
On Succinct Representations of Textured Surfaces by

Weighted Finite Automata

Jürgen Albert
(University of Würzburg, Germany

albert@informatik.uni-wuerzburg.de)

German Tischler
(Newton Fellow, King’s College London, United Kingdom

german.tischler@kcl.ac.uk)

Abstract: Generalized finite automata with weights for states and transitions have
been successfully applied to image generation for more than a decade now. Bilevel
images (black and white), grayscale- or color-images and even video sequences can
be effectively coded as weighted finite automata. Since each state represents a subim-
age within those automata the weighted transitions can exploit self-similarities for
image compression. These “fractal” approaches yield remarkable results in compari-
son to the well-known standard JPEG- or MPEG-encodings and frequently provide
advantages for images with strong contrasts. Here we will study the combination of
these highly effective compression techniques with a generalization of weighted finite
automata to higher dimensions, which establish d-dimensional relations between result-
sets of ordinary weighted automata. For the applications we will restrict ourselves to
three-dimensional Bezier spline-patches and to grayscale images as textures.
Key Words: Weighted Finite Automata, image compression, self-similarity, polyno-
mials, Bezier splines, Parametric Weighted Finite Automata, bicubic Bezier patches,
textured surfaces
Category: F.1.1, I.3.3, I.3.5, I.3.7

1 Introduction

Many variations of finite state concepts have been studied in depth in computer
science and there are famous classical applications, for example the specifications
of tokens in compilers for high-level programming languages as in the scanner
generators lex or flex [Aho et al. 2007] or efficient representations of patterns
for online-search algorithms as in the KMP-algorithm [Knuth et al. 1977]. In
most textbooks on formal languages and automata theory finite automata are
treated as acceptors; for any given input sequences they decide whether or not
they are members of some specified set. These membership problems for strings
are in fact reachability problems for the set of final states from the start state
(see e.g. [Wood 1987]).

Thus, finite acceptors can also be viewed as Boolean functions over input
sequences. Finite automata are nondeterministic in general, so the Boolean result
for an input sequence is true, iff there exists at least one accepting transition
sequence for it.

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 586-603
submitted: 27/6/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS

Now it is easy to associate bilevel images to input sequences, say white if
it is true that this sequence is accepted and black otherwise. If we assume for
now that all our bilevel images consist of squares of 2k × 2k pixels and the input
alphabet {0, 1, 2, 3} provides the labels for each quadrant and recursively for
each subquadrant then we can address each pixel by a word of length k. This
means that the acceptance pattern of a finite automaton for all input sequences
of length k yields a bilevel image of resolution 2k × 2k.

Even extremely simple finite automata can generate fractal (or self-similar)
patterns under this interpretation. The best known example is probably the
Sierpinski-triangle, consisting of only one state, which is also final, and transi-
tions of this state into itself for the input symbols 0, 1, and 2 but not for the
symbol 3.

2 Introduction to Weighted Finite Automata

In the classical papers on automata theory one can find early definitions of
automata with transitions labeled by real numbers. The main topic of inter-
est was then to study the probabilistic behaviour of acceptors or to build an
even more general framework as in formal power series (e.g. [Eilenberg 1974],
[Salomaa and Soittola 1978]). The first papers that sowed the seeds for im-
age compression as an application area for weighted automata are probably
[Berstel and Nait Abdullah 1989] and [Culik and Kari 1993]. For a recent col-
lection of research results on weighted automata including weighted finite au-
tomata, weighted tree automata and others, see [Droste et al. 2009].

2.1 Definitions

If we consider grayscale images of a resolution of 2k×2k pixels for some arbitrary
k ∈ N instead of the bilevel cases, it is straight-forward that we can always find
a finite automaton with states and transitions weighted by real values which
will generate exactly this given image as a real-valued matrix. Just imagine a
complete quadtree of depth k with all states and transitions weighted by 1.0
except for the transitions to the leaves of this tree, where each transition carries
the weight of the required grayness-level. In the following definitions we will not
restrict ourselves to any special image format, instead all kinds of color-spaces
(bilevel, grayscale, RGB = red-green-blue, ...) are allowed.

2.1.1 Weighted Finite Automata

In a general setup weighted finite automata (WFA) are finite automata com-
puting functions over semirings, introduced in [Schützenberger 1961]. We will
use here the semiring definition as given in [Berstel and Reutenauer 1988] and

587Albert J., Tischler G.: On Succinct Representations ...

the symbol S will denote an arbitrary but fixed semiring endowed with some
topology. As every semiring can at least be equipped with the discrete topology,
where we have only “isolated points” as elements, this is not a limitation in
comparison to other WFA definitions. Additionally, we will often assume an S
over some metric space and we will call such a semiring a metric semiring.

Definition 1. A Weighted Finite Automaton (WFA for short) Z is a quintuple
Z = (Q, Σ, W, I, F), where

1. Q = {0, 1, . . . , n − 1}, n ∈ N
+ is a finite non-empty set of states,

2. Σ = {0, . . . , l − 1}, l ∈ N
+ is a finite non-empty alphabet,

3. W = (W0, . . . , Wl−1), where Wi ∈ Sn×n is the matrix of weighted transitions
for each input symbol i ∈ Σ,

4. I ∈ S1×n is the initial distribution and

5. F ∈ Sn×1 is the final distribution.

The function f : Σ∗ �→ S computed by Z is given for each w = a1 . . . ak ∈ Σ∗

by

f(w) = IWa1Wa2 . . . Wak
F = I

k∏
i=1

WaiF (1)

which can also be written in detailed form as

f(w) =
∑

p = (q0, q1, . . . , qk) ∈ Qk+1︸ ︷︷ ︸
All possible paths p of length k

(
I(q0)

k∏
i=1

Wai(qi−1, qi)F (qk)

)
︸ ︷︷ ︸

Value computed for path p

(2)

The function fω(w) : Σω �→ S computed by Z is then given for each w =
a1a2 . . . ∈ Σω by

fω(w) = lim
k→∞

f(a1a2 . . . ak) (3)

We will use notations like QZ , ΣZ , etc. in the following for the set of states of
the automaton Z, the input alphabet of the automaton Z, etc.

Let f be the function computed by the WFA Z = (Q, Σ, W, I, F), where
Q = {0, . . . , n − 1}, and let further fi for i = 0, . . . , n − 1 be the function
computed by the WFA Zi = (Q, Σ, W, Ii, F), which equals Z except for the
initial distribution Ii, which is set to the i’th unit vector. We call fi the state
function of state i in Z. Equation 1 yields

fi(av) =
n∑

j=1

Wa(i, j)fj(v) (4)

588 Albert J., Tischler G.: On Succinct Representations ...

Figure 1: WFA computing f : Σ∗ �→ R, f(w) = bin(w) + 2−(|w|+1) (left) and
values given as grayscale levels for all words w of length 2 (right)

for each a ∈ Σ, v ∈ Σ∗. Thus the state function of state i is determined by |Σ|
linear combinations of state functions. The function computed by Z is a linear
combination of the functions of its states.

Now we will give a short survey of results, which are needed for the main chap-
ters of this paper. It was shown in [Berstel and Reutenauer 1988] that a function
f : Σ∗ �→ S is computable by a WFA, if and only if it can be represented as a
rational formal power series. Clearly, each function f : Σ∗ �→ S with finite sup-
port is WFA computable and for each s ∈ S the functions sf given by (sf)(w) =
sf(w) for each w ∈ Σ∗ and fs given by (fs)(w) = f(w)s for each w ∈ Σ∗ are
WFA computable. It is well known (cf. [Berstel and Reutenauer 1988]) that if f

and g are WFA computable functions, then so are the functions f +g and f ·g de-
fined by (f +g)(w) = f(w)+g(w) and (f ·g)(w) =

∑
uv=w f(u)g(v) for each w ∈

Σ∗. If S is a commutative semiring, then the function fg(w) given by (fg)(w) =
f(w)g(w) for each w ∈ Σ∗ is WFA computable (cf. [Berstel and Reutenauer 1988,
Culik and Karhumäki 1994]). There exist effective state minimization algorithms
for WFA over fields (cf. [Berstel and Reutenauer 1988, Culik and Kari 1997]).

WFA over R can compute some important classes of real functions over the
unit interval, where each input word w = a1a2 . . . ak ∈ Σ∗ over the binary
alphabet Σ = {0, 1} is interpreted numerically as

bin(w) =
k∑

i=1

ai2−i (5)

and for each w = a1a2 . . . ai . . . ∈ Σω

binω(w) = lim
i→∞

bin(a1a2 . . . ai) (6)

A simple example of a WFA computing a real-valued function is shown in
Figure 1. The “one-dimensional” image computed by the automaton using all
words of length 2 is also shown in Figure 1. The automaton basically computes
a linear function. The function however is not purely linear for words of finite
length. This deviation from strict linearity however is on purpose. In the case of
finite words we can assign the half-open interval I(w) = [bin(w), bin(w)+2−|w|)
to each word w ∈ Σ∗. The automaton computes the average value of the linear

589Albert J., Tischler G.: On Succinct Representations ...

Figure 2: Addressing subimages by words of length 2 over {0, 1, 2, 3} in Morton-
order

function in the interval I(w) for each word w ∈ Σ∗ instead of the value at the
left interval border.

The real-valued polynomials play a special role for WFA over R. They are
the only smooth functions (that is, every derivative is continuous) computable
by WFA to arbitrary precision. Furthermore, WFA can encode these polyno-
mials very efficiently. Just n + 1 states are needed for a polynomial of de-
gree n over the unit interval [Culik and Karhumäki 1994, Droste et al. 2006,
Derencourt et al. 1992]. As shown below, also polynomials in more than one
variable, polynomials defined on the unit-square, the unit-cube. etc., have very
succinct WFA-representations.

But WFA over R can also represent other important classes of non-smooth
functions. One of these classes are the dyadic finite impulse response scaling
functions and wavelets [Culik and Dube 1997, Tischler et al. 2005].

WFA over R can be used to compute real functions of dimensions d > 1
on [0, 1]d, the unit-cube of dimension d. One prominent example are WFA en-
coding grayscale or color still-images. There are especially two main concepts.
The first is to increase the number of alphabet symbols from 2 in the one di-
mensional case to 2d for a space of dimension d. In early papers concerning im-
age compression using real WFA (cf. [Culik and Kari 1993, Culik and Kari 1994,
Culik and Kari 1995]) it was common to use an alphabet of four symbols for ad-
dressing pixels in images. Thus the interpretation of each word w = a1 . . . ak ∈
{0, 1, 2, 3} is given by

x(w) =
k∑

i=1

(ai mod 2)2−i (7)

and

y(w) =
k∑

i=1

(⌊ai

2

⌋)
2−i . (8)

This interpretation conforms to the so-called Morton- or Z-order shown in Figure
2.

The second concept consists of keeping the binary alphabet Σ = {0, 1}, but
interleaving the components of the coordinates in a single word. Thus we could

590 Albert J., Tischler G.: On Succinct Representations ...

Figure 3: WFA computing f(x, y) = x+y
2 and its grayscale image over the unit

interval

for instance interpret the word w = y1x1y2x2 . . . ykxk ∈ (Σ2)∗ with

y(w) =
k∑

i=1

yi2−i, x(w) =
k∑

i=1

xi2−i . (9)

Similar to binω we can define yω and xω for words of infinite length. An
automaton computing the function f(w) = (bin(x1 . . . xk) + bin(y1 . . . yk))2−1 +
2−(k+1) for each w = y1x1 . . . ykxk ∈ (Σ2)∗ according to this scheme is shown in
Figure 3.

Clearly, for every k ∈ N and for every pixel image I of resolution 2k × 2k

there is now a WFA Z such that evaluating Z for all words of length k, exactly
reproduces the image I. As the real numbers form a field and there exist state
minimization algorithms for WFA over fields, one can always compute a state
minimal WFA representing the image.

Although the state minimal representation of an image looks very attractive
in theory, there are two important facts to be considered in applications. The
first is that a state minimal WFA frequently is not a minimal WFA-description
for its function. Most of the space for the description is usually required for the
labeled and weighted edges (cf. [Culik and Kari 1994]). The second is that exact
represention of source images is normally not desirable, since most of the time the
source contains some kind of noise anyway. Thus, WFA for “lossy” image com-
pression makes more sense for real-world applications. Lossy WFA compression
of images, i.e. representing an image approximately by a WFA and compressing
the resulting WFA by means of entropy coding, is quite competitive. The results
given in [Culik and Kari 1993, Hafner 1999] suggest that WFA compression can
outperform the ubiquitous (baseline) JPEG in most applications and in some

591Albert J., Tischler G.: On Succinct Representations ...

can even compete with JPEG2000 (cf. [Wallace 1991], [JPEG2000 Core]).
Each state in a WFA represents a subimage of the complete image. Thus each

state function can be identified with a state image. Equation 4 tells us that each
state image is defined as a set of linear combinations of states in the automaton.

2.1.2 Parametric Weighted Finite Automata

Though WFA represent powerful devices for image generation and can make
efficient use of self-similarities in image compression, their generative power is
incomparable with the well-known Iterated Function Systems (IFS), studied by
Barnsley and others e.g. in [Barnsley 2000]. But there is a very natural way to
extend WFA, such that they can simulate any IFS. Parametric Weighted Finite
Automata (PWFA) are a multi-dimensional generalization of WFA introduced
in [Albert and Kari 1999].

Definition 2. A Parametric Weighted Finite Automaton (PWFA for short) of
dimension d ∈ N

+ is a quintuple Z = (Q, Σ, W, I, F), where

1. Q = {0, 1, . . . , n − 1}, n ∈ N
+ is a finite non-empty set of states,

2. Σ = {0, . . . , l − 1}, l ∈ N
+ is a finite non-empty alphabet,

3. W = (W0, . . . , Wl−1), where Wi ∈ Sn×n is the matrix of weighted transitions
for each input symbol i ∈ Σ,

4. I = (I0, I1, . . . , Id−1), Ij ∈ Sn are the initial distributions, where the Ij are
the rows of the matrix I and

5. F ∈ Sn is the final distribution.

The overline operator in the following will denote the topological closure. Similar
to the WFA case, the function (or word function) f computed by Z is defined
as

f(w) = IWa1 . . .Wak
F = I

k∏
i=1

WaiF (10)

for each w = a1 . . . ak ∈ Σ∗ and the set S(Z) computed by Z is given by

S(Z) =
∞⋂

n=0

Tn(Z) (11)

where
Tn(Z) = S≥n(Z) (12)

and

S≥n =
∞⋃

i=n

Si(Z) (13)

592 Albert J., Tischler G.: On Succinct Representations ...

and
Si(Z) = {v|v = f(w) for some w ∈ Σi} . (14)

We will use T (Z) = T0(Z) as an abbreviation. We will call a state s an initial
state for dimension i, if and only if I(i, s) �= 0 and an initial state of Z, if and
only if there exists some dimension i such that s is an initial state for dimension
i. We call a state s a final state, if and only if F (s) �= 0.

The word function of every PWFA of dimension d over some semiring S can
be simulated by a WFA over the semiring Sd, where addition and multiplica-
tion are both performed component-wise for elements of Sd (cf. [Tischler 2007,
Tischler 2008]). Still, PWFA are different from WFA in the following two im-
portant points:

1. Even if the semiring S is a field, Sd for d ≥ 2 with component-wise addition
and multiplication is never a field, for example the element (0 0 . . . 0 1)T

has no inverse multiplicative element. Thus the well known minimization al-
gorithms for WFA over fields cannot be used for PWFA of dimension greater
than 1.

2. We mainly consider the computed set instead of the computed function.

The set of PWFA over each metric semiring can be divided into three cate-
gories. For one of these categories, we require the following definition.

Definition 3. Let (X, m) be a metric space. Furthermore, let 2X denote the
power set of X . Then we define

h∗(m)(A, B) =

⎧⎪⎪⎨
⎪⎪⎩

0 if A = B = ∅
+∞ if A �= B = ∅ or B �= A = ∅
max{supa∈A infb∈B m(a, b), otherwise

supb∈B infa∈A m(a, b)}
(15)

as a function h∗ : 2X × 2X �→ R
+

0 for arbitrary sets A, B ⊆ X , where R =
R ∪ {±∞}.

The function h∗ is a generalization of the Hausdorff metric. This is not a metric
itself, but in some cases it is useful to determine the degree of similarity of
non-compact sets.

Definition 4. Let Z denote a PWFA over the semiring S based on the metric
space (X, m). We call Z

– strictly consistent, if S(Z) = T (Z),

– limit consistent, if limi→∞ h∗(m)(S(Z), Ti(Z)) = 0, and

593Albert J., Tischler G.: On Succinct Representations ...

Figure 4: PWFA computing a fractal set (left) and the computed set interpreted
as a 2D-bilevel-image (right)

– inconsistent, if it is not limit consistent.

The notion of strict consistency can be generalized for PWFA over non-metric
semirings. Clearly, each strictly consistent PWFA is also limit consistent. It is
an open problem, whether there are non-empty PWFA computable sets, which
can not be represented by a limit consistent PWFA. It is also an open problem,
whether there are sets that can be represented by limit consistent, but not by
strictly consistent PWFA.

An example of a limit consistent but not strictly consistent PWFA is shown
in Figure 4. This automaton is based on the fractal “maple leaf”. It simulates
an iterated function system (IFS) of dimension 2 over the real numbers (cf.
[Barnsley 2000]). The automaton can be transformed into a strictly consistent
automaton by choosing an appropriate final distribution representing a point on
the attractor of the IFS. We conjecture that there is no effective algorithm to
decide for given a PWFA representing an IFS whether it computes a point of its
the attractor.

The family of PWFA computable sets over the real numbers has some inter-
esting closure properties. It is closed under set union and regular restriction (cf.
[Tischler 2004, Tischler 2005]). The set of sets which can be represented by limit
consistent PWFA over R is closed under affine transformation and that which
can be represented by strictly consistent PWFA over R is closed under iterated
affine transformation (cf. [Tischler 2008]).

The PWFA we will construct to represent surfaces will be strictly consistent.
When we transform a WFA representing an image to a PWFA by adding two
dimensions computing the corresponding coordinate functions as given in equa-
tions 9, then this PWFA is limit consistent but in general not strictly consistent.

When we consider a WFA X , we have a fixed alphabet ΣX and a function
fX computed by X . If we combine X with some other WFA Y to obtain a
WFA Z satisfying certain properties (e.g. such that fZ = fX + fY), then we

594 Albert J., Tischler G.: On Succinct Representations ...

expect ΣZ = ΣY = ΣX . In the PWFA case, it is often useful to increase the
alphabet size to obtain a certain result, for which we give an example in the
construction below. We define the sum and product of two sets of elements of
the same semimodule.

Definition 5. Let S be a semiring and d a positive natural number. Further-
more, let A and B be subsets of Sd. We define the sum A + B and product AB

of A and B as

A + B = {v|v = a + b for some a ∈ A, b ∈ B} (16)

and
AB = {v|v = a · b for some a ∈ A, b ∈ B} (17)

where · denotes the point-wise product.

For each semiring S, each d ∈ N
+ and each pair of sets A, B ⊆ Sd computable

by strictly consistent PWFA the sets A+B and AB are also PWFA computable.

Theorem 6. Let S be a semiring based on a topological space such that the
addition + : S × S �→ S and multiplication · : S × S �→ S in S are continuous
functions and let d ∈ N

+. Furthermore, let X and Y be strictly consistent PWFA
of dimension d over S. Then the sets S(X) + S(Y) and S(X)S(Y) are PWFA
computable.

Proof. Assume without loss of generality that ΣX = ΣY . We say a PWFA is
in initial normal form, if it has at most one initial state per dimension and in
final normal form, if it has at most one final state. For each PWFA there are
equivalent PWFA in initial or final normal form computing the same set (cf.
[Tischler 2008]). These normal forms can be computed effectively. Without loss
of generality assume that state 0 is the unique final state of the automaton X

and that state i is the unique initial state for dimension i in the automaton Y .
An automaton Z computing S(Z) = S(X)+S(Y) can be obtained in two ways.
The first construction works by doubling the number of labels. Let X ′ be the
automaton obtained from X by doubling the number of labels and assigning
the identity matrix to the labels |ΣX |, . . . , 2|ΣX | − 1. Similarly let Y ′ be the
automaton obtained from Y by doubling the number of labels, assigning the
matrix WYi to the label |ΣY |+i for i = 0, . . . , |ΣY |−1 and subsequently assigning
the identity matrix to the labels 0 to |ΣY | − 1. Then the automaton computing
the function fZ(w) = fX′(w)+ fY ′(w) for all w ∈ ΣX′ apparently computes the
set S(X) + S(Y). The second construction works by adding one label and d + 1
states. Let the new symbol be denoted by ζ. Initially, let Z be a d + 1 state
PWFA of dimension d over S with ΣZ = {0, . . . , |ΣX |} such that

IZ(i, j) =
{

1 if i + 1 = j

0 otherwise
(18)

595Albert J., Tischler G.: On Succinct Representations ...

for i = 0, . . . , d − 1, j = 0, . . . , d,

FZ = (FX(0) fY (ε)(0) . . . fY (ε)(d − 1))T (19)

and WZi is the identity matrix for i ∈ ΣX and the matrix which is 1 at position
(0, 0) and zero otherwise for the symbol ζ. Then the automaton X is added to
Z, where the transition matrix for the new symbol ζ is set to the null matrix.
Subsequently the automaton Y is added to Z, where the transition matrix for
ζ is set to WY0 . Finally we set WZζ

(0X , 0) = 1 and WZζ(i+1,iY) = 1 for i =
0, . . . , d − 1. Let h : Σ∗

Z �→ Σ∗
X denote the morphism mapping the symbol ζ to

0 and each other symbol to itself. The automaton Z computes the function

fZ(w) =
{

fX(w) + fY (ε) if w ∈ Σ∗
X

fX(α) + fY (h(β)) if w = αζβ for α ∈ Σ∗
X , β ∈ Σ∗

Z

(20)

and thus S(Z) = S(X) + S(Y).
For the generation of an automaton Z computing S(Z) = S(X)S(Y) we

generate d copies of X , which we call X0 to Xd−1 and change the copies by
setting the final vectors FXi to

FXi(j) =
{

FX(1)IY (i, i)FY (i) for j = i

0 otherwise
(21)

for j = 0, . . . , |QX | − 1 and the initial matrices IXi to

IXi (j) =
{

IX(i) for j = i

0 otherwise
(22)

for i = 0, . . . , d− 1. Then we erase the initial matrix of Y by setting I(i) = 0 for
i = 0, . . . , d − 1. Let ζ = |ΣX | be a new alphabet symbol. We set the transition
matrix for the symbol ζ to the null matrix in Xi for i = 0, . . . , d−1 and set WYζ

=
WY0 . Then we construct the automaton Z by combining X0, . . . , Xd−1 and Y .
Finally, we add new edges to Z by setting WZζ

(1QXi
, iQY) = FX(1)IY (i, i)

for i = 0, . . . , d − 1. The automaton Z works basically by simulating X and Y

consecutively. It first simulates the basic behavior of X and after reading the new
symbol ζ starts to simulate the basic behavior of Y . As above, let h : Σ∗

Z �→ Σ∗
X

denote the morphism mapping the symbol ζ to 0 and every other symbol to
itself. The function computed by Z can be written as

fZ(w) =
{

fX(w)fY (ε) if w ∈ Σ∗
X

fX(α)fY (h(β)) if w = αζβ for α ∈ Σ∗
X , β ∈ Σ∗

Z

(23)

for each w ∈ Σ∗
Z , thus S(Z) = S(X)S(Y).

Note that for computing the product S(X)S(Y) of two sets S(X) and S(Y)
computed by the strictly consistent PWFA X and Y we do not require the
underlying semiring to be commutative.

596 Albert J., Tischler G.: On Succinct Representations ...

3 PWFA representations for Bezier splines and patches

A Bezier curve Bk : [0, 1] �→ R
d of order k ∈ N and dimension d is given by

Bk(t) =
k∑

i=0

Bk
i (t)Pi, (24)

where Pi ∈ R
d, i = 0, . . . , k are the control points defining the curve and the

Bernstein polynomial Bk
i is given by

Bk
i (t) =

(
k

i

)
ti(1 − t)k−i (25)

for each i, k ∈ N, i ≤ k [de Boor 1978, Maisonobe 2009].
Apparently each Bezier curve is a monadic polynomial defined on the real

unit interval and thus can be represented using WFA and PWFA. A construc-
tion algorithm for WFA computing real monadic polynomials can be found in
[Culik and Karhumäki 1994]. Assume that Bk is a Bezier curve of order k and
dimension d. Then Bk can be represented either as a WFA over R

k, where the
product of two vectors is defined as the point-wise (Hadamard) product or as a
PWFA of dimension d over R. When we consider a Bezier curve of dimension
greater than one, then we usually only consider the set of vectors produced for
the whole unit interval and not which vector is produced by the curve at which
point in the interval. Bezier curves can be used to model shapes. One important
application of thereof is computer typography, where character outlines are de-
fined by the splines. In applications a given curve is often modeled by a lengthy
sequence of Bezier curves. This can easily be implemented via PWFA, since the
set of “practically relevant PWFA functions” over the real numbers is closed un-
der the set union operation and affine transformations. A PWFA for a curve from
two Bezier splines is shown in Figure 5 together with its function. PWFA can
also be used to represent other spline families (cf. [Tischler 2004, Tischler 2008]).

A Bezier patch Bk : [0, 1]2 �→ R
d of order k and dimension d for k, d ∈ N, d >

0 is given by a matrix Q ∈ R
d(k+1)×(k+1)

and the formula

Bk(u, v) =
k∑

i=0

k∑
j=0

Q(i, j)Bk
i (u)Bk

j (v) . (26)

Bezier patches can be used to model surfaces in R
3. In applications we are mostly

interested in Bezier patches of order 3 and dimension 3, which are called bicubic
Bezier patches. PWFA computing multi-dimensional polynomials can easily be
generated using PWFA computing delay functions of polynomials.

597Albert J., Tischler G.: On Succinct Representations ...

Figure 5: PWFA computing a curve from two Bezier splines

Definition 7. Let Σ be an alphabet and k, m ∈ N, m > 0, 1 ≤ k ≤ m. Further-
more, let w = a1 . . . an ∈ Σ∗. We call the word

o(k, m) =

{
akak+m . . . ak+m� n−k

m
 if n ≥ k

ε otherwise
(27)

the k projection of w modulo m.

Definition 8. Let Σ be an alphabet, S a set, k, m ∈ N, 1 ≤ k ≤ m and f :
Σ∗ �→ S a function. We call the function f(k, m) given by

f(k, m)(w) = f(o(k, m)(w)) (28)

for each w ∈ Σ∗ the (k, m) delay function of f .

Delay functions of WFA computable functions are WFA computable (cf.
[Tischler 2008]).

Let P be a WFA computing the real function p(x) = x, where the input
word over the binary alphabet is interpreted using the bin function. Then we

598 Albert J., Tischler G.: On Succinct Representations ...

can define a real PWFA of dimension d representing a Bezier patch of order
k and dimension d in the following way. If we insert the given elements of the
coefficient matrix Q into formula 26, we see that Bk evaluates to a polynomial
in two variables with coefficients from R

d. W.l.o.g. we will only consider the
one-dimensional case, d = 1. The generalization is straight-forward. Then we
have a real polynomial with two variables with real coefficients,

Bk(u, v) =
k∑

i=0

k∑
j=0

Q′(i, j)xiyj (29)

for some matrix Q′ ∈ R
k+1×k+1. As WFA over the real numbers are closed under

sum and product with scalars, we will assume w.l.o.g. that

Bk(u, v) = xiyj (30)

for some 0 ≤ i, j ≤ k. Assume that WFA X and Y computing the functions
fXi(x) = xi and fY j (y) = yj . Then we can obtain a WFA X iY j computing
the function fXiY j (w) = fXi(x1 . . . xn)fY j (y1 . . . yn) for each w = y1x1 . . . ynxn

by constructing a WFA for the Hadamard product of the functions computed
by automata for the (1, 2) delay function of fY j and the (2, 2) delay function
of fXi . In practice it is sufficient to generate a WFA computing the function
xkyk to display a complete patch of order k, as this automaton contains state
functions xiyj for all 0 ≤ i, j ≤ k, and set an appropriate initial distribution.
Note that automata generated this way are unnecessarily large in general. This
can be improved by the application of a minimization algorithm. The minimal
automaton computing a component of a Bezier patch of order k has at most
(k + 1)2 states, which means 16 in the case of a bicubic Bezier patch. This
bound in general is tight, there exist coefficient matrices Q such that the minimal
automaton has (k + 1)2 states.

It is based on the coefficient matrix

Q =

⎛
⎜⎜⎝

(0 1 0) (κ 1 0) (1 κ 0) (1 0 0)
(0 1 0) a c (1 0 κ)
(0 1 0) b d (κ 0 1)
(0 1 0) (0 1 κ) (0 κ 1) (0 0 1)

⎞
⎟⎟⎠ (31)

where κ = 4
3 (
√

2 − 1), and the vectors a, b, c, d ∈ R
3 are given as

a = (κ 1 0) + sin(π/6)(0 0 κ)
b = (1 κ 0) + sin(π/3)(0 0 κ)
c = (0 1 κ) + sin(π/6)(κ 0 0)
d = (0 κ 1) + sin(π/3)(κ 0 0)

(32)

Also in the following equations we will leave sin(π/6)(= sin(30◦) = 1
2) and

sin(π/3)(= sin(60◦) =
√

3
2) as a reminder for the construction of the Bezier spline

control points also at the angles of 30◦ and 60◦.

599Albert J., Tischler G.: On Succinct Representations ...

Figure 6: Single patch (left) and front part consisting of 4 patches (right) of an
approximated unit sphere

The polynomials corresponding to the mappings of addresses (u, v) of the
unit square to 3-dimensional addresses on the unit sphere are

x(u, v) = 3κv + (3 − 6κ)v2 + (3κ − 2)v3 + 9κ(sin(π/6) − 1)u2v+
9(κ(sin(π/3) + 1) − 1)u2v2+
(6(1 − κ) + 9κ(sin(π/6) − sin(π/3)))u2v3+
(κ(6 − 9 sin(π/6)))u3v+
(6 − 3κ(1 + 3 sin(π/3)))u3v2+
(3κ(1 − 3 sin(π/6) + 3 sin(π/3)) − 4)u3v3,

y(u, v) = 1 + 3(κ − 1)v2 + (2 − 3κ)v3

z(u, v) = 9 sin(π/6)κuv + 9κ(sin(π/3) − 2 sin(π/6))uv2+
3κ(3(sin(π/6) − sin(π/3)) + 1)uv3+
9(2κ(2 sin(π/6) − sin(π/3) − 1) + 1)u2v2+
3(κ(1 + 6 sin(π/3) − 6 sin(π/6)) − 2)u2v3+
3κ(2 + 3 sin(π/6))u3v+
3(κ(4 + 3 sin(π/3) − 6 sin(π/6)) − 2)u3v2+
(3κ(3 sin(π/6) − 3 sin(π/3) − 3) + 4)u3v3 .

(33)

We use this patch as a building block for an approximated sphere, where a
single patch represents one octant of the complete sphere. The union of eight
affine transformations of the single octant patch then provides the sphere in total.
Figure 6 shows the single patch with the front part of the sphere. In this view
of the wire-frame model the back part has been omitted, as it would interfere
with the front part in the rendering.

600 Albert J., Tischler G.: On Succinct Representations ...

Figure 7: WFA-coded moon texture for an approximated sphere from eight
PWFA spline patches

4 Textured spline patches

Textured spline patches can be represented efficiently by PWFA. We start by
defining a surface by a spline patch in R

3. The patch is defined by a function
s(u, v) : [0, 1]2 �→ R

3, a function that maps locations from the unit square to
points in R

3. In a textured spline patch each point on the patch is assigned a
vector of scalars, e.g. a single value from [0, 1] describing a grayscale value or
three values from [0, 1] denoting a color described the intensities of the colors
red, green and blue. Each point p on the patch in turn corresponds to a set of
argument pairs (u, v).

Thus we can define a textured patch more formally as a function t : [0, 1]2 �→
R

3+c, where c is the number of color channels. As above, it is relevant only
whether a point in the range of the function is generated, and not which argument
pair actually generates it. Thus a textured patch can be represented as the set
T given by

T =
⋃

u∈[0,1],v∈[0,1]

{t(u, v)} . (34)

Consequently, we obtain a textured patch, by adding a WFA encoded image to
the PWFA by increasing its dimension.

A more realistic example is shown in Figure 7. The texture of the moon
surface from the website [Oera 2009] was WFA encoded and then applied to a
set of eight bicubic Bezier patches forming an approximated unit sphere.

The representation of textured Bezier patches using PWFA is very succinct.
The part of the automaton describing the form of the patch is based on a minimal
WFA, the part representing the texture can be stored in a way competing with
high performance image compression.

601Albert J., Tischler G.: On Succinct Representations ...

5 Conclusion

In this paper we have presented methods to generate PWFA for textured spline
patches. The computed automata are succinct representations of the underlying
graphical objects. For several important operations on those graphical objects
there exist nice and effective closure properties. On the other hand, the list of
open problems in PWFA construction includes the design of a general and effec-
tive inference algorithm for “small” PWFA from general textured or untextured
data sets. These data sets would include textured 3D images of biological tissues
and their surfaces as they occur in medical imaging for example in computer
tomography or nuclear magnetic resonance spectroscopy.

References

[Aho et al. 2007] Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.: “Compilers: Prin-
ciples, Techniques, and Tools”; Addison-Wesley, 2007.

[Albert and Kari 1999] Albert, J., Kari, J.: “Parametric weighted finite automata and
iterated function systems”; Proc. Fractals in Engineering, Delft, 1999, 248-255.

[Barnsley 2000] Barnsley, M. F.: “Fractals everywhere”; 2nd ed., Morgan Kaufmann,
2000.

[Berstel and Nait Abdullah 1989] Berstel, J., Nait Abdullah, A.: “Quadtrees generated
by finite automata”, AFCET 61-62, (1989) 167-175.

[Berstel and Reutenauer 1988] Berstel, J., Reutenauer, C.: “Rational Series and Their
Languages”; Springer-Verlag, 1988.

[de Boor 1978] de Boor, C.: “A practical guide to splines”; Springer-Verlag, 1978.
[Culik and Dube 1997] Culik II, K., Dube, S.: “Implementing Daubechies Wavelet

Transform with Weighted Finite Automata”; Acta Inform.; 34, (1997) 5, 347-366.
[Culik and Karhumäki 1994] Culik II, K., Karhumäki, J.: “Finite automata computing

real functions”; SIAM J. on Computing; 23, (1994) 4, 789-814.
[Culik and Kari 1993] Culik II, K., Kari, J.: “Image compression using weighted finite

automata”; Computers & Graphics; 17, (1993) 3, 305-314.
[Culik and Kari 1994] Culik II, K., Kari, J.: “Image-Data Compression Using Edge-

Optimizing Algorithm for WFA Inference”; Information Processing and Manage-
ment; 30, (1994) 6, 829-838.

[Culik and Kari 1995] Culik II, K., Kari, J.: “Inference Algorithms for WFA and Image
Compression”; Y. Fisher (ed.): Fractal Image Compression: Theory and Applica-
tion; Springer-Verlag, 1995.

[Culik and Kari 1997] Culik II, K., Kari, J.: “Computational Fractal Geometry with
WFA”; Acta Inform.; 34, (1997) 2, 151-166.

[Daubechies 1988] Daubechies, I.: “Orthonormal bases of compactly supported
wavelets”; Comm. Pure and Applied Math.; 41, (1988) 909-996.

[Derencourt et al. 1992] Derencourt, D., Karhumäki, J., Latteux, M., Terlutte,
A.: “On Computational Power of Weighted Finite Automata”; I. M. Havel,
V. Koubek (eds.): Proc. MFCS ’92; LNCS 629, Springer-Verlag, 1992, 236-245.

[Droste et al. 2006] Droste, M., Kari, J., Steinby, P.: “Observations on the Smoothness
Properties of Real Functions Computed by Weighted Finite Automata”; Funda-
menta Informaticae 73, (2006) 1,2, 99-106.

[Droste et al. 2009] Droste, M., Kuich, W., Vogler, H.: “Handbook of Weighted Au-
tomata”, Monographs in Theoretical Computer Science. EATCS Series, Droste,
M., Kuich, W., Vogler, H. (eds.), Springer-Verlag, 2009

602 Albert J., Tischler G.: On Succinct Representations ...

[Eilenberg 1974] Eilenberg, S.: “Automata, Languages and Machines, Vol. A”, Aca-
demic Press, New York, 1974.

[Hafner et al. 1998] Hafner, U., Albert, J., Frank, S., Unger, M.: “Weighted finite au-
tomata for video compression”. IEEE J. on Selected Areas in Communications, 16
(1998) 108-119.

[Hafner 1999] Hafner, U.: “Low Bit-Rate Image and Video Coding with Weighted Fi-
nite Automata”; Ph.D. Thesis, University of Würzburg, Germany, 1999.

[JPEG2000 Core] ISO/IEC-Standard 15444-1: “Information technology - JPEG 2000
image coding system: Core coding system” http://www.itu.int/rec/T-REC-T.
800/en

[Knuth et al. 1977] Knuth, D., Morris, J. H., Pratt, V.: “Fast pattern matching in
strings”; SIAM Journal on Computing 6, 2 (1977) 323-350.

[Maisonobe 2009] Maisonobe, L.: “Drawing an elliptical arc using polylines, quadratic
or cubic Bezier curves” at http://www.spaceroots.org/documents/ellipse/
index.htm, 2009.

[Oera 2009] Øra, T.: “Texture maps of Earth and Planets” at http://oera.net/How2/
TextureMaps.htm, 2009.

[Salomaa and Soittola 1978] Salomaa, A., Soittola, M.: “Automata-Theoretic Aspects
of Formal Power Series” Springer-Verlag, Berlin, 1978.

[Schützenberger 1961] Schützenberger, M. P.: “On the Definition of a Family of Au-
tomata”; Information and Control; 4, (1961) 2-3, 245-270.

[Tischler 2004] Tischler, G.: “Parametric Weighted Finite Automata for Figure Draw-
ing”; M. Domaratzki, A. Okhotin, K. Salomaa, S. Yu (eds.): Proc. Conf. Imple-
mentation and Application of Automata, CIAA 2004; LNCS 3317, Springer-Verlag,
2004, 259-268.

[Tischler 2005] Tischler, G.: “Properties and Applications of Parametric Weighted Fi-
nite Automata”; J. Automata, Languages and Combinatorics; 10, (2005) 2/3,
347-365.

[Tischler 2007] Tischler, G.: “On Computability and some Decision Problems of Para-
metric Weighted Finite Automata”; J. Automata, Languages and Combinatorics;
12, (2007) 4, 525-544.

[Tischler 2008] Tischler, G.: “Theory and Applications of Parametric Weighted Finite
Automata”; Ph.D. Thesis, University of Würzburg, Germany, 2008.

[Tischler et al. 2005] Tischler, G., Albert, J., Kari, J.: “Parametric Weighted Finite
Automata and Multidimensional Dyadic Wavelets”; Proc. Conf. Fractals in Engi-
neering 2005; Tours, 2005.

[Wallace 1991] Wallace, G. K.: “The JPEG still picture compression standard”; Com-
munications of the ACM; 34, (1991) 4, 30-44.

[Wood 1987] Wood, D.: “Theory of Computation”; Harper and Row, 1987.

603Albert J., Tischler G.: On Succinct Representations ...

