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Abstract: This paper discusses three rectilinear (that is, axis-parallel) covering prob-
lems in d dimensions and their variants. The first problem is the Rectilinear Line

Cover where the inputs are n points in R
d and a positive integer k, and we are asked

to answer if we can cover these n points with at most k lines where these lines are
restricted to be axis parallel. We show that this problem has efficient fixed-parameter
tractable (FPT) algorithms. The second problem is the Rectilinear k-Links Span-

ning Path Problem where the inputs are also n points in R
d and a positive integer

k but here we are asked to answer if there is a piecewise linear path through these
n points having at most k line-segments (links) where these line-segments are axis-
parallel. We prove that this second problem is FPT under the assumption that no
two line-segments share the same line. The third problem is the Rectilinear Hyper-

plane Cover problem and we are asked to cover a set of n points in d dimensions
with k axis-parallel hyperplanes of d − 1 dimensions. We also demonstrate this has an
FPT-algorithm. Previous to the results above, only conjectures were enunciated over
several years on the NP-completeness of the Rectilinear Minimum Link Traveling

Salesman Problem, the Minimum Link Spanning Path Problem and the Recti-

linear Hyperplane Cover. We provide the proof that the Rectilinear Minimum

Link Traveling Salesman Problem and the Rectilinear Minimum Link Span-

ning Path Problem are NP-complete by a reduction from the One-In-Three 3-SAT

problem. The NP-completeness of the Rectilinear Hyperplane Cover problem is
proved by a reduction from 3-SAT. This suggests dealing with the intractability just
discovered with fixed-parameter tractability. Moreover, if we extend our problems to a
finite set of orientations, our approach proves these problems remain FPT.

Key Words: Computational Geometry, Restricted Orientations, Parameterized Com-
plexity.

Category: F.2, F.2.2, F.1

1 Introduction

Derick Wood and his colleagues studied many computational geometric problems
with restricted orientations [Rawlins and Wood, 1988, 1991, Fink and Wood,
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1996, 2004]. Here, we study the Line Cover and Minimum Link Spanning

Path Problem problems where a set of k lines is restricted to the lines having
a finite number of orientations.

The Line Cover problem finds the minimum number of straight lines pos-
sible to cover a set S of n points in the plane where these lines could be in any
orientation. This problem has been known to be NP-hard [Megiddo and Tamir,
1982] for over 20 years (in fact, APX-hard [Kumar et al., 2000]). A rectilinear
line is an axis-parallel line that is either horizontal or vertical. When the Line

Cover problem is restricted to only rectilinear lines we call this the Rectilin-

ear Line Cover problem. This problem remains very difficult to solve. In fact,
Hassin and Megiddo [1991] showed that the problem of finding the minimum
number of rectilinear lines required to cover a set of points in 3 dimensions (or
higher) is NP-complete but solvable in polynomial time for 2D.

Consider a path that is made up from more than one line-segment, the
number of line-segments in a given path is often called the link length. A path
having a minimum number of line-segments or links is called a minimum link
path [Wagner, 2006]. The minimum link path is equivalent to a path having the
minimum number of bends (or links) and it could be self intersecting. Therefore,
the Minimum Link Path Problem is sometimes referred to as Minimum Bend

Path Problem. However, the number of bends in the path is actually one less
than the number of line-segments that make up the path. In general, the Mini-

mum Bend Path Problem attempts to find a path between two distinct points
that has a minimum number of bends. This problem is only meaningful with ob-
stacles. Note that finding the path between two points is different from finding
the path that passes through a set of points. The latter path is called a spanning
path [Collins, 2004, Bereg et al., 2009] and the problem of finding the spanning
path that covers a set of points such that this path has the minimum number of
links is known as the Minimum Link Spanning Path Problem. This problem
is NP-complete by a reduction from Edge Embedding on a Grid [Bereg et al.,
2009]. An alternate proof of NP-completeness was given by Arkin et al. [2003]
who showed that the problem of finding a minimum link tour is NP-complete
by a reduction from Line Cover.

When the Minimum Link Spanning Path Problem is restricted to al-
low only rectilinear lines (axis-parallel lines), we call this the Rectilinear

Minimum Link Spanning Path Problem. It was conjectured in 2007 to be
NP-complete, and again the conjecture appeared in 2009 [Bereg et al., 2009].
Bereg et al. [2009] suspected that this problem is NP-complete since Hassin and
Megiddo [1991] showed that the Rectilinear Line Cover problem in 3 di-
mensions (or higher) was NP-complete but they left this issue also open. The
problem of traversing a set of points and minimizing the number of links in the
tour where the links are restricted to being rectilinear lines is called the Rec-

623Estivill-Castro V., Heednacram A., Suraweera F.: NP-completeness ...



tilinear Minimum Link Traveling Salesman Problem. Wagner [2006]
raised and left open whether this problem is NP-complete or if it is polynomi-
ally solvable. Thus, one goal of this paper is to provide the NP-completeness
proofs of the Rectilinear Minimum Link Spanning Path Problem and of
the Rectilinear Minimum Link Traveling Salesman Problem. A closely
related problem is the Rectilinear Hyperplane Cover problem: covering
n points in R

d with the minimum number of rectilinear hyperplanes of dimen-
sion d − 1. The complexity of this problem is polynomial for 2D [Hassin and
Megiddo, 1991], but its complexity is unknown even for 3D [Hurtado, 2008].
The problem is known to be NP-complete if we do not require the hyperplanes
to be rectilinear [Megiddo and Tamir, 1982]. We first show that the rectilin-
ear version is also NP-complete. Note that the algorithms of Langerman and
Morin [Langerman and Morin, 2005] do show that the problem is FPT. How-
ever, we provide improved FPT-algorithms that give hope for tractability despite
our NP-completeness result.

Minimizing the number of bends in the tour is desirable in applications such
as VLSI and the movement of heavy machinery because turns are considered
very costly. In the context of VLSI design, the number of bends on a path af-
fects the resistance and hence the accuracy of expected timing and voltage in
chips [Lee et al., 1996]. The rectilinear version of the problems received consid-
erable attention during 1990’s [Lee et al., 1990, de Berg et al., 1992, Lee et al.,
1996] and recently [Collins, 2004, Arkin et al., 2005, Wagner, 2006, Bereg et al.,
2009], since much of the interest in the rectilinear setting have been motivated
by applications in VLSI. In this setting, paths and tours that self-intersect are
feasible solutions.

In this paper, we study the Rectilinear Line Cover, the Rectilinear

Minimum Link Spanning Path Problem and the Rectilinear Hyper-

plane Cover in d ≥ 3 dimensions.1 We acknowledge that when d > 3 dimen-
sions the problems considered are interesting from a theoretical point of view
mainly. Our solutions will be based on parameterized complexity theory [Downey
and Fellows, 1999, Niedermeier, 2006, Flum and Grohe, 2006]. In classical com-
plexity theory, NP-completeness is essentially a tag for intractability. However,
parameterized complexity theory offers fixed-parameter tractable (FPT) algo-
rithms, which require polynomial time in the size n of the input to find exact
answers, although exponential time may be required on a small parameter k.

The paper is organized as follows. In Section 2 we improve the previously
known FPT result Langerman and Morin [2005] for the Rectilinear Line

Cover in higher dimensions (Theorem 1). In Section 3 we prove that the Line

Cover problem when restricted to a finite number of orientations, is FPT (The-

1 The classical theory of computation as well as the theory of parameterized com-
plexity, focuses on the decision version of these problems. Without further explicit
clarification, we will follow this approach as well.
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orem 5). In Section 4 we prove that the Rectilinear Minimum Link Travel-

ing Salesman Problem and Rectilinear Minimum Link Spanning Path

Problem in 3 dimensions are NP-complete (Theorem 15 and Theorem 16). In
Section 5 we then give an FPT algorithm for the latter problem under the as-
sumption that no two line-segments share the same line (Theorem 17). In Sec-
tion 6 we prove that the Minimum Link Spanning Path Problem, when re-
stricted to a finite number of orientations, is also FPT (Theorem 18). In Section 7
we prove that the Rectilinear Hyperplane Cover problem is NP-complete
(Theorem 20). We then give an FPT-algorithm for this problem (Theorem 21).
We also prove that the Rectilinear Hyperplane Cover problem, when re-
stricted to a finite number of orientations, is FPT (Theorem 22). Finally, in
Section 8 we summarize and conclude with open problems.

2 Rectilinear Line Cover Problem

2.1 Using a Bounded-Search-Tree

Given a set S of n = |S| points in R
d and a positive integer k, we are asked if it

is possible to cover these n points in S with at most k lines where the lines are
restricted to be axis parallel. In this section, we will use the bounded-search-tree
technique to show that this problem belongs to the class FPT.

First we discuss the problem in 3 dimensions. Consider the search tree in
Fig. 1. We choose a point p ∈ S and we explore the possibilities of a cover
at this given point. In a YES-instance, this point must lie on at least one of
the lines NS, EW or UD2, thus we can construct a search tree with fan-out
three. The task is to explore exhaustively these three candidate orientations.
At each node of the tree, we select a point p not already covered. We expand 3
branches corresponding to the NS-orientation, the EW -orientation and the UD-
orientation, respectively and in each brach, we assign one of the three orientations
to the point p. The point p is marked as covered in the recursive calls to cover
the rest of S. The points that fall into the same line with p are also marked as
covered so that we do not consider these points again in the next recursive call.
We keep track of how many assignments have been made and we do not assign
more than k orientations (k rectilinear lines). That is, every recursive call reduces
the value of k by one. Each branch of the tree stops when the upper bound has
been reached or when every point is marked as covered. If the algorithm finds a
leaf with k lines that cover every point in S, it answers YES. If all leaves result
in no cover, then the algorithm answers NO. The algorithm is correct, because
if there is a cover with k lines, we can follow the path in the tree to the leaf that
agrees with the cover. We examine how each point in the node of the path is
covered by the witness cover.
2 N, S, E, W, U, and D stand for North, South, East, West, Up and Down respectively.
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choose a point

...

Depth ≤ k

NS EW UD

3 possible orientations of
a cover at a given point

Figure 1: A search tree of the Rectilinear Line Cover in 3D with depth k.

Therefore, the depth of the tree is at most k. Note that the fan-out is a
constant d = 3 and the depth of the tree is bounded by the parameter k and
not the input size n. The number of nodes in the tree is bounded by 3k, thus we
obtain an FPT-algorithm because its time complexity is linear in the size of the
input, although it is exponential in the parameter.

Note that when the problem is moved to d dimensions, the search tree will
have to explore d candidate orientations at the given point p. Consider a set C

of candidate orientations with the following members {x1, x2, x3, . . . , xd} where
xi ∈ C is a straight line parallel to the i-th axis. The task is again to select a
point p for which a cover orientation xi for 1 ≤ i ≤ d has not been determined,
and assign one of the d orientations to the point p and continue as in the 3
dimensional case. Recall that the Rectilinear Line Cover in 2 dimensions
is polynomially solvable but in 3 dimensions (or higher) this problem is NP-
complete [Hassin and Megiddo, 1991].

Theorem 1. The Rectilinear Line Cover in d ≥ 3 dimensions can be solved
in O(dkn) time.

Proof. The work at the leaves and the nodes is linear in n and the number of
nodes is O(dk). The total time complexity is then O(dkn). The problem is FPT
because it can be decided in running time f(k) · nO(1). ��

Note that the FPT-algorithms of Langerman and Morin [2005] are generic
enough to the Rectilinear Line Cover problem but their complexities do not
improve. Their first algorithm uses a bounded-search-tree and requires O(kdkn)
time while the other uses kernelization and requires O(kd(k+1) +nd+1) time. Our
FPT-algorithm offers better complexity than the FPT-algorithms of Langerman
and Morin when specialized to the rectilinear case. Next we will exploit the
kernelization approach to solve the Rectilinear Line Cover problem and
reduce the time complexity even further.
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2.2 Using Kernelization

This approach reduces the problem to a smaller one using reduction rules. The
rules are applied repeatedly until none of the rules applies. If the result is a
problem of size no longer dependent on n, but only on k, then the problem is
kernelizable because the kernel can be solved by exhaustive search in time that
depends only on the parameter (even if it is exponential time). We now present
our reduction rules for the Rectilinear Line Cover problem.

If k is large enough, we could use one rectilinear line for each point in S.

Reduction Rule 1 If k ≥ n, then the answer is yes.

Consider the simplest case when k = 1, we would need to have all n points
in S in a line.

Reduction Rule 2 If k = 1, then the answer is yes if and only if all points in
S lie on only one rectilinear line, otherwise the answer is no.

If the input S has repeated points, then we can remove duplicated points.

Reduction Rule 3 If S has repeated points, then S can be simplified to a set
with no repetitions and the answer for the simplified set is an answer for the
original input [Langerman and Morin, 2005].

If a rectilinear line covers a lot of points, it must be used in the cover (specif-
ically, we need at least k + 1 points).

Reduction Rule 4 If there is a rectilinear line with k + 1 or more co-linear
points, place the line through them in the cover and remove them from further
consideration. If there is a line with k + 1 or more co-linear points and the line
is not rectilinear, then the answer is automatically no.

Similar to the rule for arbitrary lines [Langerman and Morin, 2005], the above
rule is correct because if the rectilinear line through the k + 1 different points
was not in the cover then we would need more than k rectilinear lines to cover
just these points. Thus, if the set accepts a cover with k lines, any rectilinear
line with k +1 or more points must be in the cover. If the line through the k +1
points is not rectilinear, then we would also need more than k rectilinear lines
to cover just these points. Since we do not accept the non-rectilinear line into
the cover and we do not accept more than k rectilinear lines, the answer here is
immediately no.

The reduction rules above can be formulated into a kernel lemma. The result
below leads to a quadratic size kernel.

Lemma2. If there is a subset S0 of S such that |S0| ≥ k2 + 1, and the largest
number of co-linear points of S0 on a rectilinear line is at most k, then the
answer is no.
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Proof. Similar to the rule for arbitrary lines [Grantson and Levcopoulos, 2006],
if all rectilinear lines covered at most k points, any cover of S0 with k lines
would cover at most k2 points. This means we cannot cover S0, let alone S with
k lines. ��
Next, we let L2 be the set of all rectilinear lines that cover at least 2 points in
S, that is, a rectilinear line l is in L2 if and only if there are 2 or more co-linear
points of S in l. We let cover(L2) be all points in S covered by a line in L2.
With this notation, we now describe two more reduction rules.
Reduction Rule 5 Let p be a point in S \ cover(L2), i.e. p ∈ S, but p /∈
cover(L2). Then, the original instance has a yes answer if and only if the inst-
ance S \ {p} with parameter k − 1 has a yes answer.

This reduction rule essentially says that if we can find a point that is never
covered by a rectilinear line that covers 2 or more points, then we can reduce to
a smaller problem that ignores this point and uses one less line.
Proof. Since p is the only point in a rectilinear line, any cover with k − 1 lines
of S \ {p} can be made a cover of S ∪ {p} with one more rectilinear line. Also
a rectilinear cover C of S must use a rectilinear line lp over p but C \ {p} has
k − 1 rectilinear lines and covers S \ {p}. ��
Reduction Rule 6 Let q be a point in cover(L2). Suppose that there is no other
line in L2 besides lq that also covers q (i.e. {l ∈ L2|l covers q} = {lq}). Then,
the original instance has a yes answer if and only if the instance S \ cover(lq)
with parameter k − 1 has a yes answer.
This reduction rule is similar to the previous rule. That is, if we can find a point
that can only be covered by one line and not by any other lines (even though
this line is in L2), then we can reduce to a smaller problem that ignores the
points that lie on this line and reduce our budget by one.
Proof. If a cover C did not use lq, it must use the other rectilinear line li /∈ L2

to cover q. The line li ∈ C can cover only the point q, thus C ∪ {li} \ {lq} is a
cover of the same cardinality that uses lq. ��

In general, the more reduction rules we can apply, the smaller the kernel
is. Although the size of our kernel remains quadratic in theory, in practical
circumstances the incorporation of these additional rules can result in a kernel
that has size significantly fewer than k2 points (or the size even goes down to
zero) [Estivill-Castro et al., 2009]. We apply the above reduction rules in the
preprocessing phase. When we apply these rules one after another until none of
the rules applies, we have a problem kernel whose size is determined theoretically
by Reduction Rule 4.

Lemma3. Any instance (S, k) of the of the Rectilinear Line Cover problem
can be reduced to a problem kernel S′ of size O(k2).
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p 1 2
3

l1 l2 l3

...
...

Depth ≤ k

Figure 2: Example of a ladder instance (n = 16, k = 4) where the bounded-
search-tree is used in conjunction with Reduction Rule 6.

Proof. Let S′ be the set of points after we cannot repeat the removal of points
covered by a rectilinear line covering k +1 or more points (Reduction Rule 4). If
we repeated the removal more than k times, we know that it is a NO-instance.
If we repeated no more than k times and it is a YES-instance, every line covers
at most k points; thus, any cover with k lines would cover at most k2 points. ��

Now, we can invoke the bounded-search-tree approach in the previous section
to solve the kernel. Recall that this algorithm runs in O(dkn) time. However, the
exponential term now is no longer multiplied by n since the input instance will
be the reduced instance (the kernel). Therefore, we can improve the exponential
term to (dkk2) time and obtain a better algorithm. However, we will introduce an
alternative approach to solve the kernel using the bounded-search-tree technique
in conjunction with the application of Reduction Rule 6. Consider an alternative
bounded-search-tree that focuses on the set of candidate lines Lp ⊂ L2 that go
through a given point p ∈ S′ where S′ is the kernel and |S′| ≤ k2. Note that
the number of axis-parallel lines that go through any point in R

d is at most d.
Therefore, the branching of the search tree is bounded by the value of d. Our
strategy is to choose a point p ∈ S′ which is covered by a set of axis-parallel
lines Lp ⊂ L2, and then we test each of the candidate lines in Lp. The number
of recursive calls in each level of the tree is controlled by |Lp| ≤ d. At each node
of the tree, we also invoke Reduction Rule 6. If the rule applies, this will further
reduce the size of the instance before we move to the next level of the tree. We
illustrate the idea in Fig. 2. There are two main tasks to be performed at each
node of the tree.

1. We pick a point p, and test the candidate lines that go through p. These are
the lines l1, l2 and l3 in Fig. 2. If we pick l1, we mark all the points that lie on
l1 including p as covered in a recursive call to cover the rest of S′ \ cover(l1).
We remove l1 from L2 and remove the covered points from cover(L2).

2. We check if Reduction Rule 6 can be applied on the instance S′ \ cover(li).
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The rule can be exhaustively applied no more than k times if the instance is
a YES-instance. Although this technique appears to increase the cost to the
algorithm, it can reduce the size of the instance and thus could essentially
reduce the depth of the tree. The best case scenario is shown in the left
branch of Fig. 2 where the rule removes all the remaining candidate lines
and the tree stops at the first level of the tree. The worst case is when the
rule cannot be applied at any level of the tree. However, this is not exactly
true because at the (k−1)-th level, there will be at most 2 lines left to cover.
When one of the lines is taken, Reduction Rule 6 will automatically remove
the remaining line and there is no need to proceed to the k-th level. Hence,
effectively the depth of the search tree is at most k − 1.

We repeat the two tasks above in each recursive call until there are no points
left to cover or the tree has reached the upper bound which is the depth of k−1.
Here if every point in S′ is covered, we answer yes. Otherwise, we answer no.

In addition, we can incorporate a greedy strategy like sorting heavy-lines
(lines that cover many points) that go through p to speed up the process. Alter-
natively, we may use a hashing scheme to avoid exploring the same candidate
line in the search tree twice. These strategies may be of interest for practical
implementation and experimentation of expected-case performance and we do
not elaborate on the idea here. We now conclude our result as follows.

Lemma4. The Rectilinear Line Cover in d ≥ 3 dimensions can be decided
in O(n2d2 + dk−1k2) time.

Proof. Reduction Rule 1 can be performed in constant time. Reduction Rule 2
can be applied in O(nd) time. Reduction Rule 3 can be checked in O(n2d) time.
Reduction Rule 4 can be applied if using a naive approach in O(n2d2) time by
computing O(dn) rectilinear lines and checking if these lines cover at least k +1
points. Hence, the preprocessing phase can be carried out in O(n2d2) time. The
depth of the new bounded-search-tree is at most k − 1 and the fan-out is at
most d. The number of nodes in the tree is O(dk−1). The work at each node
is to remove at most k lines each having at most k points and update which
points are covered by which lines (i.e. update a set L2). Note that the set L2 can
be computed in the preprocessing phase which is already bounded by the term
O(n2d2). To update L2, we require k2 time to update what points are covered
by which remaining lines. Therefore, the overall work of the bounded-search-tree
is O(dk−1k2) time and the total time complexity is O(n2d2 + dk−1k2). ��

3 Line Cover Restricted to a Finite Number of Orientations

We now extend our result by considering the Line Cover problem where a set
of k covering lines is restricted to the lines having a finite number of orientations,
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m. This is the case where these k lines must have their orientations taken from a
given finite set R = {r1, r2, . . . , rm} where |R| = m [Güting, 1983, Rawlins and
Wood, 1991].

We can construct the search tree with m branches similar to the one in Fig. 1
where each branch represents a cover orientation that is a straight line with a
slope ri, for 1 ≤ i ≤ m. We then explore the possibilities of a cover at a given
point p ∈ S as we did before in the previous section. Since any point must lie on
at least one of the m orientations (slopes), we select a point p for which a cover
orientation has not been determined, and assign one of the m orientations to the
point p. The point p along with the points that fall into the same cover with p

are marked as covered in the recursive call. After k recursive calls, we have a leaf
where we either have a cover or not. If all leaves do not lead to a cover, this is a
NO-instance. A leaf with a cover provides the certificate of a YES-instance. The
depth of the tree is at most k. The number of nodes in the tree is bounded by mk.
Thus we obtain an FPT-algorithm because its time complexity is polynomial in
the size of the input n, although it is exponential in the parameter k.

Theorem 5. The Line Cover problem when restricted to the lines having a
finite number m ≥ 2 of orientations is FPT.

4 NP-Completeness Results

We will first prove that the Rectilinear Minimum Link Traveling Sales-

man Problem in 3 dimensions is NP-complete by a reduction from One-In-

Three 3-SAT, a known NP-complete problem. It is easy to show that the Rec-

tilinear Minimum Link Traveling Salesman Problem belongs to NP. The
verification algorithm checks whether a given set of |S| points in R

3 can consti-
tute a tour with at most k links and every link in the tour is axis-parallel. This
can be performed in polynomial time.

Now, we show that the One-In-Three 3-SAT problem can be reduced
in polynomial time to Rectilinear Minimum Link Traveling Salesman

Problem. The One-In-Three 3-SAT problem is to decide whether there exists
a satisfying assignment to the variables so that each clause has exactly one true
literal and thus exactly two false literals. In contrast, the 3-SAT problem only
requires that every clause has at least one true literal. The One-In-Three 3-

SAT problem remains NP-complete even when no clause contains a negated
literal [Garey and Johnson, 1979, LO4]. Hence, to simplify our reduction, we
will assume that no literals are negated in our problem.

Suppose that we are given an instance of One-In-Three 3-SAT with a
set of m clauses Ej = w′

j ∨ w′′
j ∨ w′′′

j for j = 1, 2, . . . , m where {w′
j , w

′′
j , w′′′

j } ⊂
{u1, ū1, . . . , un′ , ūn′}. From the instance E1∧ . . .∧Em of One-In-Three 3-SAT

we construct an instance of Rectilinear Minimum Link Traveling Sales-

man Problem by gadget design. We represent each variable ui by a set Si of
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4400m points, for i = 1, 2, . . . , n′. We represent each clause Ej with three points
p′j , p

′′
j , p′′′j , for j = 1, 2, . . . , m. We let P = {p′1, p′′1 , p′′′1 , . . . , p′m, p′′m, p′′′m} be the

set of points representing all clauses. The instance of Rectilinear Minimum

Link Traveling Salesman Problem will have a set S = P ∪ ⋃n′

i=1 Si where
|S| = 4400mn′+3m. The set Si representing ui will be made of a gadget. Such a
gadget will be forced to use 22m different covering line-segments parallel to one
of the axes in R

3. Because of this, rather than describing the points in Si we will
be describing these line-segments. The value 4400m is chosen so that there are
many points in the covering line-segments that a rectilinear tour with minimum
number of bends will be forced to use each of these line-segments.

The plan for the proof is to show that there exists a satisfying assignment
for E1∧ . . .∧Em if and only if a set of |S| points in 3D can be covered optimally
by a rectilinear tour that has k links where k will be set to 34mn′ +2n′−2. The
tour will be made up of two types of line-segments, the covering line-segments we
alluded before which cover

⋃n′

i=1 Si and line-segments that do not cover points
in

⋃n′

i=1 Si. The second type of line-segments joins the first type of line-segments
together. We will design the gadget (and the set Si) representing ui so that
there are two ways of covering the points in Si. These two ways will be used to
represent a variable being assigned the value “true” or “false”. To present our
3D gadget we require some notation.

Definition 6. The three possible types of line-segments parallel to an axis in R
3

are called forms and are denoted by line(x, y, ∗), line(x, ∗, z) and line(∗, y, z).

Thus, a point with a coordinate (x0, y0, z0) can be covered only by line(x0, y0, ∗),
line(x0, ∗, z0) or line(∗, y0, z0).

Definition 7. We denote the three axis-parallel planes with fixed x-value, fixed
y-value, and fixed z-value as Π(x, ∗, ∗), Π(∗, y, ∗), and Π(∗, ∗, z), respectively.

A � B

A

A

A

A

A

A

A

A A

A

B

B

B

B

B

B

B

B B

B

A � B A � B A � BA � BA � B A ⊕ B

Figure 3: Definitions when joining two axis-parallel line-segments.

Definition 8. Given two line-segments of the form A = (x1, y1, ∗) and B =
(x1, y2, ∗) that are in the plane Π(x1, ∗, ∗) we write A�B when they are joined
by one line-segment and two bends on the high z-values (the joining line-segment
has the form (x1, ∗, z�) and the z-value z� is larger than any z-value in A or B).
We denote A � B when they are joined by one line-segment (x1, ∗, z�) and two
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(a) A member of the
equivalence class line1

� line2, line2 � line3,
line3 � line4, line4 �
line5, line5 � line6,
line6 � line1.

(b) Another member
of the equivalence
class line1 � line2,
line2 � line3, line3 �
line4, line4 � line5,
line5 � line6, line6 �
line1.

(c) A member of the
equivalence class line1

� line2, line2 � line3,
line3 � line4, line4 �
line5, line5 � line6,
line6 � line1.

(d) Another member
of the equivalence
class line1 � line2,
line2 � line3, line3 �
line4, line4 � line5,
line5 � line6, line6 �
line1.

(e) It is not a mem-
ber of the other equiv-
alence classes but it
respects where exten-
sions are possible.

(f) It is not a mem-
ber of the other equiv-
alence classes and it
enables other exten-
sions.

Figure 4: Different tours with the same number of bends cover 6 vertical line-
segments in 2D.

bends, and the z-value z� is smaller than any z-value in A or B (see Fig. 3).
Similarly, given two line-segments of the form A = (x1, ∗, z1) and B = (x2, ∗, z1)
that are in the plane Π(∗, ∗, z1), we write A � B when they are joined by one
line-segment (∗, y�, z1) and two bends, and y� is larger than any y-value in A or
B. While A�B is when the line-segment (∗, y�, z1) joining them has y� smaller
than any y-value in A or B. For the third option the definition is analogous.
Finally, A⊕B is when the line-segments A and B are extended and joined with
one bend.

Definition 9. If two rectilinear tours cover a set T = {l1, . . . , lt} of line-segments
in the same order (or exactly in reverse order) with the same number of bends,
we say they are equivalent.

Fig. 4 illustrates the notion that two parallel line-segments li and lj can be
covered with two bends in two ways: li � lj and li � lj and the line-segment in
between is free to shift by extending the tour’s line-segments that cover li and
lj . Fig. 4a and Fig. 4b are in the same equivalence class since li � lj and li � lj
alternate for the same line-segments and enable us to extend the tour by shifting
the horizontal line-segments in the gap of line2-line3 and the gap of line4-line5

downwards. This may suggest this equivalence class as the “true” setting of the
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gadget. While Fig. 4c and Fig. 4d enable the extension downwards in the gap
of line1-line2, the gap of line3-line4, and the gap of line5-line6 as the false
setting. However, Fig. 4e shows a different equivalence class that respects the
same extensions downwards. Moreover, Fig. 4f shows even one more equivalence
class and this one mixes the possible extensions. Our gadgets will be placed in
3D because we can alternate the planes where parallel line-segments are placed
and in this way, restrict the equivalence classes of rectilinear tours with minimum
bends to two equivalence classes. We call the 3D gadgets, “true-false” gadgets.

4.1 A Building Block

First we illustrate the true-false gadgets for a variable ui when m = 1 (see
Fig. 5). We call the gadget when m = 1, a building block because we will repeat
the structure of this gadget m times for a variable participating in m clauses.
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Figure 5: The structure of Si (for m = 1) represents a variable ui, (a) the
building block in 3 dimensions, (b)-(d) the three different projections.

The building block of gadgets has the following properties.

1. All points lie within 8 different x-values {x1, . . . , x8}, 10 different y-values
{y1, . . . , y10} and 4 different z-values {z1, . . . , z4}.

2. In each line-segment illustrated with a solid line in Fig. 5, we place 200
points equally spaced along the segment. There are many points in the line-
segments so that a path with minimum number of bends will be forced to
use these line-segments.
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Figure 6: A tour for setting the gadget to true (m = 1) and its three projections.
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x1 x2 x3 x4 x5 x6 x7 x8 y6 y3y1 y5y2 y7y4 y8y9 y10

Figure 7: A tour for setting the gadget to false (m = 1) and its three projections.

3. The maximum number of line-segments of the same form in the same axis-
parallel plane is two.

4. The set Bj of 4400 points can be covered by 14 line-segments of the form
line(x, y, ∗) and 8 line-segments of the form line(x, ∗, z) where

Bj ⊆
22⋃

s=1

cover(line-segments).
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Table 1 shows line-segments for s = 1, 2, . . . , 22. Note that in Fig. 5 these
line-segments are labelled as 1, 2, . . . , 22.

Table 1: A building block Bj can be covered by 22 line-segments.

line-segments(s = 1, . . . , 11) line-segments(s = 12, . . . , 22)

line-segment1 = line(x1, y1, ∗) line-segment12 = line(x5, y6, ∗)
line-segment2 = line(x1, y2, ∗) line-segment13 = line(x5, y7, ∗)
line-segment3 = line(x2, y2, ∗) line-segment14 = line(x6, y7, ∗)
line-segment4 = line(x2, ∗, z1) line-segment15 = line(x6, ∗, z4)
line-segment5 = line(x2, y3,∗ ) line-segment16 = line(x6, y8, ∗)
line-segment6 = line(x2, ∗, z2) line-segment17 = line(x6, ∗, z3)
line-segment7 = line(x3, ∗, z2) line-segment18 = line(x7, ∗, z3)
line-segment8 = line(x3, y4,∗ ) line-segment19 = line(x7, y9, ∗)
line-segment9 = line(x3, ∗, z1) line-segment20 = line(x7, ∗, z4)
line-segment10 = line(x4, y5, ∗) line-segment21 = line(x8, y10, ∗)
line-segment11 = line(x4, y6, ∗) line-segment22 = line(x8, y1, ∗)

The building block of all gadgets for all variables will be placed so that

1. The lengths of line-segment1 and line-segment2 are both longer than the
lengths of line-segment3, line-segment5, line-segment8 and line-segment10.

2. The y-coordinate of line-segment10 in Bj is smaller than the y-coordinate of
line-segment2.

3. The sequence of line-segments starting with line-segment12 til line-segment22
follows the same pattern of the first 11 segments. However, we expand this
part of the building block in the z-direction, equally on both sides, by 10%
and we place them in increasing x and y values as shown in Fig. 5(c). The
length of every line-segment being expanded is essentially 1.2 times longer
than the length of the previous 11 line-segments. This requirement will pre-
vent any possible interference between lines of different forms.

4. Any two line-segments of the form line(x, y, ∗) in the same plane Π(x, ∗, ∗)
in Bj do not coincide in such a plane with those line-segments of this or any
other gadget.

5. Any two line-segments of the form line(x, ∗, z) in the same plane Π(∗, ∗, z)
in Bj do not coincide in such a plane with those line-segments of this or any
other gadget.

We will show that there are exactly two equivalence classes of covering the
building block in Fig. 5 and both require at least 34 bends. To prove this claim,
we require the following observations.

Observation 1 All line-segments in the building block are in one of two forms,
namely, line(x, y, ∗) or line(x, ∗, z).

636 Estivill-Castro V., Heednacram A., Suraweera F.: NP-completeness ...



Observation 2 In the building block, any two line-segments of the same form
and in a common axis-parallel plane can be joined with two bends (and no fewer).
That is,

– line(x1, y1, ∗) and line(x1, y2, ∗) with y1 �= y2 or

– line(x1, y1, ∗) and line(x2, y1, ∗) with x1 �= x2 or

– line(x1, ∗, z1) and line(x1, ∗, z2) with z1 �= z2 or

– line(x1, ∗, z1) and line(x2, ∗, z1) with x1 �= x2 or

can be joined in a rectilinear path of two bends.

Observation 3 In the building block, any two line-segments of mixed form on
different axis-parallel planes such that there is an axis-parallel plane that contains
one line-segment and intersects the other line-segment in an interior point, can
be joined with three bends (and no fewer). That is,

– line(x1, y1, ∗) and line(x2, ∗, z2) where z2 is chosen such that (x1, y1, z2) is
an interior point in line(x1, y1, ∗), can be joined with three bends.

– line(x1, y1, ∗) and line(x2, ∗, z2) where y1 is chosen such that (x2, y1, z2) is
an interior point in line(x2, ∗, z2), can be joined with three bends.

– line(x1, y1, ∗) and line(x2, ∗, z2) where the values z2 and y1 are chosen such
that (x1, y1, z2) is an interior point in line(x1, y1, ∗), and (x2, y1, z2) is an
interior point in line(x2, ∗, z2), can be joined with four bends.

Observation 4 In the building block, any two line-segments of mixed form
on different axis-parallel planes such that there is an axis-parallel plane that
contains one line-segment and intersects the other line-segment in an exterior
point, can be joined with two bends (an no fewer). That is, line(x1, y1, ∗) and
line(x2, ∗, z2) where z2 and y1 are chosen such that (x1, y1, z2) is an exterior
point in line(x1, y1, ∗), and (x2, y1, z2) is an exterior point in line(x2, ∗, z2), can
be joined with two bends.

Observation 5 In the building block, any two line-segments of mixed form on
the same axis-parallel plane where a line of one line-segment intersects the other
line-segment in an interior point, can be joined with three bends (and no fewer).
That is,

– line(x1, y1, ∗) and line(x1, ∗, z2) where z2 is chosen such that (x1, y1, z2) is
an interior point in line(x1, y1, ∗), or

– line(x1, y1, ∗) and line(x1, ∗, z2) where y1 is chosen such that (x1, y1, z2) is
an interior point in line(x1, ∗, z2), or

– line(x1, y1, ∗) and line(x1, ∗, z2) where (x1, y1, z2) is a point of line-segment
intersection

can be joined in a rectilinear path of three bends (and no fewer).
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Observation 6 In the building block, any two line-segments of mixed form on
the same axis-parallel plane where lines hosting these two segments intersects
in an exterior point of the segments, can be joined with one bend. That is,
line(x1, y1, ∗) and line(x1, ∗, z2) can be extended to meet at a point (x1, y1, z2)
that is exterior to line(x1, y1, ∗) and line(x1, ∗, z2).

Lemma10. A building block as shown in Fig. 5 can be covered by a rectilinear
tour with 34 bends and no fewer in only two equivalent classes as Fig. 6 and
Fig. 7.

Proof. First, we prove 34 bends are necessary. We know from the previously
described six observations that any pair of line-segments in the building block
can be joined with one bend, two bends, three bends, or four bends. One-bend
is the best we can do and four-bends is the worst case of connecting any pairs
of line-segments. We will show that an optimal tour uses only one-bend type
of connections and two-bends type of connections but does not use three-bends
and four-bends type of connections. If we could use one bend for every pair of
line-segments, we would have an optimal tour with 22 bends because there are
22 line-segments in the building block. However, the best we can do is to use
one-bend type of connections (Observation 6) at the 10 locations in the building
block (see Fig. 8). Therefore, any optimal tour can have at most 10 bends of a
connection-type described by Observation 6. The structure of the building block
is then reduced to 12 components. The next best thing that we can do is to
join any pair of these components with two bends. This would result in at least
another 24 bends. Hence, an optimal tour covering the building block in Fig. 5
requires 34 bends or more. Note that if a tour uses three-bends and four-bends
type of connections, we would definitely have more than 34 bends in the tour.

The fact that 34 bends are sufficient is shown by any of the tours in Fig. 6
or Fig. 7.

3
4

5 6 8

9

7

1417

16
201915

18

3 bends 2 bends 3 bends 2 bends+ + + = 10 bends

Figure 8: Ten bends that use a connection-type described by Observation 6.

We now show these are the only two possible equivalence classes. According
to Observation 2 and Observation 4, we have two options when joining any pair
of line-segments with two bends. That is, we have an option to join them at the
top or to join them at the bottom. These two options give rise to exactly the
two equivalent classes as per Fig. 6 and Fig. 7. Disobeying this pattern would
require a three-bends connection or a four-bends connection and consequently
will result in more than 34 bends in the tour. ��
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4.2 A Complete Gadget

The structure of the 22 line-segments in a building block is repeated. Our aim
is to generate a complete gadget that holds 22 covering line-segments per clause
or 22m covering line-segments overall (see Fig. 9). A complete gadget has Si =⋃m

j=1 Bj for j = 1, 2, . . . , m. The set Si can be covered by axis-parallel line-
segments that have a cyclic structure as follows.

Si = cover({line(x1, y1, ∗), line(x1, y2, ∗), line(x2, y2, ∗), line(x2, ∗, z1),

line(x2, y3,∗ ), line(x2, ∗, z2), line(x3, ∗, z2), line(x3, y4,∗ ),

line(x3, ∗, z1), line(x4, y5, ∗), line(x4, y6, ∗), line(x5, y6, ∗), . . . ,
line(x8m, y10m, ∗), line(x8m, y1, ∗), line(x1, y1, ∗)}).

Figure 9: A complete gadget when a variable is set to true (m = 2).

The last line-segment of Bj and the first line-segment of B(j mod m)+1 are
always on the same plane Π(∗, y, ∗). For every 11 line-segments in the gadget,
we still expand the shape of the gadget in z-direction, equally on both sides, by
10%. Therefore, a building block of the first clause is smaller than the block of
the second clause, a building block of the second clause is smaller than the block
of third clause and so on.

Finally, we put n′ gadgets that represents n′ variables on different x, y, and
z-coordinates such that no two covering line-segments of different variables are
on the same axis-parallel plane. We call two parallel line-segments of the form
line(x, ∗, z) and the line-segment line(x, y, ∗) that connects them, a “C” shape.
For example, line-segment4, line-segment5, and line-segment6 in Fig. 5 form a
“C” shape. We enforce the following relationship between the “C” shape and
the line-segments of different building blocks of the form line(x, y, ∗) in front of
it: the z-coordinates of every line-segment in the “C” shape must be between
the smallest and largest z-coordinates of the line-segment line(x, y, ∗) that has
larger y-coordinates than the “C” shape. To maintain this relationship across
all gadgets, we make sure that the n′ gadgets are different in size. That is, in
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a clause the gadget of a variable that participates as the first literal is slightly
bigger than the one that participates as the second literal, and the gadget of
a variable that participates as the second literal is slightly bigger than the one
that participates as the third literal. Again, this requirement is to prevent any
possible interference between lines of different gadgets.

The structures of a tour Ti for setting the gadget to “true” (see Fig. 6) and
a tour Fi for setting the gadget to “false” (see Fig. 7) are described next.

Ti = {line(x1, y1, ∗) � line(x1, y2, ∗) � line(x2, y2, ∗) ⊕ line(x2, ∗, z1) ⊕
line(x2, y3,∗ ) ⊕ line(x2, ∗, z2) � line(x3, ∗, z2) ⊕ line(x3, y4,∗ ) ⊕
line(x3, ∗, z1) � line(x4, y5, ∗) � line(x4, y6, ∗) � line(x5, y6, ∗), . . . ,
line(x8m, y10m, ∗) � line(x8m, y1, ∗) � line(x1, y1, ∗)} and

Fi = line(x1, y1, ∗) � line(x1, y2, ∗) � line(x2, y2, ∗) ⊕ line(x2, ∗, z2) ⊕
line(x2, y3,∗ ) ⊕ line(x2, ∗, z1) � line(x3, ∗, z1) ⊕ line(x3, y4,∗ ) ⊕
line(x3, ∗, z2) � line(x4, y5, ∗) � line(x4, y6, ∗) � line(x5, y6, ∗), . . . ,
line(x8m, y10m, ∗) � line(x8m, y1, ∗) � line(x1, y1, ∗)}.

If we assign “true” to the variable ui, then we cover the set Si by the tour of Ti.
On the other hand, if we assign “false” to the variable ui, then we cover the set
Si by the tour of Fi. In each of these two configurations, the rectilinear tour has
34m bends, which is the minimum number of bends any tour can do.

It is important to note that the arrows in Fig. 9 indicates the paths in true-
gadgets that have the flexibility to be extended to cover points of clauses (dis-
cussed later in the next section). In false-gadgets, all arrows will be pointing in
the opposite direction.

4.3 Gadget Assignment

A complete gadget is built in such a way that it can be covered by a tour in
two ways that give the minimum number of bends to cover the points in Si.
One of the ways represents the variable being assigned the value “true”, and the
other way represents the variable being assigned the value “false”. The minimum
number of bends for each complete gadget is set to 34m bends. That is, each
gadget consists of 34m line-segments (i.e., 22m covering line-segments plus 12m

joining line-segments that do not cover points in
⋃n′

i=1 Si).

Lemma11. A complete gadget can be covered by a rectilinear tour with 34m

bends and no fewer in the “true” configuration or the “false” configuration, where
m is the number of clauses.

Proof. First we establish necessity. A complete gadget has Si =
⋃m

j=1 Bj for
j = 1, 2, . . . , m. Since each building block is replicated in the same way, there
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are 10m locations where we can use one-bend type of connections. The structure
of a complete gadget is then reduced to 12m components. If we could join any
pair of these components with two bends, this would result in at least another
24m bends. Hence, an optimal tour covering a complete gadget requires 34m

bends and no fewer.
To establish sufficiency consider Fig. 9. This shows how the path pattern of

Fig. 6 extends for m > 1.
That these are the only two equivalence classes, is established as follows.

According to Observation 2 and Observation 4, we have two options when join-
ing two parallel line-segments A and B in the same axis-parallel plane with two
bends. That is, we can join them as A�B or A�B. These two options corresponds
to the “true” configuration and the “false” configuration. A tour that deviates
from these two configuration would require a three-bends or a four-bends con-
nection somewhere and consequently will result in more than 34m bends in the
tour. ��

(a) u1 = “true”, u2 = “false”, u3 = “false”

(b) u1 = “false”, u2 = “true”, u3 = “false”

(c) u1 = “false”, u2 = “false”, u3 = “true”

p′j

p′′j

p′′′j

p′j

p′j

p′′j

p′′j

p′′′j

p′′′j

Figure 10: Three cases where the clause Ej = u1 ∨ u2 ∨ u3 is satisfiable and
p′j , p

′′
j and p′′′j is covered.

For every clause, if it is a YES-instance, then there are three patterns; true-
false-false, false-true-false, and false-false-true. This is equivalent to choosing
exactly one of the three variables that participate in a clause, setting it to true
and placing the other two as false. Formally, we represent each clause Ej by
three points p′j = (aj , bj , c

′
j), p′′j = (aj , bj, c

′′
j ) and p′′′j = (aj , bj, c

′′′
j ) in a line

(aj , bj , ∗) where c′j > c′′j > c′′′j and j = 1, 2, . . . , m. The coordinates of all these
points will be pairwise distinct. The gadget passing through the point p′j is the
one set to true. The gadget passing through the points p′′j and p′′′j will be the
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gadget set to false. Essentially, the points p′j , p′′j and p′′′j are covered by the
extendible paths (see Fig. 9) of the three gadgets participating in a clause. The
line-segments of these three gadgets are positioned with respect to the the line
(aj , bj , ∗) as follows.

1. The line (aj , bj , ∗) is placed on the plane Π(x8j−7, ∗, ∗) between two line-
segments line(x8j−7, y10j−9, ∗) and line(x8j−7, y10j−8, ∗) of a gadget that
participates as the first literal. Here, we set x8j−7 = aj, y10j−9 < bj < y10j−8,
c′j ≥ z�, and c′′′j ≤ z�.

2. The line (aj , bj, ∗) is placed between the top plane Π(∗, ∗, z4j−1) and the
bottom plane Π(∗, ∗, z4j). The plane Π(∗, ∗, z4j−1) has two line-segments:
line(x8j−2, ∗, z4j−1) and line(x8j−1, ∗, z4j−1). The plane Π(∗, ∗, z4j) has two
line-segments: line(x8j−2, ∗, z4j) and line(x8j−1, ∗, z4j) . Here, we set z4j−1 =
c′j , z4j = c′′j , , x8j−2 < aj < x8j−1 and bj ≥ y�.

3. The line (aj , bj, ∗) is placed on the plane Π(∗, y10j−3, ∗) between two line-
segments line(x8j−3, y10j−3, ∗) and line(x8j−2, y10j−3, ∗) of a gadget that
participates as the third literal. Here, we set y10j−3 = bj , x8j−3 < aj < x8j−2,
c′j ≥ z�, and c′′j ≤ z�.

If the clause Ej is satisfiable, then one path from true-gadget must cover p′j and
two paths from false-gadgets must cover p′′j and p′′′j (see Fig. 10).

Lemma12. To maintain the minimum number of bends, a complete gadget
must be covered only in the “true” configuration or the “false” configuration
but cannot be covered by both configurations.

Proof. A tour that switches the setting of a gadget from “true” to “false” would
require three-bends or four-bends type of connections. This contradicts the op-
timal tour described in Lemma 10 and Lemma 11 in which the tour uses only
one-bend and two-bends type of connections. ��

Lemma13. A tour, once it enters a complete gadget, maintains its equivalent
classes (therefore, all have the same number of bends) as per Definition 9, and
it only changes in extensions that cover points of clauses.

Proof. Since all the gadgets are different in size and we place n′ gadgets on
different x, y, and z-coordinates such that no two covering line-segments of
different gadgets are on the same axis-parallel plane, the same argument applies
as per Lemma 11. If the tour leaves the gadget (not to cover points of clauses),
then at least three additional bends are required and we would need more than
34m bends to cover the points in Si. Note that a clause was mapped to three
collinear points. If a path that covers a gadget passes through more than one of
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these three points, it would be incurring on a line (aj , bj , ∗) that is additional
to the axis-parallel line-segments it is already covering. By Observation 1 to
Observation 6, this implies at least one more bend. ��

4.4 A Complete Tour

We have discussed a tour that covers Si and there are n′ of these tours, each
having 34m bends. We now explain how to obtain a single tour that covers⋃n′

i=1 Si. Two tours of Si can be merged into one tour with the minimum number
of additional bends. Merging any two tours of Si requires a removal of no more
than one line-segment from each tour (4 bends fewer) but we have to add two line-
segments for connecting any two line-segments from different axis-parallel planes
(6 bends more). Thus, in total we require 2 additional bends for merging any two
tours of Si. We illustrate this merging in Fig. 11 where we place two tours of Si

far away from each other for easy viewing. Note that the line-segments that we
removed above cannot be the covering line-segments of Si and cannot be the line-
segments that are set to cover points of clauses. Therefore, we set the following
two options. We either remove a line-segment joining line(x8m, y10m, ∗) with
line(x8m, y1, ∗) in the tour, or remove a line-segment joining line(x8m, y1, ∗) with
line(x1, y1, ∗). We repeat the merging for n′−1 times to get a single tour covering⋃n′

i=1 Si. The number of bends in a complete tour is therefore 34mn′+2(n′−1) =
34mn′ +2n′− 2. The number of links in a complete tour is also 34mn′ +2n′− 2.

1 2

3 4

1

2 3 4 5

6

Figure 11: Merging any two tours of Si requires 2 additional bends.

Lemma14. There exists a satisfying assignment for E1 ∧ . . . ∧ Em if and only
if a set of |S| points in 3D can be covered optimally by a rectilinear tour that has
34mn′ + 2n′ − 2 links.

Proof. If a clause is satisfiable, then the three points p′j , p′′j and p′′′j that represent
the clause are covered by three different line-segments. The point p′j is covered
by a line-segment arising from a true-gadget while the points p′′j and p′′′j are
covered by two different line-segments arising from two different false-gadgets.
Thus, there are no additional bends incurred to cover points in P . Then, the
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number of bends in the tour is the minimum number of bends to cover points in⋃n′

i=1 Si, which is 34mn′ + 2n′ − 2 bends or 34mn′ + 2n′ − 2 links. On the other
hand, if a clause is not satisfiable (i.e., a clause has one false literal or all equal
literals), then at least one of the three points that represent the clause would
not be covered in the tour and to include these points in the tour we would need
more than 34mn′ + 2n′ − 2 links. Conversely, if a tour with 34mn′ + 2n′ − 2
links covers

⋃n′

i=1 Si and it also covers P that represents the points of clauses
E1, E2 . . . , Em, then E1 ∧ . . . ∧ Em is clearly satisfiable. ��

As a consequence of Lemma 14, we obtain the following result.

Theorem 15. The decision version of Rectilinear Minimum Link Travel-

ing Salesman Problem in 3 dimensions is NP-complete.

Similarly, we prove the NP-completeness of Rectilinear Minimum Link

Spanning Path Problem by a reduction from the One-In-Three 3-SAT.
We follow the same line of argument as above except that we do not connect the
first line-segment to the last line-segment in order to complete the tour.

Theorem 16. The decision version of Rectilinear Minimum Link Span-

ning Path Problem in 3 dimensions is NP-complete.

Since Theorem 16 is true in 3 dimensions, the problem is also NP-complete for
d > 3 dimensions.

5 Rectilinear Spanning Path Problem

In this section, we prove that the problem associated with Theorem 16 belongs
to the class FPT under the assumption that no two line-segments share the same
line. By revisiting the NP-completeness proof above, we find that this restricted
problem remains NP-complete. This is important because it means that even
with this restriction the problem has no polynomial-time exact algorithm, unless
P=NP. Now, we specify the problem in the format of parameterized complexity
as follows. Given a set S of n points in R

d, and a positive integer k, we are asked
if there is a piecewise linear path through these n points in S having at most k

line-segments (links) where every line-segment in the path is axis-parallel.
We follow the standard convention of the problem, that is to restrict the

turns in the path to 90◦ turns. We decide a problem instance for the rectilinear
spanning path with at most k links in two phases. First, we compute candidate
sets of k lines that cover all the n points in S. We assume that one line-segment
in the spanning path covers all the points on the same line3, so once we have
3 This is a constraint of the problem. In unrestricted case several line-segments could

cover points on the same line, we leave this case as an open problem.

644 Estivill-Castro V., Heednacram A., Suraweera F.: NP-completeness ...



the candidate set of k covering lines, we also have the candidate set of k line-
segments. Second, we test if the candidate set can constitute a spanning path
based on these k line-segments in the set.

We can compute the candidate sets of k lines that cover all the n points in S

using the algorithm that solves the Rectilinear Line Cover in d dimensions.
Recall that this can be done in O(dkn) using the bounded-search-tree technique.
However, the bounded-search-tree by itself is not to establish the solution, but
at the leaves we check if the candidate lines from the tree can be completed
into a spanning path with no more than k links. Each of the candidate set of
lines in a leaf of the search tree in Fig. 1 results in a candidate set of line-
segments since we can simply connect the extreme points in cover(l) for each l

in the k lines of the candidate set to get the candidate line-segments. Now we
can explore exhaustively if they conform to the required solution of spanning
path. In the worst case, the k line-segments can be organized into k! orders in a
possible spanning path. For any given order, there are at most 2k possible ways of
connecting these k line-segments as a path because we can connect the current
segment with the next segment in the sequence by two possible end-points.
This is necessary because the two segments could have different orientations,
and we could save an extra line-segment if we connect the two segments at the
correct end-point. This means a total of (k!)(2k) tests. In a simplest case, the
extension of the two segments is enough to make a turn, therefore no extra line-
segment is required. In the worst case, it requires at most d + 1 additional line-
segments in order to connect two consecutive line-segments. In the construction
of the rectilinear spanning path, these additional line-segments can be added in
O(kd) time. Note that if the total number of line-segments in the final rectilinear
spanning path exceeds k, we immediately answer no.

Theorem 17. The Rectilinear k-Links Spanning Path Problem in d di-
mensions is fixed-parameter tractable (FPT) under the assumption that no two
line-segments share the same line.

Proof. The search tree for the first phase has at most O(dk) leaves and O(dk−1)
internal nodes. The work at each internal node can be performed in time linear
in n. The dominant work is the computation at the leaves of the tree. Here we
perform the tests whether we have the spanning path that covers all the points
in S and has at most k links. This results in time bounded by

O(dk(k!)(2k)(kd + n)) = O((2d)k
√

2πk(k/e)k(kd + n))

= O((0.74dk)k(kd + n)
√

k).

The time complexity is exponential in the parameter but polynomial in the size
of the input. Thus, the problem is FPT. ��
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6 Spanning Path Restricted to a Finite Number of
Orientations

We now consider the Minimum Link Spanning Path Problem where the set
of k links is restricted to the lines having a finite number m of orientations. Note
that the statements that follow hold without specifying the dimensions, but in
this case, the orientations are vectors based at the origin. That is, in this case
the k line-segments must have their orientations taken from a given finite set
R = {r1, r2, . . . , rm} where |R| = m. This also implies that the possible angles
between turns at linking points belong to a finite set. We decide a problem in two
phases. First, we compute candidate sets of k lines that cover all the n points in
S. We assume that one line-segment in the spanning path covers all the points
on the same line. Second, we test if the candidate set can constitute a spanning
path based on these k lines that have a finite number of orientations defined in
R.

The first phase is done using the algorithm in Section 2.1. Recall that this
algorithm outputs a set of leaves, and for each leaf a set of k lines covering S

that is restricted to the lines having orientations in R. The algorithm achieves
this in O(mkn) time. The second phase is done in a way similar to that of the
previous section. Each leaf is evaluated to decide if it can be made into a path.
That is, an exhaustive search with the total of (k!)(2k) possible constructions of
a path from the cover. In each test, O(km) additional lines may be added in a
construction of a path. The total time complexity is O((0.74mk)k(km + n)

√
k).

Thus we obtain an FPT-algorithm because its time complexity is polynomial in
the size of the input, although it is exponential in the parameter.

Theorem 18. The Rectilinear k-Links Spanning Path Problem when
restricted to the lines having a finite number m ≥ 2 of orientations and no two
line-segments share the same line, is FPT.

7 Rectilinear Hyperplane Cover Problem

We prove that the problem of covering a set of |S| points in 3D with k axis-
parallel planes of 2D is NP-complete. The method of our proof is inspired by the
NP-completeness proof of the Rectilinear Line Cover problem in 3D [Hassin
and Megiddo, 1991]. First, our problem is trivially in NP. The verification al-
gorithm checks whether each point in the given set S is covered by at least
one of the k planes and every plane is axis-parallel. This can be performed in
polynomial time.

To prove NP-hardness we present a reduction from 3-SAT (3-satisfiability), a
classical NP-complete problem. Our reduction is by gadget construction. Assume
that we are given an instance of 3-SAT with a set of m clauses Ej = w′

j ∨
w′′

j ∨ w′′′
j for j = 1, 2, . . . , m where {w′

j , w
′′
j , w′′′

j } ⊂ {u1, ū1, . . . , un′ , ūn′}. The
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Figure 12: The structure of Si that represents each variable ui is guided by 2m

cubes that are the building blocks of the gadget (illustration with m = 1, π = 3).

instance of 3-SAT has n′ variables and we will represent each variable ui for
i = 1, 2, . . . , n′ by a set Si of 12m points. We represent each clause Ej with
a point pj . The corresponding instance of Rectilinear Hyperplane Cover

will have a set S = {p1, p2, . . . , pm} ∪ ⋃n′

i=1 Si where |S| = 12mn′ + m = n. The
set Si represents ui by a gadget which will be covered optimally π = 3m different
axis-parallel planes. There are n′ gadgets in total. Since the gadgets ensure that
all occurrences of a variable across the formula have a consistent setting, we call
these gadgets, “true-false” gadgets. First we construct the true-false gadgets for
each variable ui (see Fig. 12).

Each gadget is build from 2m axis-parallel cubes as reference. The cubes are
aligned one after the other with the bottom-left-front corner of the next cube
coinciding with the top-right-back corner of the previous one. In each of these
2m cubes there are 6 points (except on the last one, where there are four). Two
points are in the edge that meets the front face and the left face. Two points are
in the edge that meets the top face and the left face. And two points are in the
edge that meets the top face and the back face. For the last cube 4 are like the
first 4 of all other cubes; however, the last two are in the edge that meets the top
face of this cube and the front face of the fist cube. Therefore, for each gadget, the
set Si has a cyclic structure. The x-coordinate has a fixed value x1 for the first
4 points, then a different value x2 in the 5-th point and another different value
x3 in the 6-th point. Then, this pattern of 4 equal, and 2 distinct is repeated,
with x4 in the next 4 points, a new value x5 in the 11-th point and x6 in the
12-th point. The pattern of 4 equal values and 2 different is also repeated in the
y-coordinate and the z-coordinate, but in the z-th coordinate the 4 equal values
start from the 3-rd to the 6-th point, and for the y-coordinate from the 5-th to
the 8-th point (in all coordinates the pattern of 4 equal values, one different and
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(a) Cover for “true”. (b) Cover for “false”.

Figure 13: The optimal covers for the illustration of m = 1 from Fig. 12.

one different wraps around modulo 12) Thus, Si looks as follows.

Si = {(x1, y1, z1), (x1, y1, z2), (x1, y2, z3),

(x1, y3, z3), (x2, y4, z3), (x3, y4, z3),

(x4, y4, z4), . . . , (x2π−2, y2π−1, z2π),

(x2π−2, y2π, z2π), (x2π−1, y1, zi2π),

(xi2π , y1, z2π)}.
We denote the plane perpendicular to the x axis, that intersects x at x0 and is
parallel to the plane of the y and z axes by Π(x0, ∗, ∗). Similarly, we represent
the plane perpendicular to the y axis, that intersects y at y0 and is parallel to
the plane of the x and z axes by Π(∗, y0, ∗). The plane perpendicular to the
z axis, that intersects z at z0 and is parallel to the plane of the x and y axes
is called Π(∗, ∗, z0). Now, to cover the set Si it requires π distinct axis-parallel
planes. The gadget is built in such a way that there are exactly two sets of π

planes that cover Si (see Fig. 13). These are

Ti = {Π(x1, ∗, ∗), Π(∗, y4, ∗), Π(∗, ∗, z6), . . . ,

Π(∗, y2π−2, ∗), Π(∗, ∗, z2π)}
and

Fi = {Π(∗, ∗, z3), Π(x4, ∗, ∗), Π(∗, y7, ∗), . . . ,
Π(x2π−2, ∗, ∗), Π(∗, y1, ∗)}.

In each of these two configurations, each plane covers 4 points, which is the
maximum any plane can cover. The two sets, Ti, Fi, each consists of π axis-
parallel planes and each covers Si, for i = 1, 2, . . . , n′. If we assign “true” to the
variable ui, then we cover the set Si by the planes of Ti. On the other hand, if
we assign “false” to the variable ui, then we cover the set Si by the planes of Fi.

We represent each clause Ej by a single point pj = (aj , bj, cj) for j =
1, 2, . . . , m. The coordinates of all the points is Si are all pairwise distinct from
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those of Si′ , for i �= i′. The only constraints on the coordinates of the points in
the set Si are relative to the clauses where the variable represented in the gadget
participates. The idea to set up the gadget to have planes that can stretch to
the points of the clauses Ej where it participates. To enable at least one of the
planes in the true-false gadgets to covers the point pj = (aj , bj , cj) representing
clause Ej where it participates we proceed as follows. If ui = w′

j (it participates
as the first literal and does so positively), then in Si we set x6j−5 = aj . This
means a setting to “true” will make the 2j − 1 cube have its left face as a plane
with value aj and cover pj. But if ūi = w′

j (it is the first literal in the clause but
participates negated), then in Si we set x6j−2 = aj . Now the plane is the right
face of cube 2j − 1 (which is the left face of cube 2j). If ui = w′′

j (participates
in the second literal), then in Si we set y6j−2 = bj . If ūi = w′′

j , then in Si we set
y6j−5 = bj . If ui = w′′′

j (the third literal), then in Si we set z6j = cj . If ūi = w′′′
j ,

then in Si we set z6j−3 = cj (see Fig. 14).

p1

S1

S2

S3

T1

T2

T3

Figure 14: Example where the clause E1 = u1 ∨ u2 ∨ u3 is satisfiable and p1 is
covered.

Lemma19. There exists a satisfying assignment for E1 ∧ . . . ∧ Em if and only
if a set of |S| points in 3D can be covered by k = πn′ axis-parallel 2D-planes.

Proof. Suppose E1 ∧ . . .∧Em is satisfiable. By assigning planes to n′ gadgets as
per a satisfying assignment, we can cover

⋃n′

i=1 Si with 3mn′ axis-parallel planes.
Moreover, these planes can cover the points in {p1, p2, . . . , pm}. That is, there
are no additional planes needed for covering pj . Therefore, if E1 ∧ . . . ∧ Em is
satisfiable, then the set {p1, p2, . . . , pm} ∪ ⋃n′

i=1 Si can be covered by πn′ axis-
parallel planes.

Conversely, if the πn′ axis-parallel planes cover
⋃n′

i=1 Si and these planes
also cover p1, p2, . . . , pm, then, first of all they need to cover the gadgets as
consistent assignments for each gadget. But then, as the points pj represents the
clause E1, E2 . . . , Em respectively, then E1 ∧ . . . ∧ Em is clearly satisfiable. ��

As a consequence of Lemma 19, we obtain the following result.
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Theorem 20. The decision version of covering a set of points in 3D with axis-
parallel planes of 2D is NP-complete.

Since Theorem 20 is true in 3 dimensions, the problem is also NP-complete for
d > 3 dimensions.

7.1 Using a Bounded-Search-Tree

Given a set S of n points in R
d and a positive integer k, we are asked if it is

possible to cover these n points in d dimensions with k axis-parallel hyperplanes
of d − 1 dimensions. This problem is FPT when parameterized by the number
of dimensions, d, and the size of the solution, k. Using the bounded-search-tree
technique, the proof goes as follows. Consider the problem in 3D first. For each
point p in 3-dimensional space there are three possibilities of being covered,
namely, 1) a plane that is orthogonal to height, 2) a plane that is orthogonal
to depth, and 3) a plane that is orthogonal to width. Besides the point p, other
points on the same plane with p are also marked as covered in the recursive call.
The search tree has a branching factor of three and if we use k as the depth, that
is, we assigned no more than k different axis-parallel planes, then the tree has
3k leaves. If all leaves do not make a cover, then the answer is NO. Otherwise,
we have a cover and the instance is YES.

In d dimensions, each hyperplane is orthogonal to one of the dimensions, so
the branching factor becomes d while the depth is still k. The running time of
the algorithm is then O(dkn).

Theorem 21. The problem of covering a set of n points in d ≥ 3 dimensions
with no more than k axis-parallel hyperplanes of d− 1 dimensions can be solved
in O(dkn) time.

Note that the algorithms of Langerman and Morin [2005] can be adapted
to solve the Hyperplane Cover in both the general and the rectilinear case
but their complexity remains the same. Their bounded-search-tree algorithm
that runs in O(kdkn) time is clearly FPT with respect to k and d. However,
the kernelization algorithm that runs in O(kd(k+1) + nd+1) time is FPT for the
parameter k but not for the parameter d. When the problem is specialized to
the rectilinear case, our FPT-algorithm above offers a better complexity.

We now extend our result by considering the problem of covering a set of
points in d dimensions with k hyperplanes of d − 1 dimension where a set of
these k hyperplanes is restricted to the hyperplanes having a finite number of
orientations, φ. In other words, these k hyperplanes must have their orientations
taken from a given finite set Hd−1 = {Π1, Π2, . . . , Πφ}. We can construct the
search tree with φ branches similar to the early discussion in Section 7.1 and
the depth is still k. Thus, we obtain another FPT-algorithm since the time
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complexity of our algorithm is polynomial in the size of the input n, although it
is exponential in the parameter k.

Theorem 22. The problem of covering a set of n points in d ≥ 3 dimensions
with no more than k hyperplanes of d−1 dimensions such that these hyperplanes
have a finite number φ ≥ 2 of orientations, can be solved in O(φkn) time.

8 Conclusions

We provided 6 FPT results and 3 NP-completeness results related to the problem
of covering points in rectilinear domain in higher dimensions and in the settings
where the covering objects are restricted to have a finite number of orientations.
Although we proved that the Rectilinear Minimum Link Traveling Sales-

man Problem and Rectilinear Minimum Link Spanning Path Problem

in 3 dimensions are NP-complete, the hardness of both problems in the planar
case (2 dimensions) remains an open problem. In addition, we suspect that more
problems in connection to the Traveling Salesman Problem such as finding
a tour that minimizes the distance as well as the number of links in the plane
or in higher dimensions belong to FPT. Also left open is removing the condition
that no two line-segments share the same line in Theorem 17.
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