The unique identifier of Element E in the local session.
4) historyPtr: Indicating the operation list targeted at current Node Element.
5) mark: Indicating the validity of current Node Element, which can be set as

“effective” or “ineffective”.
Definition 2: Layer-Doc
A Layer-Doc is composed of n Nodes (n is a definite integer). It can be null (n=0),

or be composed of one root Node and k child Layer-Docs, which are not intersected
with one another. We use Layer-Doc to present the unique identifier of a layer
document, use Layer-Doc (P1, P2, …, Pi) to present the unique identifiers of a Node at
layer i+1 (1≤i≤4), with Pj (1≤j≤i) indicating the index value of its parent Node
Element at layer j. For example, the identifier of the Node which includes
Block<1,2,1>, Block<1,2,2> is Layer<1,2>. The Layer-Doc model has the following
characteristics:

1) Every Node Element has one and only one Insert operation;
2) The Insert operations’ timestamps of the child Nodes Elements are always

larger than those of their parent Nodes, which means that only after the generation of
a parent Node can its child Nodes Elements be generated;

3) Before deleting a parent Node Element, its entire child Node Elements must be
deleted previously.

4.2 Mapping the document structure of AutoCAD to the layered structure

The AutoCAD document is stored in its inner database (See Fig.6). In order to
transform it into the layered document structure, the Layers, Blocks, Entities and
Vertexes of it must be mapped into Nodes (which are composed of lists of Elements).
Section 3.2.1-3.2.3 describes the mapping processes of the Layer, Block, Entity and
Vertex objects in AutoCAD document respectively.

Figure 6: The document structure of AutoCAD

1893Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

4.2.1 Mapping the Layer objects into the Nodes Elements

The Layer information is stored in the AcDbLayerTable. Fig. 7 describes the adding
process of Layers in this table. Since Insert records are appended to the
AcDbLayerTable according to the chronological order, we have no methods to
maintain identical AcDbLayerTables in distributed sites if Insert operations arrive in
different order. Take the case in Fig. 8 as an example, after two operations O1 and O2
released from site 1 and site 2 concurrently are executed in both sites(see Fig.8), the
document states are different from each other (see Fig. 9). Therefore, we cannot make
use of the index values of the Insert records in the AcDbLayerTable as the unique
identifiers of different Layers. Additional data structure must be used to maintain the
unique identifiers of different Layers. Fig. 10 describes the process to identify
different Layers by adding an extra linear structure.

Figure 7: the AcDbLayerTable in AutoCAD

Figure 8: the Execution orders of Layer Insert operations

O1=Insert(2,layer1)
O2=Insert(2,layer2)

Site1 Site2

1894 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

Layer Table

Layer 0

My Layer

Layer1

Layer2

Site1

Layer Table

Layer 0

My Layer

Layer2

Layer1

Site2

Figure 9: the Execution results of the Layer Insert operations

 Layer 0

 My Layer

 Layer2

 Layer1

Figure 10: Use the index value of the Layer Insert record in the linear structure as
the Layer’s unique identifier

4.2.2 Mapping the Block and Entity objects into the Nodes Elements

The Block information is stored in the AcDbBlockTable, which provides
AcDbBlockTableRecordIterator to achieve the information of every Block. Each
Block contains one or several Entities or nested Blocks. Here we still use the index
value of every Insert record of Blocks in the linear structure as the unique identifiers
of the objects (see Fig. 11).

Figure 11: Use the index value of the Block Insert operation in the linear structure as
the Block’s unique identifier

The Entity information is stored in MODEL_SPACE of AcDbBlockTableRecord,
which provides AcDbBlockTableRecordIterator to get access to each Entity. Entities

1895Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

have one or several attributes, with Color, Linetype, Linetype scale, Visibility, Line
weight, and so on as the common ones and one or several specific ones. For example,
Circle Entity has the attributes of Center and Radius etc. and Line entity has the
attributes of StartPoint, EndPoint and Thinkness, etc.

4.2.3 Mapping the Vertex objects into the Nodes Elements

The Vertex belongs to the geometrical feature of the Entity, which is not stored in
tables (like the Layer, Block and Entity objects). AutoCAD provides the
getSubentPathsAtGsMarker function to get the AcGi pointer so that Vertex
information can be accessed by using this pointer. When executing Update operation,
the unique identifier of the Vertex of the target object is accessed by using the
getSubentPathsAtGsMarker function. The getSubentPathsAtGsMarker function is
declared as following:

pEnt->getSubentPathsAtGsMarker(AcDb::kVertexSubentType, marker,
pickpnt, xform, numIds, subentIds);

Parameter AcDb::kVertexSubentType indicates the sub-entity types with desirable
values of Vertex, Edge, etc.; Pickpnt and Xform provide some extra information for
some Entities types such as mplines etc.; numIds stores the number of the vertexes
which are to be inquired, and subentIds points to the handler of the Vertexes. The
following procedure describes the process to get access to the Vertex identifiers and
how to map them into the linear structure.

Procedure 1 Map2Linear()
Map the Vertexes of Entities from the AutoCAD storage structure into the linear
structure
1:AstNode *vertex=new AstNode[100];
2: int marker;
3:AcGePoint3d pickpnt;
4:AcGeMatrix3d xform;
5:int numIds;
6:AcDbFullSubentPath *subentIds;
7:pEnt->getSubentPathsAtGsMarker(AcDb::kVertexSubentType, marker, pickpnt,
xform, numIds, subentIds);
8:for (int i = 0;i < numIds; i++) {
9: AcDbEntity *pEntCpy = pEnt->subentPtr(subentIds[0]);
10: AcDbObjectId objId;
11: vertex[i]=objId;
12: }

5 Improved consistency maintenance algorithm based on AST

AST [Gu et al.,2005] is a consistency maintenance algorithm used in text editor. The
AST strategy retraces the document’s address space to the state at the time of the
operation’s generation when concurrent operations are executed. In that state, the
index of the object of the operation can be discovered immediately. The retrace

1896 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

process does not affect the order of the objects in the linear document, but determines
the position of the target object of a new operation.

The AST algorithm assumes a document as a linear structure composed of
characters. Each character may have one or several operations targeting at itself while
each operation targets at only one character. The operation together with its
timestamp is saved in the character’s node of the linear structure. Apart from the
information of the characters and corresponding operations, effective/ineffective mark
information is also appended to every node in the linear structure. In order to adapt
the AST strategy to the layered document model, modification of it must be proposed.

5.1 The Layer-AST algorithm

In the Layer-Doc model, the retracing process of AST strategy doesn’t need to cover
all the objects of the document, but only the parent Nodes and the current Node of the
target object of an operation O. The purpose of the retracing process is to retrace the
state of the parent Nodes (from layer 1 to level(NODE)-1) to the state where O is
generated. Only one Node at each layer needs to be concerned with during the
retracing process, thus improving the algorithm efficiency dramatically. If one Node
Element is marked as ‘Ineffective’, all of its children Node Elements are marked as
‘Ineffective’ implicitly. The purpose of the retracing process is to mask the execution
effect of concurrent Insert and Delete operations of operation O. The Update
operation is not considered here since it doesn’t influence the index value of the Node
Elements. Suppose the timestamps of the Insert and Delete operations are SVins and
SVdel respectively, the retracing process judges the validity of Node N according to
the following conditions [Gu et al.,2005]:

1) If SVins ≥ SVo, N is set as Ineffective;
2) If SVins ≤ SVo, and there is not Delete operations targeted at Node N, N is set as

Effective;
3) If SVins ≤ SVo and SVdel ≥ SVo, N is set as Effective;
4) If SVins ≤ SVo and SVdel ≤ SVo, N is set as Ineffective.
As for the Insert and Delete operation attached with Element E, SVins and SVdel

must satisfy SVins≤ SVdel, therefore, the conditions of SVins ≥ SVo and SVdel ≤ SVo
don’t exist. If several Delete operations are targeting at N, N is set to Ineffective if
one of the Delete operations satisfies that SVdel ≤ SVo. It is easy to conclude that the
operations after SVo don’t influence the mark of the Node. Therefore, if SV is
constant, the mark of the Node Element is also definite.

The retracing process of the Layer-Doc is described in procedure 2, with Fig. 12
describing an example of two concurrent Update and Delete operations.

1897Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

D1 D2 D3

L1,1 L1,2 L2,1 L2,2

B1,2,1 B1,2,2 B2,1,1

L2,3

E1,2,2,2 E1,2,2,3E1,2,2,1 E2,1,1,1E2,1,1,1

V1,2,2,2,2V1,2,2,2,1 V2,1,1,1,2V2,1,1,1,1 V2,1,1,1,4V2,1,1,1,3

O1=Delete(2,1,1,1)

D1 D2 D3

L1,1 L1,2 L2,1 L2,2

B1,2,1 B1,2,2 B2,1,1

L2,3

E1,2,2,2 E1,2,2,3E1,2,2,1 E2,1,1,2E2,1,1,1

V1,2,2,2,2V1,2,2,2,1 V2,1,1,2,2V2,1,1,2,1 V2,1,1,2,4V2,1,1,2,3

O1=Update(2,1,1,2,2)

O1

O2

D1 D2 D3

L1,1 L1,2 L2,1 L2,2

B1,2,1 B1,2,2 B2,1,1

L2,3

E1,2,2,2 E1,2,2,3E1,2,2,1 E2,1,1,1E2,1,1,1

V1,2,2,2,2V1,2,2,2,1 V2,1,1,1,2V2,1,1,1,1 V2,1,1,1,4V2,1,1,1,3

O1=Delete(2,1,1,1)

O1

O2

Figure 12: The retracing process of an Update operation

Procedure 2 Retracing_LayerDoc (Layer-Doc, level, SVo, O),
Retrace the document status of Layer-Doc to status when O is generated
// Check the validity of every Element at every Layer Node from up to down of the
Layer-doc
//Suppose O.pos={p1,p2,…,pn-1, pn}
1: If level==length(O.pos)
2: Return;
3: for every element Ei of Layer-Doc {
4: Set Ei ineffective;
5: Consider the Insert Oins of Ei, if Oins is timestamped by SVOins and SVOins≤
SVo {
6: set Ei effective;
7: }
8: For each Delete Odel of Ei {
9: if Odel is timestamped by SVOdel and SVOdel ≤ SVo {
10: set Ei ineffective
11: }
12: }
13: Count the effective Elements from left to right of the Layer-Doc to find out

1898 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

the p[level] Element, and indicate it as E[p[level]];
14: Layer-Doc=E[p[level]].childPtr;
15: Retracing (Layer-Doc, level+1, SVo, O)
16: }

In Fig.12, O1 and O2 are two concurrent operations released from two sites. After

O1 is executed at site1, the object E<2,1,1,1> is set to be ineffective, so that the
identifiers of E<2,1,1,2> and its child Nodes Elements V<2,1,1,2,1>, V<2,1,1,2,2>,
V<2,1,1,2,3> and V<2,1,1,2,4> turn to be E<2,1,1,1>, V<2,1,1,1,1>, V<2,1,1,1,2>,
V<2,1,1,1,3> and V<2,1,1,1,4> respectively. If no strategy is adopted to guarantee the
consistency, the object (V<2,1,1,2,2>) of operation O2 cannot be targeted at correctly.

5.2 Efficiency analysis of the improved algorithm

Procedure Retracing_LayerDoc (Layer-Doc, level, SVo, O) process retraces the
document status to SVo. The retracing process doesn’t need to cover all Elements of
the Layer-Doc, but cover only one Node of each layer. Therefore, the algorithm
efficiency is improved dramatically.

Suppose the average length of very Node is h, which implies that there are h
Elements that need to be checked to be set the ‘Effective’ or ‘Ineffective’ mark.
Suppose the operation number of every Node Element is d, which implies that the
check cost of every Element is O(d). Thus, the efficiency of retracing a Node can be
defined as O(d·h) and the whole efficiency of the retracing process is O(h·level·d),
where the value of level is decided by the layer of operation O.

The retracing process used in AST needs to check all the Elements at the bottom
of the layered document. According to the assumption of the length of every Node,
the Elements of the bottom layer is hlevel-1, therefore, the retracing process of AST is
O(hlevel-1·d), which is definitely higher than that of the retracing process of Layer-
AST.

6 Operation adaptation

This section describes the definitions of primitive operations of CAD environment,
the extension of Layer-AST algorithm to support Update operation, and the conflict
definition and solution in the layered document model. This section also describes the
procedure to get the parameters of the primitive operations based on the database
listening technique.

6.1 Primitive operations of CAD

All the objects in the CAD environments can be mapped into Nodes Elements of the
layered document model, with <P1, P2, …, Pn> as the unique identifier of the object.
Based on this address space, three primitive operations are defined as follows:

1) Insert(P, type, param): Insert an object at the Pth position, with type indicating
the object type, and param indicating the parameters of the objects;

2) Delete(P, type, param): Delete the object at the Pth position, with type
indicating the object type, and param indicating the parameters of the objects;

1899Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

3) Update(P, key, old_val, new_val): Modify the value of the key of the Pth
position from old_val to new_val, with key indicating the attribute type, such as
Color, Position, etc. and old_val and new_val indicating the attribute values before
and after the Update execution respectively.

Here, ‘.’ is used to indicates the parameter of a certain operation. For instance, O.P
indicates the position parameter of operation O; O.type indicates the type of operation
O. The above definitions can support both Do and Undo operations, since the type,
param, old_val, and new_val are stored in the Delete and Update operations,
providing necessary information to define the inverse operations of those operations.
The inverse operations of the three operations are defined as follows:

1) I n s e r t (P, type, param)=Delete(P, type, param);
2) D e le te (P, type, param)=Insert(P, type, param);
3) U pdate (p, key, old_val, new_val)=Update(p, key, new_val, old_val).

6.2 Conflict resolution of the Update operation

After a remote Update operation arrives, if it satisfies the causally- ready
precondition, Retracing (Layer-Doc, 1, SVo, Update) process will first be called, and
the target object is found according to O.P (Fig. 13). Only Insert and Delete
operations are handled in Retracing process, where the intention conflict of Update
operations is not detected, So Update conflict detection and resolution technique must
be discussed in addition. Firstly, let’s have a look at the conflict definition in OT
framework [3,4].

Definition 3: Conflict Operation (⊗)[Sun and Sun,2004]
Two Update operations Ua and Ub conflict with each other (indicates as Ua ⊗ Ub),

iff: (1) Ua || Ub; (2) Ua and Ub are manipulating the same objects (Ua.P=Ub.P); (3) Ua
and Ub are modifying the same attribute type (Ua.key = Ub.key).

All the objects in the OT framework are located at the same layer. Therefore, the
execution of one operation cannot influence the attributes of other objects. However,
in the Layer-doc model, the operation’s execution of the parent node object can also
influence the status of its child nodes. In Fig. 13, O1, O2, O3 are concurrent with one
another (that’s O1||O2||O3). Since they are not targeting at the same object, according
to definition 3, they do not conflict with each other and can be executed in any order.
However, as you can see from Fig. 13, different execution orders lead to different
execution results. The Move operation targets at E<1,2,1,1> also changes the position
attribute of V<1,2,1,1,2>. Therefore, different execution orders of operation O2 and
O3 result in different execution results (see Fig. 13). Thus, new conflict definition
must be given in the Layer-doc model.

1900 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

(a) The initial document status (b) The initial layered document model

(c) Execute Orders of different operations at three sites

Figure 13: Update conflict of the Layer-Doc Model

Definition 4: Conflict Operation of the Layer-Doc
Two Update operations Ua and Ub conflict with each other (indicates as Ua ⊗ Ub),

iff: (1) Ua is concurrent with Ub (i.e Ua || Ub); (2) one of the following condition
occurs: (a) Ua and Ub are targeting the same object’s same attribute (i.e Ua.P=Ub.P and
Ua.key=Ub.key); (b) one of the operations Ua and Ub (without generalization, we take
Ua as the example) is targeting at an object which is the parent Node Element of
another operation (i.e Ua.P locates at the parent node of Ub.P) and the semantic
meaning of Ua.key covers that of Ub.key(for example, the Move operation and
Update(Position) operation). As for the two conditions, we still use Ua ⊗ Ub to
indicate the first one, while use Ua ⊗ Ub to indicate the second one.

The paper introduces to use Child-precedence strategy to solve the conflict of the
second condition. If two Update operations Ua and Ub satisfy that Ua ⊗ Ub, we define
that the priority of Ub is always higher than Ua. Since Ub needs to be executed in the

O1

Site1 Site2 Site3

O3 O2

O1= Update(Pos(1,2,1,1),Color, Red, Blue);
O2= Update(Pos(1,2,1,1), Move, (-10,0,0));
O3=Update(Pos((1,2,1,1,1), Position, (140,44,0),(120,59,0));

1901Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

context where Ua hasn’t been executed, aU must be executed firstly to exclude the
execution effect of Ua, and then Ub and Ua are executed sequentially. The Conflict
resolution process is described in procedure 3.

Procedure 3 Execute(Layer-Doc, level, SV, U),
Execute Update operation U with layer level and status SV.
//Suppose U.pos={p1,p2,…,plevel-1, plevel }
// Retraceing_LayerDoc procedure is called firstly to retrace the document status to
the moment where U is generated, so that the execution effects on the position of all
concurrent Insert and Delete operations are hidden.
1: Retracing(Layer-Doc, level, SV, U);
//Judge whether there are operations targeting at the parent Nodes Elements of U
that are conflict with it. If there are, a temp structure is defined to save these
operations;
2: OperationNode *tempUpdate[100];
3: int counter=0;
4: for (int i=1;i<level;i++) {
5: Node-Element ele=Layer-Doc[U.pos[i]];
6: for each operation Up of ele {
7: if (Up ⊗ U) {
8: if (Up.element<>tempUpdate[counter].element) // indicate that there are
many conflict operations of U. So that, the latest Update operation should be
replaced
9: counter++;
10: tempUpdate[counter]=&Up;
11: }
12: }
13: }
14: if (counter==0) { //if there are no conflict operations of parent Node
15: Execute(Layer-Doc, U);
16: } else

 { //Undo all the conflict operations from top to down of the Layered-doc
17: for (int j=1; j<=counter; j++) {
18: Execute(Layer-Doc, []tem pUpdate j); // Execute the reverse operation of
tempUpdate[j];
19: }
20: Execute(Layer-Doc, U);
21: for (j=counter; j>=1; j++) { //Execute Update operations from top to down
22: Execute(Layer-Doc, tempUpdate[j]);
23: }
24; }

We take the scenario described in Fig. 14 as the example to describe the conflict

resolution process. In Fig. 14, there are four Update operations: U1, U2, U3 and U4,
which satisfy that U1->U3, U2||U3, U1 ⊗ U4, U3 ⊗ U4 and U4 ⊗ U5. Then the Execute
() process is described as follows:

1902 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

1) tempUpdate construction process：
(1) i=1:
Variable ele points to E1, and all the operations of E1 will be compared with U5 to

judge the conflict relationship;
Since U1 ⊗ U5, tempUpdate[1]=&U1;
Since U3 ⊗ U5, and U3 and tempUpdate[1] points to the operation of the same

Node element, so that tempUpdate[1] is replaced with &U3;
(2)i=2:
Variable ele points to E2, and all operations of E2 will be compared with U5 to

judge the conflict relationships;
Since U4 ⊗ U5, tempUpdate[2]=&U4;

2) Undo process of tempUpdate:
(1) j=1: Execute (

3
U);

(2) j=2: Execute (
4

U);
3) Execute U5;
4) Re-execute tempUpdate:

(1) j=2: Execute (U4);
(2) j=1: Execute(U3);

⊗
⊗
⊗

Figure 14: Scenario of conflict Update operations

During the construction process of tempUpdate, only one element of tempUpdate
can point to one operation of every Node Element. If multiple operations satisfy the
conflict condition, only the last operation can be appended to the tempUpdate list,
since the execution effects of other Update operations with the same key have already
been reflected within the last operation.

6.3 Capture of interface operations

TA technology depends on the API interface of the application to capture the local
operations and complete execution of remote operations. AutoCAD provides twelve
types of reactors to capture message: AcApDocManagerReactor,
AcApLongTransactionReactor, AcDbDatabaseReactor, AcDbEntityReactor,
AcDbLayoutManagerReactor, AcDbObjectReactor, AcDbSummaryInfoReactor,
AcEdInputContextReactor, AcEditorReactor, AcRxDLinkerReactor,

1903Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

AcRxEventReactor, AcTransactionReactor. Different reactors are responsible for
listening to different states of AutoCAD. For example, AcDbDatabaseReactor is used
to listen to the changes of the entities in the database, including objectAppended,
objectModified, objectErased; AcEditorReactor is used to listen to the interface
operations, including commandWillStart, commandEnded, commandFailed,
commandCancelled, etc. TA technology mainly uses these two reactors.

At the beginning of the collaboration session, every application instance will be
attached with a command reactor. After the reactor captures the commandWillStart
message, a database reactor will be invoked so as to get the detail information about
the operation, such as the operation type (Insert, Delete, Update), operation
parameters (entity types, values), etc. If an operation is captured as an Update
operation, all the entities’ information of the layer of current BlockTable is copied in
order to get the old_val parameter of the Update operation (see Fig. 15).

Collaboration Start

Add Command Reactor

Start Command Listening

CommandWillStart?

Y

N

Add Database Reactor

Start Database Listening

Update Operation?

N
Get the detailed information about the

operation according to the captured
handler

Y

Backup the blockTable

Version Comparison to get the
old_val and new_val of the Update

operatoin

Remove Database Listening

Remove Command Reactor

Collaboration End

Figure 15: Control flow of database listening process

1904 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

The database reactor is responsible for listening to the message types
(objectAppended, objectModified and objectErased). If the message is
objectAppended or objectErased, the entity types information got from
commandWillStart message is achieved and we make use of AcDbObject pointer
pObj to get the attributes values of the inserted entities (Take LINE as the example,
startPoint, endpoint and Color attributes will be got); If the message is
objectModified, the old_ val of the Update operation will be got from the block copy,
while the new_val of it will be got from the current block.

7 The Co-AutoCAD system

The Co-AutoCAD system is designed based on the TA technology and its
corresponding key aspects discussed in Section4, 5 and 6. The system is composed of
two components: CoAutoCADServer and CoAutoCADClient(see Fig. 16), where the
former is responsible for document storage, session management (including session
startup, document upload and download etc.) and the latter responsible for the
coordination between the CoAutoCADServer and the client applications, the control
of the document upload and download process, startup of the client applications and
load of CoDesign Kernel module etc. During the editing session, the
CoAutoCADClient manages the collaboration process through its sub-module
CoDesign Kernel, which completes the following functions: interception,
decomposition, execution and broadcast of user interface messages as well as
reception, transformation and execution of remote operations.

Up
l o

ad
/ D

ow
nl

oa
d

* .
dw

g

Upl oad/ Downl oad * . dwg

Figure 16: The system architecture

7.1 Interaction between CoAutoCADServer and CoAutoCADClient

The CoAutoCADServer manages all the design documents and provides the file
upload and download services for CoAutoCADClient. It is also responsible for the

1905Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

coordination of each client since only when all the participants are ready for the
collaboration can the CoAutoCADServer start up the edit session.

As can be seen from Fig. 17, user name and password are first required to be
transmitted to the server and only the valid user can enter the waiting list. Before the
collaboration begins, collaboration participants can query the file list of editable
documents from the server and download one of them. The server traces the file
download requests and constructs the participants’ list according to these requests (all
the users downloading the same document are classified as one work team). Every
participant can query the information of other ones by interacting with the Server
(getclientlist). After one participant assumes that all the other participants are ready, it
releases negotiate request to the server. And after the server receives this message, it
denies the download requests from any client, so that new users are not allowed to
enter into the collaboration session. The Server delays the response of the negotiate
request (clientinfolist) until it receives all the negotiate requests of all participants.
After all participants receive the clientinfolist response, they construct the P2P
network of participants, load the CoDesign Kernels and switch on the collaborative
design process. After the design session ends up, participants send endedit message to
the Server, which responds with commit message to the last participant notifying it to
upload its local document.

Figure 17: Interactions between the Server and the Client

7.2 The CoDesign Kernel

The CoDesign Kernel is the core module of the Co-AutoCAD system, which is

1906 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

responsible for managing the collaborative design process. It’s composed of three
layers: CoAdapter, Coordinator and Engine layers.

The CoAdapter layer is responsible for intercepting the user interface messages by
using COM/ObjectARX interface of AutoCAD application, decomposing these
messages into primitive ones, mapping their address formats into those that can be
used by the Layer-AST algorithm, and completing the actual execution of remote
operations on the local shared document.

The Coordinator layer is devised to append the timestamps to all the transformed
operations and broadcast them to all the other participants, to receive remote
operations from the network, to forward these operations to the Engine layer so that
Layer-AST algorithm can be called to retrace the document to the state where these
operations are released, and to transform them into those that can be executed by
calling the COM/ObjectARX interface of AutoCAD. Figure 18 gives a brief
description of the interaction process of the three layers.

Autocad

CoAdapter

1

0

Coordinator

2

Engine

3.1

Autocad

CoAdapter

Coordinator

Engine

3.2

4

5

6

7

8

Figure 18: The architecture of the CoDesign Kernel

7.2.1 The CoAdapter layer

When the CoAdapter layer intercepts the user interface messages, it transforms them
into primitive ones and transfers the transformed ones to the Coordinator layer, which
broadcasts them to the other participants through the network. As a sequence, the

1907Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

Coordinator layer transfers those operations to the Engine layer so that these
operations can be executed on the layered document model. Besides that, the
CoAdapter layer is responsible for executing the remote operations transferred from
the Coordinator layer, so that the execution effect of other participants’ operations can
be reflected on the local document state.

The transformation objects of the CoAdapter layer on the user interface operations
include the following:

1) Command set. AutoCAD has a rich set of commands, including create a circle,
create a line, change color, modify line and so on. The Engine layer, however, has
relatively limited operation types. For example, the Create operation in the Engine
layer is formatted as Create:<ADDRESS>;<TYPE> where parameter <TYPE> is used
to indicate the object type what is to be created. In order to adapt the AutoCAD’s
command set to the Engine’s operation set, map matrix must be constructed between
them by the CoAdapter layer.

 2) Address space. AutoCAD uses random space (a long integer or a string) to
differentiate every entity. The modification of the entity is also based on this address
space. The Engine layer, however, uses the position information of every entity in the
layered document as the unique identifier. So that, the CoAdapter layer must complete
the transformation between these two address spaces.

The external interfaces and their descriptions the CoAdapter layer provides are as
follows:

Interface 1 bool Exec(const std::vector<tstring>& ops, tstring timestamp)
Execute remote operations ops.
After the Coordinator layer monitors remote operations ops, it forwards them to
the Engine layer so that current document status can be retraced to that when these
operations are released. And after that, the Coordinator layer calls this function to
complete the actual execution on the local shared document.
Parameters：
ops: the operations which the Coordinator layer has received and which the Engine
layer has transformed against current document status.
timestamp: the timestamp attached to the operations ops.
Return value：
Return value “True” indicates that it has been executed successfully on the local
site.

Interface 2 bool Lock()
Lock the user interface of AutoCAD so as to prevent new operations’ releases
When the Coordinator layer receives causally-ready operations from remote sites,
before it forwards these operations to the Engine layer, it must call Adapter.Lock to
lock the local user interface so as to guarantee the invariance of the operations’
execution environment.
Parameters: Null
Return value:
Return value “True” indicates that the user interface has been locked successfully.

1908 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

7.2.2 The Coordinator layer

The Coordinator layer is responsible for performing the following operations as for
the primitive operations transmitted from the CoAdapter layer:

1) Call the corresponding function in the Engine layer to execute these operations
on the layered document model and return the current timestamp.

2) Attach the current timestamp to these operations and broadcast them to other
sites.

The external interface functions and their descriptions provided by the
Coordinator layer are as follows:

Interface 3 tstring Broadcast(const std::vector< tstring >& ops)
It is called after the CoAdapter layer transformed the user interface commands
(local operation) into primitive ones.
Primitive operations ops are executed in the Engine layer, and then the operations
attached with current timestamp will be broadcasted to other participants.
Parameter:
ops：Primitive operations to be broadcasted to remote sites.

Return value：
The current timestamp which indicates the document status when the user
commands are released.

7.2.3 The Engine layer

The Engine layer is responsible for consistency maintenance and it is implemented
with the Layer-AST strategy. The main functions of the Engine layer include the
following:

1) Execute the operation on the layered document model, and return current
timestamp.

2) Judge whether a remote operation can be executed or not.
3) As for remote causally-ready operation, control the retrace process of the

document and perform corresponding operation transformation.
The external interface functions and their descriptions provided by the Engine

layer are as follows:

Interface 4 std::basic_string<TCHAR> Exec(
const std::vector< std::basic_string<TCHAR> >& ops)

As for local operation, this interface is invoked in function Coordinator.Broadcast.
Execute the operation ops on the layered document model and return the current
timestamp.
Parameters:
ops: Operations, which have been transferred by the Coordinator layer and which
are to be executed in the Engine layer.
Return value:
The current timestamp which indicates the document status when the user
commands are released.

1909Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

Interface 5 bool Executable(std::basic_string<TCHAR> stamp)
Before the Coordinator layer executes a remote operation, it calls this function to
judge whether the operation is causally-ready.
Judge whether a remote operation attached with timestamp stamp satisfied the
execution condition. It realizes this function by comparing the stamp with current
timestamp. If one and only one component of the former is larger by 1 than that of
the latter and all the other components are little than those of the latter, such
operation with this timestamp is thought to be ready for execution.
Parameters:
stamp: Timestamp attached to the to-be-judged remote operation.
Return value:
Return value “True” indicates that the operation is ready for execution.

Interface 6 std::vector< std::basic_string<TCHAR> > Trans(

const std::vector< std::basic_string<TCHAR> >& ops,
std::basic_string<TCHAR> stamp)

Before the Coordinator layer executes remote operations, the operations should first
be transformed into the formats that can be executed in current document status.
Transform remote operations according to its timestamp stamp against current
document status so that the transformed operation can be executed in current
document status.
Parameters:
ops: remote operations which are to be transformed.
stamp: the timestamp of remote operations ops.
Return value:
The transformed operation.

8 Conclusions and Future Work

The paper analyses the data model of the AutoCAD application and puts forwards to
mapping it into the layered document model so as to reduce the number of the nodes
to be retraced, thus improving the algorithm efficiency. Update conflict definition and
resolution strategy in layered document model are also discussed. As for the issue of
operation adaptation, the paper introduces using database listening technique and
comparison of old and new document to capture the user interface operations and
their corresponding parameters. Besides that, the paper gives detailed description
about the Co-AutoCAD system architecture which uses the TA technology and the
whole strategy discussed in this paper.

In the future, more research work will be done to tackle with the distributed
consistency of three-dimensional objects of the CAD applications. New consistency
model and algorithm will be discussed in order to be adapted to the new environment.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC)
under Grant No.60803118 and No. 60736020, "Chen Guang" project supported by
Shanghai Municipal Education Commission and Shanghai Education Development

1910 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

Foundation under Grant No.10CG49, the 2010 Special Fund for Cultivate Research of
Shanghai College to Select Outstanding Young Teacher under Grant No. SLG10007,
the 2010 Special Project for Manufacturing Informatization of Shanghai "Science &
Technology Innovation Action Plan" under Grant No. 10dz1125600 and Key
Laboratory Funding of Science & Technology Commission of Shanghai Municipality
under Grant No.10DZ2272600.

References

[Dewan and Sharma, 1999] Dewan, P., An experiment in interoperating
heterogeneous collaborative systems. In: Proceedings of the Sixth European
Conference of Computer Supported Cooperative Work (ECSCW’99), 1999: 371–
391.

[Ellis and Gibbs, 1989] Ellis, C. A. and Gibbs S. J., Concurrency control in
groupware systems. In: Proceedings of the 1989 ACM SIGMOD international
conference, 1989: 399-407.

[Gao et al., 2008] Gao, L. Shao, B., Zhu, L. Lu, T. and Gu, N., Maintaining Time and
Space Consistency in Hybrid Engineering Environments: Framework and Algorithms.
In Journal of Computers in Industry, Volume. 59 (2008), Issue. 9 : 894–904.

[Gu et al., 2005] Gu, N. Yang, J., Zhang, Q., Consistency maintenance based on the
mark & retrace technique in groupware systems. In: Proceedings of the international
ACM SIGGROUP conference on Supporting group work, 2005: 264-273.

[Gutwin et al., 2008], Gutwin, C., Greenberg, S. Blum, R., Dyck, J., Tee, K. and
McEwan, G., Supporting Informal Collaboration in Shared-Workspace Groupware. In
Journal of Universal Computer Science, vol. 14, no. 9 (2008): 1411-1434.

[Kell, 2008] Kell, S., A Survey of Practical Software Adaptation Techniques, In
Journal of Universal Computer Science, vol. 14, no. 13 (2008): 2110-2157.

[Herskovic et al., 2011] Herskovic, V., Ochoa, S., Pino, J.A., and Neyem, A., The
Iceberg Effect: Behind the User Interface of Mobile Collaborative Systems, In Journal
of Universal Computer Science, vol. 17, no. 2 (2011): 183-202.

[Knister and Prakash, 1990] Knister, M.J. and Prakash, A., DistEdit: A distributed
toolkit for supporting multiple group editors, in: Proceedings of ACM Conference on
Computer Supported Cooperative Work, 1990: 343–355.

[Krebs et al., 2003] Krebs, A.M., Ionescu, M. Dorohonceanu, B., Marsic, I., The
DISCIPLE System for Collaboration over the Heterogeneous Web. In: Proceedings of
the 36th Annual Hawaii International Conference on System Sciences, 2003: 11-21.

[LaMarca et al., 1999] LaMarca, A., Edwards, W.K., Dourish, P., Lamping, J.,Smith,
I., Thornton, J., Taking the work out of workflow: Mechanisms for document-
centered collaboration. In: Proceedings of the Sixth European Conference on
Computer-Supported Cooperative Work (ECSCW’99), 1999: 1–20.

1911Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

[Li and Li, 2004] Li, D., Li, R., Preserving operation effects relation in group editors.
In: Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW‘04), 2004: 457–466.

[Li and Li, 2002] Li, D., Li, R., Transparent sharing and interoperation of
heterogeneous single-user applications. In: Proceedings of the ACM Conference on
Computer-Supported Cooperative Work, 2002: 246-25.

[Li and Lu] Li, D., Lu, J., A Lightweight Approach to Transparent Sharing of
Familiar Single-User Editors. In: Proceedings of ACM Conference on Computer-
Supported Cooperative Work, 2006: 139–148.

[Lin et al., 2007] Lin, K., Chen, D. Xia, S., Sun, C., API design recommendations for
facilitating conversion of single-user applications into collaborative applications. In:
International Conference on Collaborative Computing: Networking, Applications and
Worksharing, 2007: 309-317.

[Palfreyman et al., 1999] Palfreyman, K., Rodden, T., Trevor, J., PSI: A platform for
shared interaction. In: Proceedings of the Sixth European Conference of Computer
Supported Cooperative Work (ECSCW’99), 1999: 351–370.

[Shen et al., 2007] Shen, H., Sun, C., and Zhou, S., Leveraging Single-user
OpenOffice Writer for Collaboration by Transparent Adaptation. In: the 8th ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2007: 15-20.

[Sun et al., 1998] Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D., Achieving
convergence, causality- preservation, and intention-preservation in real-time
cooperative editing systems. In ACM Trans. Comput. Hum. Interact. 5 (1998) :63–
108.

[Sun and Sun, 2006] Sun, D., Sun, C., Operation context and context-based
operational transformation. In: Proceedings of the 2006 20th Anniversary Conference
on Computer Supported Cooperative Work, Banff, 2006: 279–288.

[Sun et al., 2006] Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. and Cai, W.,
Transparent adaptation of single-user applications for multi-user real-time
collaboration. In ACM Transactions on Computer-Human Interaction(TOCHI), 2006,
13(4): 531-582.

[Xia et al., 2004] Xia, S., Sun, D., Sun, C., Chen, D. and Shen, H., Leveraging Single-
User Applications for Multi-User Collaboration: the CoWord approach. In:
Proceedings of the 2004 ACM conference on Computer supported cooperative work,
2004: 162-171.

[Yang et al., 2005] Yang, J., Zhang, Q., Gu, N., Yang, G., Liu, Z., The multi-version
and single-display strategy in undo scheme. In: The Fifth International Conference on
Computer and Information Technology, 2005: 290–296.

[Zheng et al., 2009] Zheng, Y., Shen, H., Sun, C., Leveraging single-user AutoCAD
for collaboration by transparent adaptation. In: Proceedings of International
Conference on Computer Supported Cooperative Work in Design, 2009: 78-83

1912 Gao L., Lu T.: Achieving Transparent and Real-time Collaboration ...

