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Abstract: Snort is the most widely deployed network intrusion detection system (NIDS) 
worldwide, with millions of downloads to date.  PC-based Snort typically runs on either Linux 
or Windows operating systems.  In this paper, we present an experimental evaluation and 
comparison of the performance of Snort NIDS when running under the two newly released 
operating systems of Windows 7 and Windows Server 2008.  Snort's performance is measured 
when subjecting a PC host running Snort to both normal and malicious traffic.   Snort's 
performance is evaluated and compared in terms of throughput and packet loss.  In order to 
offer sound interpretations and get a better insight into the behaviour of Snort, we also measure 
the packet loss encountered at the kernel level.  In addition, we study the impact of running 
Snort under different system configurations which include CPU scheduling priority given to 
user applications or kernel services, uni and multiprocessor environment, and processor 
affinity. 
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1 Introduction  

Network intrusions are among the critical security threats that security administrators 
worry about on a regular basis. Such breaches can potentially expose sensitive and 
proprietary data to the outside world. Monitoring the network for signs of intrusion is 
essential for security protection. Network Intrusion Detection System (NIDS) has 
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been developed in response to the increasing number of attacks or malware that can 
misuse the networks. They become vital components of today's network security 
infrastructure. These NIDSes provide a layer of defense which reads all incoming 
packets and tries to find suspicious patterns known as signatures or rules.  Intrusion 
detection techniques can be either anomaly detection or misuse detection techniques. 
Anomaly-detection first establishes a normal behaviour pattern for users, programs or 
resources in the system, and then looks for deviation from this behaviour [Lan (03)]. 
On the other hand, misuse (or signature-scan) detection techniques passively monitor 
traffic seen on a network and detect an attack when patterns within the packet match 
predefined signatures in a database.  

Commercial NIDSes often have high monetary cost (thousands of dollars at 
minimum, tens or even hundreds of thousands in extreme cases).  Snort [Snort (08a)] 
is a popular lightweight open-source signature-scan based attack detection tool that is 
publicly available. In fact, it is the most widely deployed intrusion detection 
technology worldwide, with millions of downloads to date, and it has become the de 
facto standard for the industry [Snort (08a)].  Snort is typically a PC-based NIDS, but 
also can be integrated in third-party solutions. Typically, a NIDS is installed on the 
edge of a network and performs deep packet inspection on every packet that enters the 
protected network [Lan (03)] against several thousands of attack signatures. The 
signatures are represented as a set of rules which are frequently updated by the 
security community. Snort can filter packets based on predefined rules. Each Snort 
rule operates first on the packet header to check source and destination IP  addresses, 
ports, protocols, etc. If the packet matches a certain header rule, then its payload is 
examined against a set of predefined patterns. 

For a PC-based solution, Snort can run on top of many platforms such as Linux, 
FreeBSD, and Windows. The preferred choice of the operating system for running 
Snort NIDS, in today’s local area networks of private homes and small- to medium-
sized enterprises, is either Linux or Windows.  These two platforms are the most 
widely used for running PC-based high-end servers. In prior work [Salah (05)], the 
performance of Snort under Windows Server 2003 and Linux  has been studied.  In 
this paper, Snort has been empirically evaluated under the two newly released 
operating systems of Windows 7 and Windows 2008 server. More specifically, the 
performance of Snort under these two operating systems has been evaluated under UP 
(uni-processing) and SMP (symmetric multiprocessing) environments, when 
subjecting Snort to both normal and malicious traffic at different traffic rates.   

Under an SMP environment, we investigate the performance of Snort with static 
and dynamic affinity.  The Windows default is dynamic affinity.  With dynamic 
affinity, the affinitzation (or assignment) of Snort to a particular processor is left to 
the kernel.  In this situation, the affinitaizaion is dynamic and there is no guarantee 
that the execution of Snort will be tied (or affinitized) to a particular processor. With 
static affinity, the affinitization is fixed, and the execution of Snort will always be tied 
to a particular processor.  For Snort, static affinity can be preferable over dynamic 
affinity.  The reason is that Snort is a single threaded application, and thereby running 
on the same processor would minimize its context switching which will result in 
better utilization of the processor’s cache or a significant reduction in cache pollution. 

The increasing traffic of today's link speeds that go up to tens of Gbps (Gigabits 
per second) has heightened the need for Snort to be highly effective. The implication 
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of not doing so can be detrimental, risking the security of the internal network. An 
intrusion detection system that fails to perform packet inspection at the required rate 
will allow packets to enter the network undetected. Several studies in the literature 
addressed the performance limitations of Snort and proposed techniques to boost its 
overall performance.   In [Abbas (02) and  Vermeiren (04)], a preliminary study was 
done to design Snort as a multi-threaded application that takes advantage of today's 
multi-core architecture.  In [Turnbull (07) and Geschke (06)], some improvement in 
Snort's performance was achieved by offloading some of Snort's essential functions 
involving alerting and logging, thereby freeing Snort to focus on the primary function 
of packet inspection.  In [Aldwairi (05), Weinsberg (07), Yu (07), Coppens (04), 
Sourdis (06), Cho (08), Baker (05), Lin (07), Mitra (07)], rule and string matching 
were substantially improved by using novel optimization techniques coupled with 
customized FPGA (Field-Programmable Gate Array) and hardware.  Speeding up 
performance was demonstrated using different packet capturing libraries in which  
Snort can  have direct access to the kernel's receiving ring buffer allocated for the NIC 
(Network Interface Card) [Deri (05) and Snort(08)].  In [Biswas (06)], significant 
improvement was shown when completely eliminating the traditional network TCP/IP 
stack and socket interface mechanism. To date, all of these proposed techniques are 
yet to be adopted by Snort developers.  The software architecture and running 
environment of Snort remain the same.  Therefore difficulties and incompatibilities 
exist in the customization and integration of such solutions, particularly for a typical 
end user.   

The major contribution of this paper is evaluating experimentally and comparing 
the performance of Snort under the two newly released operating systems of 
Windows 7 and Windows Server 2008.  We consider and investigate the impact of 
tuning key performance configuration parameters of these two operating systems on 
the performance of Snort.  This will aid in choosing the best configuration parameters 
to boost and improve Snort's performance.  Unlike the work presented in [Abbas (02), 
Vermeiren (04), Turnbull (07), Geschke (06), Aldwairi (05), Weinsberg (07), Yu (07), 
Coppens (04), Sourdis (06), Cho (08), Baker (05), Lin (07), Mitra (07), Deri (05) 
Snort(08), and Biswas (06)] to improve the performance of Snort, our experimental 
study presented in this paper is focused on determining the best operating system 
parameters to maximize the performance of Snort.  Our improvement involves 
characterizing the typical execution behaviour and CPU processing requirement of 
Snort application, and accordingly selecting the best and optimal configuration of 
those key system parameters.  Other contributions of this paper include: (1) analyzing 
the performance of Snort when running with CPU scheduling with the option of 
giving preference to user applications or kernel services; (2) evaluating the 
performance of Snort under UP and SMP environment; (3) studying the impact of 
setting the processor affinity on the performance of Snort; (4) offering general 
guidelines and detailed configurations on measuring and evaluating the performance 
of Snort or any similarly-behaving user application; (5) characterizing the execution 
behaviour of Snort in order to offer sound interpretation of its performance.  

The rest of the paper is organized as follows.  Section 2 gives a brief background 
on Snort's software architecture and running environment. Section 3 describes the 
experimental setup with configuration details for Windows 7 and Windows Server 
2008. The section also describes the installation configuration and setup for Snort. 
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Section 4 presents performance measurements and comparison for both Windows 7 
and Windows Server 2008, with detailed interpretations and analysis.  Finally, 
Section 5 concludes the study and identifies future work.  

2 Background 

In order to offer sound interpretations of Snort's performance and behaviour, and to 
recognize key system configurable parameters, we present sufficient background 
about Snort's software components and its running environment.  We also review and 
discuss the performance limitations of Snort NIDS. 

2.1 Snort Software Architecture 

To date, Snort is a single threaded application which can be configured to operate in 
four modes: sniffer, packet logger, network intrusion detection system (NIDS) and 
intrusion prevention system (IPS). Packet sniffing and logging functions are 
elementary features of Snort, but Snort's strength and popularity come from its 
intrusion detection capabilities, and specifically as a NIDS.  The IPS is a newly added 
feature but limited.  Itprimarily allows Snort to take preventive actions against 
malicious traffic such as dropping or re-directing packets to another destination.   

As shown in Figure 1, Snort-based NIDS is logically composed of the following 
major components: Packet Capture Library, Packet Decoder, Preprocessors, Detection 
Engine, Logging and Alerting System, and Output Modules. These components work 
together to detect particular attacks and to generate output in a required format from 
the detection system. 

 

Figure 1: Snort basic software components 

Packet Capture Library. The Packet Capture Library (winPcap) is a separate piece of 
software that reads packets off the network wire and pitches them to Snort. It is the 
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industry-standard tool for link-layer network access in Windows environments. It 
allows applications to capture and transmit network packets bypassing the protocol 
stack. WinPcap is the packet capture and filtering engine of many open source and 
commercial network tools, including protocol analyzers, network monitors, and 
network intrusion detection systems.  
Packet decoder. The Packet Decoder takes the incoming packet and prepares it to be 
preprocessed or to be sent to the detection engine. When finished decoding, Snort has 
all the protocols information in all the right places for further processing. 
Preprocessor. Preprocessors are very important components of the intrusion detection 
system. They are used to protect against different types of attacks which use different 
techniques to fool NIDS in different ways. For example, NIDS can easily be fooled 
by a hacker who makes slight modifications to the malicious string to bypass the 
exact match of Snort rule. Hackers use fragmentation to defeat intrusion detection 
systems. Preprocessing operates on the decoded packets, performing a variety of 
transformations, making the data easier for Snort to digest. Preprocessors can alert on, 
classify, or drop a packet before sending it on to the more CPU-intensive detection 
engine. 
Detection engine. The detection engine is the heart and most important part of Snort. 
It checks packet headers as well as payloads against several thousands of rules stored 
in a database of pre-defined attack signatures, as shown in Figure 1. If one rule 
matches, an action is triggered depending on the rule configuration for the action.  
There are five possible actions:  Alert  generates an alert using the selected alert 
method, Log logs the packet, Pass ignores the packet, Activate alerts and then turns on 
another dynamic rule, and Dynamic remains idle until activated by an activate rule, 
then acts as a log rule. 
Alerting and logging. Snort is capable of outputting "alert" and "log" data in a variety 
of output formats and methods. Output formats include binary (called "unified") and 
ASCII.  Binary format offers speed and flexibility, whereas ASCII format is easier to 
work with.  Output methods include writing to a file, console or screen, syslog, or 
SQL database plugins.  Many users commonly output data to a file in 
C:\Snort\log\snort or to a MySQL database.  The "alert" action in Snort is hard 
coded to perform primarily two actions in sequence: (1) write an event to the alerting 
facility, and (2) log as much as possible information about the captured packet to the 
logging facility.  The "log" action merely logs the packet to the logging facility 
without generating an alert. 

It is to be noted that all Snort software tasks and components are executed 
sequentially, as shown in Figure 1.  After the whole chain is worked through to 
process one packet, the next network packet can be processed. All packets arriving in 
between have to be buffered, either by the kernel or the WinPcap.  Under heavy 
traffic load conditions, buffers may fill up quickly and many incoming packets may 
drop.  The situation is exacerbated when traffic contains malicious packets which 
require longer execution times.  In this situation, the execution time of Snort will 
stretch, as Snort blocks repeatedly performing alerting and logging which are 
typically I/O operations. However, when incoming traffic contains normal or non-
malicious packets, Snort will not block repeatedly, resulting in less packets being 
dropped.  In this situation, most of Snort’s execution time will be directed towards 
preprocessing and detection. 
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The detection engine is the heart of Snort and essentially responsible for 
analyzing every packet based on thousands of Snort rules that are loaded at runtime. 
To date, there are close to eight thousand rules [Snort (08a)].  The detection engine is 
very complex and requires the most CPU processing power [Aldwairi (05), 
Weinsberg (07), Yu (07), Coppens (04), Sourdis (06), Cho (08), Baker (05), Lin (07), 
Mitra (07), Deri (05) Snort(08), Biswas (06), and  Markatos (02)].  This is mainly due 
to string matching within the packet payload against these thousands of patterns (or 
pre-defined signatures). According to [Aldwairi (05)], more than 87% of rules contain 
a string to match within the packet payload.  Generally, finding a single pattern in an 
input string imposes a computation cost that is proportional to the size of the input 
string [Rivest (77)].  Most known NIDS implementations use general-purpose string 
matching algorithms that are known to perform well. However, the computational 
burden of string matching using those algorithms is significant.   Recent 
measurements on a production network suggest that Snort spends roughly 30% of its 
total processing time in string matching, while this cost is increased to as much as 
80% for Web traffic [Markatos (02)].  

 

Figure 2: Windows kernel support architecture for Snort 

It is important to note that Snort is a single-threaded application that operates at 
the user level, as shown in Figure 2. Snort uses the WinPcap packet capture library 
[Carr (07)] to access raw network packets. Figure 2 depicts the underlying supporting 
building blocks traversed by an incoming packet from the NIC on its way to userland 
or application-level layer. The WinPcap library offers a userland API to the socket 
interface of the underlying kernel networking subsystem.  In Microsoft Windows the 
networking subsystem is primarily comprised of the TCP/IP network protocol stack 
and the NIC device driver.  Typically, the kernel networking subsystem inserts 
packets into the WinPcap buffer for Snort to process. 
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3 Experimental Setup 

To empirically measure and evaluate the performance of Snort, we set up  a simple 
testbed (as shown in Figure 3) comprised of two machines, a sender and a receiver, 
connected with a 1 Gbps Ethernet crossover cable.  The basic idea is to overwhelm 
Snort with high traffic generated from the sender, and then measure the performance 
exhibited by Snort at the receiver.  The sender is a DELL PowerEdge 1800, equipped 
with two Intel Xeon processors, running at 3.6 GHz with 4 GB of RAM. It has an 
embedded Intel 82541GI Gigabit Ethernet NIC running with the e1000 driver. The 
receiver is an HP Compaq DC7600 server equipped with Intel® Pentium® D 
processor running at 3.2 GHz with 1.5GB of RAM. It has a 3COM Broadcom 
NetXtreme Gigabit Ethernet card with a BCM5752 controller. The sender uses a 
Fedora Core 5 Linux 2.6.25, whereas the receiver uses the Windows 7 and Windows 
2008 Server. 

KUTE
(Traffic Generator)

Snort
(User Application)

Sender Machine

`

Receiver Machine

1 Gbps Ethernet Link

eth0 eth0

Linux 2.6.25.
2 Intel Xeon processors, 3.6 GHz.
4 GB of RAM.
Intel  Gigabit Ethernet NIC.

Windows 7 & Server 2008
2 Intel Pentium processors, 3.2 GHz 
1.5GB of RAM
3COM Broadcom NetXtreme 
Gigabit Ethernet NIC  

Figure 3: Testbed setup 

For the purpose of generating traffic from the sender machine, we used the open-
source KUTE 1.4 traffic generator [Zander (05)].  KUTE is a kernel-level generator 
capable of generating a high traffic rate.  KUTE differs form other popular open-
source traffic generators such as D-ITG and pktgen [Emma (04) and Olsson (05)], in 
that it does not require modifying the kernel, and it can be configured without 
installing a kernel- or user-level receiving component at the receiver machine.  
Installing a receiving component can be intrusive to experimental measurements, as 
both Snort and any such receiving component start sharing and competing for CPU 
cycles.  Also such a setup is closer to reality as Snort is typically configured as a 
standalone application with no other applications running alongside sharing CPU 
cycles.  Finally, unlike pktgen, we determined experimentally that KUTE has the 
ability to generate more accurate packet rates with finer granularity. 

3.1 Windows Configurations 

In this section we list important configurations and settings used in our experimental 
setup and evaluation. 

In order to be able to generate high traffic rates, it is important to disable Ethernet 
flow control on both machines. The intent of Ethernet flow control is to prevent 
packet loss by providing back pressure to the sending NIC to throttle incoming high 
traffic.  However, our work is based on overwhelming the host machine running Snort 
with very high traffic, thus not requiring flow control.  Disabling Ethernet flow 

1611Salah K., Al-Khiaty M., Ahmed R., Mahdi A.: Performance Evaluation ...



control was done on the sender machine using the "ethtool" Linux utility.  
Specifically, to turn off flow control, we issued the command "ethtool –A eth0 rx 
off tx off autoneg off", and to verify, we issued the command "ethtool –a 
eth0".  For Windows, the receiver machine, this is can be done through Control 
panel/NetworkProperties/General/Configure/Advanced/Flow Control 
(from property’s list) /Disabled (from the value’s list). In fact, for both 
Windows 7 and Windows Server 2008 flow control is disabled by default.  To 
minimize the impact of other system activities on performance and measurement, we 
disabled unnecessary windows’ services. 

For the rest of the configuration parameters for Windows, we mostly used the 
default values, except for those key system parameters which are used to control the 
percentage of CPU bandwidth share given to Snort.  Specifically, we changed the 
Windows Processor Scheduling configuration options.  Two options are available: (1) 
optimizing for kernel networking or background services, which is the default in 
Windows Server 2008 and Windows 7; and (2) optimizing for user programs (i.e. user 
applications).  Selecting between these two options can be accomplished by going 
into System properties/Advanced/Performance/Settings/Advanced 
and then checking the radio button under Processor Scheduling for 
"Background Services" or "User Programs".   

The Windows configuration to run on UP or SMP can be accomplished through:  
Run/msconfig/ Boot/Advanced options/Number of processors.  Setting 
the value of Number of processors to 1 would allow Windows to run on UP.   
Similarly, when the value is set to 2, Windows will run on a dual core or two 
processors.   To set the processor affinity for Snort through the shell we installed the 
imagecfg tool. Then we issued the command: "imagecfg -a 0x2 
c:\snort\bin\snort.exe", where 0x2 means CPU 2 (the second CPU). Unlike the 
task manager, which can be used to set the affinity, imagecfg tool has the ability to set 
the processor affinity permanently. 

3.2 Snort Configurations 

In this section, we describe important Snort configurations. Our main focus is to 
measure and compare the performance of the essential and basic functions of Snort, 
and therefore we chose to install and run the core Snort executable with its built-in 
command-line interface.  We installed and configured Snort version 2.8.5.1 as a 
standalone NIDS with the default configurations.  We set the output methods for both 
alerting and logging with writing output to files located in the default log directory.  
The default log directory for Windows is C:\snort\log.  We configured the alerting 
facility for "fast mode" whereby basic information in a simple ASCII format (with 
a timestamp, alert message, source and destination IPs/ports) is outputted to an alert 
file.  We also set the logging option of writing the captured suspicious packets in 
ASCII format to a file. The Windows command to run Snort as NIDS is as follows 
"snort –c snort.conf –i 0". This will enable Snort to be configured as a NIDS 
according to snort.conf and check all incoming traffic from network interface 0.  
The file snort.conf keeps the configuration of the internal network, rules, 
preprocessors, logging, alerting, etc.   
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The performance of Snort was measured against two types of traffic: normal and 
malicious. Normal traffic contains back-to-back packets that are recognized by Snort 
as normal; whereas malicious traffic contains packets that are recognized by Snort as 
malicious.  Malicious traffic imposes more processing on Snort due to the triggering 
of events and logging.   In order to generate malicious traffic, we had to modify and 
compile the traffic generator KUTE code to insert a string of "malicious.exe" at 
the end of the payload of the generated packets.  Such a feature is not readily 
available with KUTE commands. The string was inserted at the end of the packet 
payload in order to allow Snort's detection engine to work harder to match this 
particular string.  For a 64-byte packet size, we inserted 22 spaces ahead of the string 
"mailicous.exe" in order to meet the minimum payload of Ethernet frame of 46 
bytes after counting for UDP and IP headers. For all of our generated traffic, we used 
UDP packets with constant and minimum 64-byte size packets and constant 
interarrival times. Using packets with the minimum size of 64 bytes enabled us to 
generate the highest possible Ethernet traffic rate, which was close to 450 Kpps 
(packets per second). The KUTE command to generate traffic at a specific rate for a 
certain period of time is: 
./kute_snd.sh –d receiverIP –t timeInSecond –r packetRate –l 64 

To measure the performance of Snort under malicious traffic, we added a new 
rule to Snort’s default rule-set.  The rule specifically checks every incoming UDP 
packet for a payload containing the string “malicious.exe”.  When a match occurs, 
a message “Malicious packet has been detected” is outputted to the alert file 
stored in the default log directory with an identity of “44652”.  The exact format of 
the rule is as follows: 

alert udp any any -> any any (content:”malicious.exe”; 
msg:”Malicious packet has been detected”; sid:44652;) 

The rule was inserted to a new file called malware.rules in the 
C:\snort\rules directory, and then this file was added at the end of the rule lists in 
snort.conf, so as to insert it as the bottom and last rule.  Bottom or last-matching 
rules consume considerable processing time compared to other rules, thereby forcing 
Snort's detection engine to require a considerable higher percentage of CPU cycles or 
bandwidth. 

4 Performance Measurements 

To compare and evaluate the performance of Snort, several measurements for two key 
performance metrics were taken in relation to the generated traffic load of normal and 
malicious packets.  These two key metrics are Snort's average throughput and packet 
loss. In order to interpret the results and analyze Snort's behaviour, we also measured 
packet loss seen by the Windows kernel networking subsystem.  It is to be noted that 
the dropping of packets by Snort occurs at WinPcap buffer, whereas the dropping of 
packets by the kernel networking subsystem occurs at Rx DMA Ring.  For all 
experimental results reported and shown in this section, we performed five 
experimental trials, and the final results are the average of these five trials.  For each 
trial, we recorded the results after the generation of a flow with a specific rate for a 
sufficient duration of 30 seconds.  Longer durations made negligible differences to the 
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results.  As shown in Algorithm 1, we subject Snort to an initial rate of 1 Kpps and 
then gradually increase the rate by 25 Kpps until reach a maximum rate of 350 Kpps, 
which was the maximum rate that can be generated by KUTE. 
   
Algorithm 1. Snort Performance Evaluation Methodology 

Input:  t_type : traffic type {malicious or normal} 
  Ps_Option : processor scheduling option {user or 

background} 
  SMP : symmetric multiprocessor  {set or not set} 
  P_Affinity : processor affinity {set or not set} 

Output: st : snort throughput 
     sl : snort loss 
     kl : kernel loss  

1. Configure Snort for t_type  
2. Configure Processor Scheduling Options for  Ps_Option  

3. If  SMP  then  
4.    set symmetric multiprocessor feature  
5.    If (P_Affinity) then 
6.        Set processor affinity for  snort  
7.    end if 
8. end if 

9. time_period←30 
10. rate_increment←25 
11. packet_max_rate←350 
12. packet_current_rate← 1  
13. // Note that SnortThrouput[1..5], SnortLoss[[1..5], 

KernelLoss[1..5] are auxiliary arrays.  

14. repeat 
15.   for  trial←1 to 5 do  
16.     start Snort  
17.     generatePacket(packet_current_rate, time_period)  
18.     kill Snort  
19.     record(SnortThrouput[trial], SnortLoss[trial], 

KernelLoss[trial])  
20.    end for 
21.    st←average (SnortThroughput) 
22.    sl←average(SnortLoss) 
23.    kl←average(KernelLoss) 
24.    packet_current_rate ← packet_current_rate + 

rate_increment  
25. until  packet_current_rate > packet_max_rate 

For each experimental trial, we launch Snort manually before the start of packet 
generation by KUTE. Then at the sender machine a shell script is run to have KUTE 
generate traffic for 30 seconds at a specific rate. When KUTE terminates after packet 
generation for 30 seconds, it produces various logging information about the 
generated traffic, particularly the actual total packets that was generated and the actual 
time to generate them.  Also, when Snort is terminated, it prints out statistics of three 
types of packets: analyzed, dropped, and received.  It is to be noted that Snort's total 
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packets dropped is actually the same as the total packets received minus the total 
packets analyzed.   

From these logs and statistics, key performance metrics can be determined.  
Snort's actual throughput is the total packets analyzed by Snort by 30 seconds.  Snort's 
packet loss probability can be calculated by dividing the total packets dropped by 
Snort over the total packets received.  The packet loss probability of the kernel 
networking subsystem can be calculated by the following simple formula: ((the total 
packets sent by KUTE) – (the total packets received by Snort)) / (the total packets 
sent by KUTE).  Finally, the incoming traffic rate generated by KUTE from the 
sender machine can be calculated from KUTE's logs by dividing the number of total 
packets sent over the actual time to send them. Our Snort performance evaluation 
methodology is summarized in Algorithm 1. 

4.1 Snort performance against normal traffic 

We measured Snort's performance under both Windows 7 and Windows Server 2008 
in terms of throughput and packet loss against incoming traffic.  For both Windows 7 
and Windows 2008, we measured the performance against the different types of 
traffic (normal and malicious), for different processor scheduling options giving 
preference (or priority) to user applications or kernel services, and under UP and SMP 
environment (with and without affinity).  For the SMP environment we measure 
Snort’s performance with and without setting processor affinity.  Figure 4 summarizes 
the results in terms of the average Snort throughput, the average Snort packet loss, 
and the average kernel packet loss when subjecting Snort host to normal traffic. The 
Snort throughput is shown in Figures 4(a) and 4(b) with the two available processor 
scheduling configuration options of (1) being optimization for user application 
[Application Scheduling Priority],  and (2) optimization for kernel background 
services [Kernel Scheduling Priority]. 

It is clear from Figures 4(a) through 4(d) that the performance of Snort, when 
setting processor scheduling option for giving more CPU time to user programs, is 
slightly better than its performance when setting the processor option for giving more 
CPU time to kernel background services. In fact, this difference is clear under the 
SMP environment with affinity not being set. This is expected in the SMP 
environment, because with affinity set for Snort to run on one processor, the other 
processor will take care of the kernel background services. Thus, setting the processor 
scheduling option will not make much difference when the affinity is set, but it does 
make a difference when the affinity is not set. It is also to be noted that the results in 
figures 4(a) and 4(b) are consistent with the results shown in Figures 4(e) and 4(f), 
where the kernel loss is more when the processor scheduling was set for user 
applications than it is when the processor scheduling was set for the kernel 
background services. This can be explained as follows. The earlier the packet drop 
occurs the more the CPU time is given to Snort to process packets, and thus the more 
Snort’s throughput. 
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Figure 4: Snort's performance when subjected to normal traffic 
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 As depicted from Figure 4, the highest throughput  is  achieved at all different rates 
when setting the processor affinity for Snort under Windows 2008. For Windows 
2008 Server (with affinity is set), the Snort throughput increases gradually until it 
reaches 215 Kpps, where it becomes stable at the incoming rate of 225 Kpps.  In 
addition,  it is obvious from Figures 4(a) through 4(d) that either under Windows 7 or 
Windows 2008 Server, setting the processor affinity for Snort gives higher throughput 
and lower Snort packet loss compared to running it under SMP environment without 
setting processor affinity. In other words setting the processor affinity for Snort 
increases its throughput and decreases the packet loss by Snort. The reason can be 
attributed to the cache re-use, as explained earlier. In fact, as shown in Figures 4(c) 
and 4(d), there is no packet loss by Snort at all the different rates when running under 
both systems with affinity set. However, there is a kernel loss as follows. For 
windows 2008 Server (with affinity set), the kernel loss occurred when the packet 
rates exceed 175 Kpps, for both processor scheduling options. Having no packet loss 
by Snort when the affinity is set, the Snort throughput is bounded by the packets it 
receives from the kernel. This means that the Snort throughput may increase if it 
receives more packets from the kernel. For windows 7, there is a kernel’s packet loss 
when the packet rate exceeds 125 Kpps for both processor scheduling options with 
slight differences, see Figures 4(e) and 4(f). 

Measuring the throughput of Snort when running under Windows 2008 SMP 
against its throughput under Windows 7 SMP without setting processor affinity for 
Snort, we found that Windows 7 either competes with or outperforms Windows 2008 
server under the law packet traffic rate (i.e. less than 175 Kpps, Figure 4(a), or less 
than 225, Figure 4(b). However, Windows 2008 Server outperforms Windows 7 at the 
higher packet traffic rate, i.e. greater than 175 Kpps of Figure 4(a), or greater than 175 
Kpps of Figure 4(b). 

When running Snort under UP environment in both Windows 7 and Windows 
2008 Server and at low incoming traffic rates, we obtain better throughput under 
Windows Server 2008 than running it under Windows 7. However, at high incoming 
traffic rates, behaviourboth operating systems exhibit a very low throughput.   This 
can be attributed to a low CPU time given to Snort by the operating system. 

4.2 Snort performance under malicious traffic 

Figures 5 presents the results in terms of the average Snort’s throughput, the average 
Snort’s packet loss, and the average kernel’s packet loss when subjecting the Snort 
host to malicious traffic. The Snort throughput is shown in Figures 5(a) and 5(b) when 
the processor scheduling configuration option was configured for user applications 
[Application Scheduling Priority] and kernel background services [Kernel Scheduling 
Priority], respectively.  

It is clear from Figures 5(a) through 5(d) that the performance of Snort when 
setting the processor scheduling option to giving more CPU time to user programs is 
slightly better than its performance when setting processor option to giving more CPU 
time to kernel background services.  However, the effect of the processor scheduling 
option is clear under the SMP environment with affinity not set, where setting 
processor scheduling for user programs shows clearly better throughput. This is 
expected in the SMP environment, as explained earlier in the case of normal traffic. 
Thus, setting the processor scheduling option will not make much difference when the 
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affinity is set, but it does make a difference when the affinity is not set. Similarly, like 
in the case of normal traffic, the results in figures 5(a) and 5(b) are consistent with the 
results shown in Figures 5(e) and 5(f), where the kernel’s loss is more when the 
processor scheduling was set for user programs than it is when the processor 
scheduling was set for the kernel background services.  It is clear from Figure 5(b) 
that the highest throughput was achieved for all traffic rates with Kernel Scheduling 
Priority under Windows 2008 SMP affinity.   

 Similar to Snort’s performance exhibited under normal traffic, it is obvious from 
Figure 5 that setting the processor affinity for Snort gives higher throughput and 
lowers Snort’s packet loss compared to running it under SMP environment without 
setting processor affinity.  In other words, setting the processor affinity for Snort 
increases its throughput and decreases the packet loss by Snort. The reason can be 
attributed to the cache re-use. (as explained earlier). Unlike the case of normal traffic 
where there is no packet loss, the packet loss of Snort against the malicious traffic 
when the affinity is set, increases sharply, as the packet rate sent by KUTE increases 
till the rate of 100 Kpps, where Snort’s packet loss starts to increase very slowly. 

Measuring the throughput of Snort when running under Windows 2008 SMP 
against its throughput under Windows 7 SMP without setting processor affinity for 
Snort, we found that when the processor scheduling option is set to user programs 
Windows 2008 Server outperforms Windows 7 at all different rates. However, when 
the processor scheduling option is set to kernel background services, Windows 2008 
server competes with Windows 7 at the law packet traffic rate, i.e. less than 150 Kpps 
of Figure 5(a), and outperforms it at the high packet rates. 

When subjecting  Snort to low traffic rates under UP environment in both 
Windows 7 and Windows 2008 Server, we have obtained  better throughput under 
Windows 2008 than running it under Windows 7. However, at  high rates,  
behaviourboth operating systems exhibit a poor thorughput.  This can be attributed to 
a low CPU time given to Snort by the operating system. The Snort’s peak throughput 
under Windows 7 is around 10 Kpps, achieved at 25 Kpps. However, the Snort’s peak 
throughput under Windows 2008 Server is little less than 14 Kpps, achieved at 50 
Kpps.  These peaks are much smaller than the Snort’s peak throughput under normal 
traffic which occurs at the same points. This is because Snort needs more time to 
process malicious traffic due to the extra traffic taken by Snort for alerting and 
logging. 
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Figure 5: Snort's performance when subjected to malicious traffic 
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5 Conclusion 

In this paper, we have evaluated and compared the performance of Snort NIDS when 
running under Windows 7 and Windows 2008 Server. The performance was 
measured and compared in terms of Snort's throughput and packet loss when 
subjecting a host running Snort to both normal and malicious traffic. We considered 
key system configurations and options which included CPU scheduling priority, UP 
and SMP environment, and affinity types.  As has been demonstrated in Section 4, 
setting the scheduling priority to favour either kernel processing or user applications 
has little or no impact on Snort’s performance under both normal and malicious 
traffic. It has been shown that running Snort under an SMP environment showed 
significantly better throughput than running it under an UP environment.  In addition, 
it has been demonstrated that under an SMP environment with the option of static 
affinity, resulted in relatively higher throughput than the default dynamic affinity.  
Such an observation was true when subjecting Snort to both normal and malicious 
traffic.  As a future work, we plan to implement Snort as a multi-threaded application, 
and then measure and compare its performance for both Windows and Linux running 
on hosts with multicore architectures. 
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