
Algebras and Update Strategies

In Honor of Derick Wood’s 70th Birthday

Michael Johnson
(Macquarie University

Sydney, NSW, Australia
mike@ics.mq.edu.oz)

Robert Rosebrugh
(Mount Allison University

Sackville, NB, Canada
rrosebrugh@mta.ca)

Richard Wood
(Dalhousie University
Halifax, NS, Canada

rjwood@mathstat.dal.ca)

Abstract: The classical (Bancilhon-Spyratos) correspondence between view update
translations and views with a constant complement reappears more generally as the
correspondence between update strategies and meet complements in the order based
setting of S. Hegner. We show that these two theories of database view updatability
are linked by the notion of “lens” which is an algebra for a monad. We generalize
lenses from the category of sets to consider them in categories with finite products, in
particular the category of ordered sets.

Key Words: algebra, lens, update strategy

Category: E.1, H.1, H.2

1 Introduction

This article links two theories of database view updatability. The first is that
of [Bancilhon and Spyratos 1981], and the second is that of [Hegner 2004]. The
link is the notion called “lens” and studied by B. Pierce and co-authors (see, for
example, [Bohannon et al. 2006]).

Given a database definition (for example by a set of DDL statements in SQL),
the database states S are the valid ways of populating the database objects (for
example the tables). A view definition specifies a way of assigning view states V

to database states, so it is at least a mapping from S to V . An update u is often
considered to be an endomorphism of states. In this generality, the view update
problem is the following:

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 729-748
submitted: 20/4/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS

given a view S
g �� V and an update V

u �� V of the view states, when

is there a compatible update S
tu �� S (known as a translation of u) of

the database states?

For tu to be a translation means that gtu = ug, that is, the following diagram
commutes (as noted even in [Bancilhon and Spyratos 1981]):

V Vu
��

S

V

g

��

S S
tu �� S

V

g

��

Notice that we have not said what sort of structure, if any, the database
states S should have. Several structures for database states and view states have
been considered in the literature on the view update problem. Moreover, the
problem has usually been addressed for a specified set of view updates.

In the early 1980’s, the influential article of Bancilhon and Spyratos modeled
database states as an arbitrary unstructured set S and view states as an arbitrary
unstructured set V . For them a view definition is simply a (surjective) function

S
g �� V . Their criterion for the existence of a translator for a set U of view

updates is the existence of a so-called “complement” view S
f �� C. In short,

the idea is that the view and its complement form a lossless decomposition of

database states, expressed by the injectivity of S
〈g,f〉 �� V × C. Then updates

to a view can be made leaving the database state unchanged (constant) on the
complement. Hence the name “constant complement” updating strategy.

The more recent work of S. Hegner [Hegner 2004] studies the view update
problem when the database states and the view states are arbitrary partially
ordered sets and the view definition is a(n open) surjective monotone function.
Hegner also considers complements, and shows that they correspond to mappings
he calls update strategies which are related to the lenses we will soon consider.

We have argued in [Johnson, Rosebrugh and Wood 2002] (as have others:
[Lellahi and Spyratos 1991], [Piessens and Steegmans 1995], [Diskin and Cadish
1995], [Piessens and Steegmans 1997]) that database states should be structured
as a category of models for a sketch. The consequences for view updates have been
considered by the current authors [Johnson and Rosebrugh 2007]. The model
categories arising are often ordered sets, although not arbitrary, so the cited
approach has something in common with that of Hegner.

In the context of studying their theory of “bi-directional programming”,
Pierce and co-authors were led to study the notion of lens defined equationally
below. They showed that lenses in the category of sets correspond to database

730 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

view updatability in the sense of Bancilhon and Spyratos, and more generally in
the sense of [Gottlob, Paolini and Zicari 1988].

At about the same time as Pierce et al. studied the relationship between
lenses and constant complement update strategies, Hegner wrote about “update
strategies” for a “closed family of updates”. Hegner’s definition of update strat-
egy includes being a lens in the sense appropriate to the category of partially
ordered sets.

The lens equations were first considered (as far as we know) in the early
1980’s by F. Oles [Oles 1982], [Oles 1986] in a study of abstract models of stor-
age. Oles (as reported in [O’Hearn and Tennent 1995]) also characterized mod-
els of the equations in sets as projections. In the 1990’s M. Hoffman and B.
Pierce [Hofmann and Pierce 1995] considered the lens equations in their study
of typing for programming languages.

Our contribution is to consider the lens equations in suitable generality. As we
see below, the equations make sense in a category with products. We show that
viewing lenses as algebras provides the claimed link from the work of Bancilhon
and Spyratos to that of Hegner.

In Section 2 we review the needed category theory. In Section 3 we consider
the monad ΔΣ on a slice category of a category with products and characterize
its algebras. In Section 4 we see the data for a (totally defined) lens in sets is
the same as an algebra for ΔΣ, and that Oles’ characterization has a meaning
for database updating strategies. Section 5 considers the model of Hegner, and
shows that his update strategies are exactly the lenses in the category of ordered
sets.

Acknowledgement. The second and third authors were undergraduate stu-
dents when Derick Wood came to McMaster University in 1970. We both learned
about formal language and automata theory from him. Derick was the M.Sc.
supervisor of the second author, and he imparted both an abiding interest in
theoretical Computer Science and the unforgettable lesson that research is fun.

2 Review of monads

We assume the reader is familiar with the most basic ideas from category theory,
including functor, natural transformation and isomorphism, and (co)limits as
found in, for example [Barr and Wells 1995] or [Pierce 1991]. Categories will be
denoted A,B,C, . . ., functors F, G, H, . . . and natural transformations α, β, γ, . . .

We assume all of our categories are locally small, so that there is a set of arrows
between any two objects A and A′, denoted A(A, A′). We review some other
definitions and results needed in the sequel.

Perhaps the most important concept from category theory is the following.

731Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

Definition 1. Let A and B be categories, and F : A �� B and G : B �� A
be functors. Then F is left adjoint to G (also G is right adjoint to F , the pair
F, G are adjoint) if for any objects A in A and B in B there is a bijection
B(FA, B) ∼= A(A, GB) which is natural in A and B. We will depict this by:

A B��

G

A B

F

��⊥

and write F � G and call the relationship an adjunction.

Following identity arrows through the bijections mentioned determines nat-
ural transformations η : 1A

��GF and ε : FG ��1B called the unit and counit.
They satisfy the so-called triangular identities and, conversely, a pair of natural
transformations satisfying these identities determines an adjunction. For details
see [Barr and Wells 1995].

Example 1. A standard example of adjunction is provided by diagonal functors
and (co)products. Let A be a category. For the case of binary products, denote
the functor whose value on A in A is the pair of objects (A, A) by Δ : A ��A×A.
A right adjoint to Δ is a product functor, denoted −×− : A×A ��A. Indeed,
D × E is a product of objects D and E of A exactly when, for any object A,
there a bijection from pairs of arrows A �� D, A �� E to arrows A �� D × E.
Notice that the identity arrow on D×E then corresponds under the counit to a
pair of arrows denoted generically as π0 : D × E �� D, π1 : D × E �� E called
the projections. The pair of identity arrows from A to A corresponds under the

unit to an arrow denoted A
δA ��A×A. When Δ has a right adjoint, we say A

has products. A coproduct functor is a left adjoint to Δ. �

As we will review below, adjunctions generate examples of the next concept,
and vice versa.

Definition 2. Let A be a category. A monad T on A is a triple T = (T, η, μ)
where T : A �� A is a functor, η : 1A

�� T and μ : T 2 �� T are natural
transformations (called the unit and multiplication). They satisfy the unitary
and associative laws:

μ(ηT) = 1T = μ(Tη) μ(μT) = μ(Tμ)

We will sometimes abuse notation in referring to a monad simply by its
functor part, T .

Example 2. A familiar monad on the category set of sets is the free monoid
monad. For a set X , let TX = X∗, the free monoid on X . T extends easily to

732 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

a functor on set. The inclusion of generators (single letters) provides a function
ηX : X �� TX . Since T 2X = (X∗)∗ is “words of words”, we can define μX :
T 2X �� TX to be the function which simply “multiplies out” and provides a
word. The equations are easily seen to be satisfied. �

Example 3. Let F : A �� B and G : B �� A be functors and F � G. The
functor GF underlies a monad TGF = (GF, ηGF , μGF) where ηGF is the unit for
the F � G adjunction and the multiplication μGF is defined by composition of
the counit ε with (the identity natural transformations on) the functors G and
F to give μGF = GεF : GFGF �� GF . �

Definition 3. Let T = (T, η, μ) be a monad on a category A. An algebra for
T is a pair X = (X, ξ) where ξ : TX �� X is an arrow of A satisfying the
equations:

unit law: ξ(ηX) = 1TX associative law: ξ(μX) = ξ(Tξ)

A morphism of algebras from X = (X, ξ) to Y = (Y, ζ) is an arrow f : X �� Y
in A satisfying fξ = ζT f .

The algebras for a monad form a category denoted AT with composition
inherited from A. As is common practice, when the unit and multiplication for
a monad are clear, as in Example 3 for example, we often just name a monad T

by its functor part T , and refer to T algebras and so on.

Example 4. An algebra for the free monoid monad is a monoid in the category
set. The category of algebras is the category of monoids and their homomor-
phisms. �

Adjoints, monads and their algebras are related by the following well-known
results:

Theorem 4. Let T be a monad on A. There are functors FT : A �� AT and
GT : AT �� A defined by GT(X, ξ) = X, FTX = (TX, μX) and satisfying
FT � GT. Let F : A �� B and G : B �� A be functors with F � G and
suppose T = TGF . Then there is a comparison functor K : B ��AT defined by
KB = (GB, GεGB). Moreover, KF = FT and GTK = G.

The next diagram sums up the situation

B ATGF
K ��B

A

G

��

B

A

��

F

�

A

ATGF

��
GT

A

ATGF

F T

		

�

733Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

There are criteria which ensure that the comparison functor K is an isomor-
phism or equivalence of categories, namely the celebrated monadicity theorems
of J. M. Beck. We recall one of those below. For precision:

Definition 5. Let G be a functor B G �� A with a left adjoint F . Then G

is called monadic if the comparison functor B K �� ATGF is an equivalence of
categories.

Before stating the theorem we need some standard terminology. A functor G

reflects isomorphisms if f is an isomorphism whenever Gf is so. A contractible
coequalizer is a diagram of arrows:

A B
f

 BA t��A B
g

�� B C
h

�� CB
s

satisfying ft = 1B, gt = sh, hs = 1C and hf = hg. A pair of arrows A
f ��
g

�� B is

a G-contractible coequalizer pair if it becomes part of a contractible coequalizer
after application of G. The monadicity theorem we will use is:

Theorem 6. Let B G �� A be a functor. Then G is monadic (in the stronger
sense that K is an isomorphism) if and only if G has a left adjoint; G reflects
isomorphisms; and B has coequalizers of G-contractible coequalizer pairs which
G preserves.

When we use the theorem it will be the case that B has all coequaliz-
ers and the functor G preserves them. For more detail we refer the reader
to [Barr and Wells 1985].

3 TΔΣ algebras

In this section we consider algebras for a monad that is the basis of our descrip-
tion of lenses in the sequel. The monad uses a well-known construction: Let C
be a category. For any object V of C the slice category C/V is constructed as
follows. An object is an arrow g : C ��V to V . An arrow from g to g′ : C′ ��V
is an arrow f : C �� C′ satisfying g′f = g, so arrows are the same thing as
commutative triangles ending at V . There is always a functor ΣV : C/V �� C
defined on objects by ΣV g = C and on arrows by ΣV f = f .

Example 5. Now let C be a category with finite products, for example set. There
is a functor ΔV : C ��C/V (not the Δ of Example 1) that is defined on objects

by ΔV C = V × C
π0 �� V and on arrows by ΔV f = 1V × f . We will usually

734 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

drop the V subscripts. Note that for an object C
g ��V , ΔΣg = V ×C

π0 ��V .
There is an adjunction:

C/V C��
Δ

C/V C

Σ

��⊥

The g’th component of the unit η for the adjunction is g
ηg ��ΔΣg as in the

commutative triangle:

C V × C
〈g,1〉 ��C

V

g
���

��
��

��
��

� V × C

V

π0

��

The adjunction determines the monad TΔΣ on C/V . The unit for the monad is
η while the g’th component of its multiplication is

ΔΣΔΣg
μg �� ΔΣg

as in:

V × C × C

V

π0
���

��
��

��
��

�V × C × C V × C
〈π0,π2〉 �� V × C

V

π0
����

��
��

��
��

�

The following characterization of ΔΣ algebras is useful for the sequel. We
will abbreviate 〈π0, π2〉 to π0,2.

Proposition7. Let C be a category with finite products. An algebra structure
on g : C �� V in C/V for the monad ΔΣ on C/V is an arrow p : V ×C ��C
satisfying:

i) gp = π0

ii) p〈g, 1C〉 = 1C

iii) p(1V × p) = pπ0,2

Proof. As the commutativity of the diagram below illustrates, the equation i)
shows that, viewed as a morphism from ΔΣg to g, p is indeed a morphism of
C/V , while the equation ii) shows that p satisfies the unit law for the monad

735Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

ΔΣ.

C V × C
〈g,1〉 ��C

V

g
���

��
��

��
��

� V × C

V

π0

��

V × C C
p ��V × C

V
��

C

V

g
����

��
��

��
��

C C

1C

��

In the next diagram, the unlabelled vertical arrows are projections, so the whole
diagram makes a commutative square in C/V . Since ΔΣp = 1V ×p and μg = π0,2

the equation iii) (the top square) shows that p is associative.

V × C C��

V × V × C

V × C

π0,2

��

V × V × C V × C
1V ×p �� V × C

C

p

��
V × C

V
���

��
��

��
V × C C

p �� C

V

g
����

��
��

��

V × V × C

V
���

��
��

��
��

��
��

��
V × V × C V × C�� V × C

V
����
��
��
��
��
��
��
�

�	

In the sequel it will be important to know when Δ is monadic.

4 Lenses and update translations

In this section we consider the notion of lens (in set) defined by B. Pierce and
co-authors [Bohannon et al. 2006], [Foster et al. 2007]. Their context is a study
of “bi-directional programming”. They point out that the equations defining
lenses appear elsewhere in the programming language literature, both in Oles
category of “state shapes” [Oles 1982] and in work by Hofmann and Pierce on
“positive subtyping”[Hofmann and Pierce 1995].

As we will see shortly, the data for and the equations satisfied by a very
well behaved lens in [Bohannon et al. 2006] determine an algebra for the monad
ΔV ΣV on the category set. It is our basic observation that ΔV is usually
monadic. Thus, a ΔV ΣV algebra for set/V , equivalently a very well behaved
lens, is specified by an object of the domain of the monadic ΔV , that is, a set.
The set in question determines a view complement as studied by Bancilhon and
Spyratos.

Briefly, a lens in set involves two mappings, “Get” and “Put”, and equa-
tions. In the interpretation for databases, the Get mapping determines a view
state from a database state. The Put (or “Putback”) mapping determines a new
database state s′ from a pair (v, s) of a view state and a database state. The idea

736 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

is the following: If some update u of the Get of the database state s results in the
view state v, then the Put of the pair (v, s) is a new database state s′. The Get
of this new database state must be the view state v (equation PutGet below).
Moreover, if the update u is trivial, the Put of (v, s) is just the projection on s

(equation GetPut below).

Definition 8. A lens in set [Bohannon et al. 2006] is L = (S, V, g, p) where S

and V are sets (the states and the view states); g is a mapping S
g �� V (the

“Get” mapping); p is a mapping V × S
p �� S (the “Put” mapping). A lens is

called well behaved if it satisfies:

i) (PutGet) the Get of a Put is the projection: g(p(v, s)) = v

ii) (GetPut) the Put for a trivially updated state is trivial: p(g(s), s) = s

Diagrammatically:

S

V × S

〈g,1〉
���

��
��

��
S S

1 �� S

V × S

��

p

		
		

		
	

V × S

V

π0
���

��
��

��
V × S S

p �� S

V

g

��		
		

		
	

GetPut PutGet

A well behaved lens is called very well behaved if it satisfies:

iii) (PutPut) composing Puts depends only on the second view state:
p(v′, p(v, s)) = p(v′, s)

Diagrammatically:

V × S V
p

��

V × V × S

V × S

π0,2

��

V × V × S V × S
1V ×p �� V × S

V

p

��

PutPut

Example 6. We illustrate that a lens as just defined may fail to be well behaved.
The example is from [Bohannon et al. 2006].

Suppose that a relational database schema has two signatures, R(A, B) and
S(B, C) (we ignore type information for A, B, C). The view database schema
has just one signature T (A, B, C). The set S of database states is the set of
pairs R,S of tables with column headings from the signatures, and similarly the
set V of view states is the set of tables T. The action of the Get mapping on a

737Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

database state R,S is to determine the view state (table) T which is the natural
join of R,S. For example, with R and S as follows, we get T as shown:

⎧⎪⎨
⎪⎩

R A B

a1 b1

a1 b2

S B C

b1 c1

b1 c2

⎫⎪⎬
⎪⎭

−→

⎧⎪⎨
⎪⎩

T A B C

a1 b1 c1

a1 b1 c2

⎫⎪⎬
⎪⎭

The Put mapping on a pair consisting of a view state T and a database state
R,S provides a new state R′,S′ by simply projecting T onto A, B and B, C

respectively. For the example above:
⎧⎪⎨
⎪⎩

T A B C

a1 b1 c1

a1 b1 c2

⎫⎪⎬
⎪⎭

−→

⎧⎪⎨
⎪⎩

R A B

a1 b1

S B C

b1 c1

b1 c2

⎫⎪⎬
⎪⎭

Thus for this lens the GetPut equation is not satisfied. Of course, the reason is
that the Put function we defined ignores the original database state. Failure of
GetPut can be repaired simply by changing Put to take account of the original
state. As we shall see, for any well behaved lens the Get and Put functions are
surjective. The lens above thus necessarily fails to satisfy PutGet because the
Get is not surjective. Indeed, for the Get defined, there is no Put defining a lens
satisfying PutGet.

We can modify the example to a very well behaved lenses. First modify the
view schema so that it has two signatures T (A), V (C). Then the new Get map-
ping on a database state R,S determines the view state (tables) T,V by selecting
components from rows of R,S with B component b1. The Put on {T,V}, {R,S}
simply places rows with B component b1 into R,S for each element of T,V. �

Notice that there is a unique lens in set with S empty. Since the identity
is surjective, PutGet for a lens in set implies that if S is non-empty then g is
surjective.

Recall the adjunction from Example 5 for the case C = set:

set/V set��
Δ

set/V set

Σ
��⊥

In this case, for S
g �� V in set/V and X in set, we have Σ(g) = S and

Δ(X) = V × X
π0 �� V , so ΔΣg = V × S

π0 �� V . The g’th component of the

unit for the adjunction is g
ηg ��ΔΣg. The g’th component of the multiplication

for the monad ΔΣ is
ΔΣΔΣg

μg �� ΔΣg

738 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

which as a commutative triangle in set is:

V × V × S

V

π0
���

��
��

��
��

�V × V × S V × S
π0,2 �� V × S

V

π0
����

��
��

��
��

Let L be a lens. The PutGet law and the GetPut law say that i) and ii) of
Proposition 7 are satisfied, and the PutPut law says that iii) of that Proposition
is satisfied. Thus:

Proposition9. A very well behaved lens L = (S, V, g, p) is exactly the data for
an algebra (g, p) for the monad ΔΣ on set/V .

Our primary interest is very well behaved lenses. We now assume that unless
otherwise noted all lenses are very well behaved. With that assumption, and for
later use, we make the following general definition.

Definition 10. Let C be a category with finite products and V an object of C.
A lens in C with view states V is an algebra for the monad ΔΣ.

Equivalently, a lens in C with view states V is a pair of arrows C
g �� V ,

V × C
p �� C satisfying the equations in Proposition 7.

Next we consider monadicity of Δ. Consider the following diagram in which
K is the comparison functor from set to ΔΣ algebras.

set (set/V)TΔΣ
K ��set

set/V

Δ

��

set

set/V

��

Σ
�

set/V

(set/V)TΔΣ

��
set/V

(set/V)TΔΣ

��

�

There is a trivial case: if V = ∅, then set/V ∼= 1, the terminal category, and
then the category of ΔΣ algebras is also isomorphic to 1. Otherwise, as we show
directly, K is an equivalence of categories. That is, we are going to show directly
that Δ is monadic. Notice that K is defined on objects as follows:

K(C) = (π0 : V × C �� V, π0,2 : V × V × C �� V × C)

We will need:

Lemma11. Let (S
g �� V, V × S

p �� S) be a ΔΣ algebra in set. For all v, v′

in V , g−1(v) ∼= g−1(v′)

739Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

Proof. The statement is evidently true when S is empty. Otherwise g is surjec-
tive, so all g−1(v) are non-empty.

For v, v′ in V , define ϕv,v′ : g−1(v) �� g−1(v′) by ϕv,v′ (s) = p(v′, s), and
note ϕv,v′(s) is in g−1(v′) since g(p(v′, s)) = v′. Next,

ϕv′,v(ϕv,v′ (s)) = ϕv′,v(p(v′, s))

= p(v, p(v′, s))

= p(v, s)

= p(g(s), s)

= s

where the last three equations follow from, respectively, PutPut, that s is in
g−1(v), and GetPut. Interchanging the roles of v and v′ in the equation just
demonstrated shows that ϕv′,v is inverse to ϕv,v′ which completes the proof. �	

Theorem 12. If V is non-empty, K is an equivalence and so Δ is monadic.

Proof. Choose a v0 in V . To show that K is an equivalence, we begin by defining

a functor H : (set/V)TΔΣ �� set. Let (S
g �� V, p) be a ΔΣ algebra. Define

C = g−1(v0) and H(g, p) = C. Note that by Lemma 11, C is (up to isomorphism)
independent of the choice of v0. To define H on arrows recall that an arrow f

in (set/V)TΔΣ from (g, p) to (S′ g′
�� V, p′) is a mapping S

f �� S′ satisfying
g′f = g and p′(V × f) = fp. Thus f restricts to C = g−1(v0) �� g′−1(v0) = C′

and H is clearly functorial.
Next we show that KH is isomorphic to the identity on (set/V)TΔΣ . To do

this we show that (g, p) is isomorphic to KH(g, p) = (V × C
π

0
�� V, π0,2). By

the definition of C, 〈g, p(v0,−)〉 maps S to V ×C and g = π0〈g, p(v0,−)〉 giving
an arrow from g to π0 in set/V . It is an algebra homomorphism because:

〈g(p(v, s)), p(v0, p(v, s))〉 = 〈v, p(v0, s)〉 = π0,2〈v, g(s), p(v0, s)〉

The restriction of p to V ×C provides an arrow in set/V from π0 to g which is an
algebra homomorphism by PutPut. To show these arrows are mutually inverse
consider:

S V × C
〈g,p(v0,−)〉��S

V

g

��

 V × C

V

π0

��

V × C S
p|V ×C ��V × C

V
��

S

V

g

��������������

and note that p(g(s), p(v0, s)) = p(g(s), s) = s so the top composes to the
identity on S. On the other hand, 〈g(p(v, c)), p(v0, p(v, c))〉 = 〈v, p(v0, c)〉 =
〈v, p(g(c), c)〉 = 〈v, c〉 showing that the other composite is the identity.

740 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

Finally we need that HK ∼= 1set, but this is easy to see. Indeed, since K(C)
is a structure on π0 : V × C �� V , HK(C) = π−1

0 (v) ∼= C for any v. �	

We note an important point from the proof:

Corollary 13. Let L = (S, V, g, p) be a (very well behaved) lens with V non-

empty, v0 in V , and C the set g−1(v0). Denote the projection V × C
π0 �� V .

The arrow 〈g, p(v0,−)〉 : S �� V × C is inverse to p|V ×C in set and defines an
isomorphism (g, p) ∼= (π0, π0,2) in ΔΣ algebras.

Remark. The C in the corollary is the set Bancilhon and Spyratos call the “com-

plement” of V . Here the complement view is simply the projection V ×C
π1 ��C,

and of course we have a “constant complement” decomposition.
The theorem also follows easily by Beck’s monadicity theorem, Theorem 6

above. We know Δ has a left adjoint. It is a “logical” functor, so it preserves all
coequalizers (and this is also easy to see directly). There remains to show only
that Δ reflects isomorphisms. However, h : Δ(X) �� Δ(Y) is iso exactly if the
function h : V ×X ��V ×Y is. Since V is non-empty and h is an arrow of set/V

(by the projections), for v0 in V the restriction of h to {v0}×X �� {v0}× Y is

a bijection. We conclude that X
∼= �� Y .

In some writings Pierce et al. allow the Get and Put to be partial functions
and call the lenses of Definition 8 a “total lens” (for example [Foster et al. 2007]),
but they remark that “In practice, we always want lenses to be total...”. For
most of our purposes, lenses with total Get and Put suffice, but we introduce
the following terminology for use below.

Definition 14. A partial lens in set is L = (S, V, g, p) where S, V , g, p are as
above, except that g and p may be partial mappings. A partial lens in set is
total for P ⊆ set(S, S) and U ⊆ set(V, V) if

i) g is a total function

ii) the domain of p is {(u(gs), s)|u ∈ U, s ∈ S}
iii) p(v, s) = s′ implies s′ = r(s) for some update r ∈ P

In the database context, the set U is intended to be the set of (view) updates
for which a translation is required, and P is a set of (database) updates which
includes translations of the updates in U . By conditions ii) and iii), a partial
lens which is total for any U such that V × S ⊆ {(u(gs), s)|u ∈ U, s ∈ S} and P

such that the image of p is contained in the images of updates in P is the same
thing as a lens in set. Now P is merely the set of potential translations, so as

741Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

long as it contains the identity (so that iii) is satisfied), it does no harm to take
P = set(S, S).

For database views, it certainly makes sense to require the Get g for a lens
to be totally defined, but a Put might be partial.

Let C be a category with (chosen) finite limits. We also require that C have an
epi-mono factorization system for its arrows, and that pullbacks of monic arrows
are monic. Denote by par(C) the partial map category. Its objects are those of

C and an arrow C
f �� C′ is a span from C to C′ denoted C �� f0

Df
f1 �� C′

with f0 monic. Composition is by (chosen) pullback. With this hypothesis, it is
easy to extend the ΔV and ΣV above to the partial map categories. Note that
the domain of the extension of Σ is par(C/V) and not par(C)/V . The latter
has different objects—partial maps to V . Moreover our interest remains in fully
defined views, so par(C/V) is the right domain. It is also easy to check that
there is still an adjunction. In the set case:

par(set/V) par(set)��
Δ

par(set/V) par(set)

Σ
��⊥

For the resulting monad, the comparison functor K has domain par(set) and
codomain the ΔΣ algebras (par(set))TΔΣ . However K is no longer an equiva-
lence, nor is it even fully faithful. It is still the case, of course, that a ΔΣ algebra
is a (partial) lens.

We end this section by recalling the relationship between lenses and the trans-
lators of Bancilhon and Spyratos [Bancilhon and Spyratos 1981]. As mentioned
above, for Bancilhon and Spyratos a view g : S �� V is a surjective function.
A complete set of updates is a set U ⊆ set(V, V) closed under composition and
such that for u in U and s in S there is a v in U such that vu(s) = s. A translator
T for U is a composition-preserving function T : U �� set(S, S) such that for u

in U , gT (u) = ug. The relationship noted by Pierce and Schmitt is:

Theorem 15. There is a one-one correspondence between, one the one hand,
triples (g, p, U) with L = (S, V, g, p) a very well behaved lens that is total (Defi-
nition 14) for a complete set of updates U ⊆ set(V, V) (and P ⊆ set(S, S)) and,
on the other hand, triples (g, U, T) where T is a translator for the complete set

of updates U of a view S
g �� V .

This theorem appears in a manuscript [Pierce and Schmitt 2003] (referred to
in [Bohannon et al. 2006]). By the theorem, lenses, or ΔΣ algebras, correspond
to translators. Bancilhon and Spyratos showed directly that translators are es-
sentially the same as product decompositions. The main point of this section
is that Theorem 12 and Corollary 13 show that translators correspond to de-
compositions indirectly using Theorem 15. Moreover, our results determine the

742 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

second factor in a decomposition of the domain of the view as the set determined
by an algebra/lens (under H in the proof above).

For completeness, we note that [Pierce and Schmitt 2003] also shows that a
merely well behaved lens corresponds to the notion of dynamic view in the sense
of [Gottlob, Paolini and Zicari 1988]. Furthermore it is shown by direct construc-
tion that the domain of a very well behaved lens decomposes as a product with
V (not as a consequence of Theorem 12). Indeed, the product decomposition for
lenses was also noted by [Oles 1982].

5 The Ordered Case: Update Strategies

Denote by ord the category of partially ordered sets and monotone mappings.
We recall that ord is a category with finite limits. The finite limits are computed
as in set. Indeed, the order on a product of ordered sets is the product of their
orders, and a terminal ordered set is a singleton set with its unique order. The
equalizer of a pair of monotone mappings is their equalizer in set with the
inherited order. It follows that monomorphisms in ord are regular (they are the
equalizers), and the pullback of a mono is a mono.

Surjective mappings in ord are, of course, epimorphisms. However, like the
category of categories, ord is not a regular category.

Since ord has products, for any ordered set V , we have an adjunction that
we again denote Σ � Δ. A ΔΣ algebra is a lens in ord with view states V .

Below we will need to use a factorization system for arrows in ord which we

now describe. Let X
f �� Y be a monotone mapping of ordered sets. Denote by

≡f the (kernel) equivalence relation on the set X defined by x ≡f x′ iff fx = fx′.

As usual this means the function f factorizes as X
pf ��X/ ≡f

if ��Y through
the quotient set. We define a partial order ≤f on X/ ≡f as the transitive closure
of the relation � on X/ ≡f defined by [x1] � [x2] iff ∃x′

1, x
′
2 such that x1 ≡f x′

1,
x′

1 ≤ x′
2 and x′

2 ≡f x2. The relation ≤f is reflexive and transitive by definition.
That it is antisymmetric follows from antisymmetry of the order on Y . The
function pf is clearly monotone by its definition. Transitivity of the order on Y

makes if monotone.
In [Hegner 2004], a database schema is defined to be a partially ordered set S.

The intention is that S is the totality of database states and that database states

may be comparable. Then a view is an open surjection S
g ��V of ordered sets.

This means that g is required to be an onto monotone function, and whenever
v1 ≤ v2 in V there exist s1, s2 in S with s1 ≤ s2 and g(si) = vi. Open surjections
are so named because they define open mappings for the order topologies on S

and V .

743Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

Definition 16. [Hegner 2004] A closed update family T on a database schema
S is an order compatible equivalence relation, i.e. s1 ≤ s2 ≤ s3 and s1 ∼T s3

implies s1 ∼T s2.

The idea is that s1 ∼T s2 means that s1 is updatable to s2. Transitivity
and symmetry mean updates are composable and reversible (like a complete
set of updates for Bancilhon and Spyratos). Note that ≤f as defined above is
order-compatible.

Definition 17. [Hegner 2004] Let S
g �� V be a view and T a closed update

family on V . An update strategy for T is a partial function V × S
p �� S such

that (equations valid when defined):

u1: p(v, s) is defined iff (v, g(s)) in T

u2: g(p(v, s)) = v

u3: p(g(s), s) = s

u4: p(g(s), p(v, s)) = s

u5: p(v′, p(v, s)) = p(v′, s)

u6: g(s) ≤ v implies s ≤ p(v, s)

u7: s1 ≤ s2 ≤ p(v1, s1) implies ∃v2, p(v2, s1) = s2 & p(g((p(v1, s1)), s2) =
p(v1, s1)

u8: s1 ≤ s2 & v1 ≤ v2 implies p(v1, s1) ≤ p(v2, s2)

The property u8 states that an update strategy p is a monotone partial
mapping. If V is empty there is, of course, exactly one view to V from the
empty order, and otherwise as we show next an update strategy is exactly a lens
in ord.

Theorem 18. Let V be non-empty in ord. For a view S
g �� V , an update

strategy p for the “all” closed update family, V ×V , is an algebra for the monad

ΔΣ on ord/V . Conversely, a view S
g ��V with a ΔΣ algebra structure in ord,

V ×S
p ��S, determines an update strategy for the closed update family V ×V .

Proof. For the first part, since g is surjective and T is symmetric, u1 implies
that p is total. By u8, p is monotone (as is g, being a view). Now u2, u3 and u5
state that an update strategy p satisfies the PutGet, GetPut and PutPut laws
for a lens in ord, so by Proposition 7, p is a ΔΣ algebra structure on g.

For the converse, suppose that a view g is a ΔΣ algebra with structure p.
Thus g is total and surjective since gp = π0 is surjective. Moreover p is monotone

744 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

so u8 is satisfied. Because p is total, u1 is trivially satisfied for T = V × V

(p(v, g(s)) is defined iff (v, g(s)) is in T). By Proposition 7 again, the algebra
equations imply u2, u3 and u5. Thus, u1, u2, u3, u5 and u8 are satisfied.

Since p(g(s), p(v, s)) is always defined, u5 (PutPut) implies u4 as seen by
p(g(s), p(v, s)) = p(g(s), s) = s. Furthermore, u8 implies u6 since g(s) ≤ v

implies (g(s), s) ≤ (v, s) implies s = p(g(s), s) ≤ p(v, s).
That leaves u7. Using u3, we can restate u7 as:

s1 ≤ s2 ≤ p(v1, s1) implies p(g(s2), s1) = s2 & p(v1, s2) = p(v1, s1)
(take v2 = g(s2) and note g(p(v1, s1)) = p(v1, s1)).

Suppose that s1 ≤ s2 ≤ p(v1, s1). Now s2 = p(v2, s2) ≤ p(v2, p(v1, s1)) =
p(v2, s1) using v2 = g(s2), the hypothesis and u5. On the other hand p(v2, s1) ≤
p(v2, s2) = s2 using that p is monotone. The inequalities give p(g(s2), s1) = s2.
Using the equality just proved and u5 again gives p(v1, s2) = p(v1, p(v2, s1)) =
p(v1, s1). �	

For consistency with the definitions in [Hegner 2004], we are going to modify
slightly the monad ΔΣ on ord. We denote the category of non-empty partially
ordered sets by ord+. For a non-empty partially ordered set V , we denote the
full subcategory of ord+/V whose objects are open surjections by ord+/oV .

Lemma19. The functors Σ and Δ restrict to ord+/oV and ord+, respectively,
and for the restrictions we still have Σ � Δ.

Proof. The only point we note is that a projection to a non-empty ordered set
is clearly open. �	

Once again, we denote the comparison functor from ord+ to ΔΣ algebras
by K.

Theorem 20. Let V be non-empty in ord. The comparison functor K is an
equivalence and so Δ is monadic.

Proof. The proof is the same as that for Theorem 12 once we note that the ϕv,v′

used there are monotone since they are defined using the monotone p. �	

The analogue of Corollary 13 is:

Corollary 21. Let V be non-empty in ord with v0 in V . Let S
g ��V be a view,

p an update strategy for the closed update family V × V , and C the ordered set
g−1v0. The arrow 〈g, p(v0,−)〉 : S �� V × C is inverse to p|V ×C in ord and
defines an isomorphism (g, p) ∼= (π0, π0,2) in ΔΣ algebras.

Remark. The C in the corollary is the ordered set [Hegner 2004], Corollary 3.10,
calls the meet complement of V .

745Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

Like the main result in the previous section, Theorem 20 also follows by
Beck’s monadicity theorem, Theorem 6. However in the ord case we need to
consider contractible coequalizers, and the resulting argument is no simpler than
the direct proof above.

Steve Lack reminded us that for C with finite limits and coequalizers, the

functor ΔV is monadic exactly when the unique arrow V
tV �� 1 is an effective

descent morphism. For this to be so, it is sufficient that V have an element (a
right inverse to tV), which explains the sufficiency of requiring the element v0 in
our results above.

Because ord has pullbacks, and the pullback of an injective monotone map-
ping is injective, we can define the category of partial monotone mappings
par(ord). Since ord has finite limits, it is also the case that for an ordered set
V , ord/V has finite limits. As in the previous Section, we have an adjunction:

par(ord/V) par(ord)
��

Δ

par(ord/V) par(ord)

Σ
 ⊥

Once again the comparison functor K from par(ord) to ΔΣ algebras is not
an equivalence, but a ΔΣ algebra is certainly a partial lens in ord. A partial
lens in the image of the comparison functor has a decomposition like that in
Corollary 21.

We conclude this section by pointing out that Corollary 21 again provides
an indirect proof of the update strategy/meet complement correspondence.

6 Conclusion

The main results of this article show that the constant complement view updat-
ing strategies arise because they correspond to the concept of lens, or equiva-
lently ΔΣ algebra, in appropriate categories. As pointed out in [Hegner 2004],
the value of such strategies lies in their assurance that anomalous view updates
are forbidden.

If we ignore the restriction to non-empty orders and open surjections in the
previous section, we see there is more than analogy linking ΔΣ algebras in set
and in ord. There is a forgetful functor U : ord �� set which has a left adjoint
D, whose value at a set X is the discrete ordered set on X . Now U can be
extended to a functor UV : ord/V �� set/UV which on objects simply applies
U to a monotone mapping X �� V . This functor has a left adjoint that we
denote DV . Its value at a function Y ��UV is the adjunct monotone mapping
DY �� V . The following diagram sums up the situation and we note that both
squares commute. The functors Δ are monadic, and this is a sort of “adjoint

746 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

change of base” for algebras. Moreover, the functors DV and D express the set
lenses as a special case of ord lenses.

ord/V ord!!
Δ

ord/V ord

Σ

⊥

set/UV

ord/V

DV

""

set/UV

ord/V

��

UV�

set

ord

D

##

set

ord

��

U�

set/UV set!!
Δ

set/UV set

Σ

⊥

We are currently considering lenses in the context of the categorical sketch
data model [Johnson, Rosebrugh and Wood 2002]. In that model we showed
how updatability is expressible via cartesian structure on the functor defining
a view [Johnson and Rosebrugh 2007]. In a forthcoming article we will address
connections between the lens or, equivalently, constant complement approach to
view updatability and the approach using (op)fibrations.

References

[Bancilhon and Spyratos 1981] Bancilhon, F., Spyratos, N.: Update semantics of rela-
tional views, ACM Trans. Database Syst. 6, 557–575, 1981.

[Barr and Wells 1995] Barr, M., C. Wells, C.: Category theory for computing science.
Prentice-Hall, second edition, 1995.

[Barr and Wells 1985] M. Barr and C. Wells. Toposes, Triples and Theories.
Grundlehren Math. Wiss. 278, Springer Verlag, 1985.
Available from ftp://ftp.math.mcgill.ca/pub/barr/ttt/

[Bohannon et al. 2006] A. Bohannon, B. Pierce and J. Vaughan. Relational Lenses: A
language for updatable views. Proceedings of ACM PODS-2006, 338–347, 2006.

[Diskin and Cadish 1995] Z. Diskin and B. Cadish. Algebraic graph-based approach
to management of multidatabase systems. In Proceedings of The Second Inter-
national Workshop on Next Generation Information Technologies and Systems
(NGITS ’95), 1995.

[Foster et al. 2007] J. Foster, M. Greenwald, J. Moore, B. Pierce and A. Schmitt. Com-
binators for bi-directional tree transformations: A linguistic approach to the view
update problem. ACM Transactions on Programming Languages and Systems, 29,
No. 17, 2007.

[Gottlob, Paolini and Zicari 1988] G. Gottlob, P. Paolini and R. Zicari. Properties and
update semantics of consistent views, ACM Trans. Database Syst. 13, 486–524,
1988.

[Hegner 2004] S. J. Hegner. An order-based theory of updates for closed database
views. Annals of Mathematics and Artificial Intelligence, 40, 63–125, (2004).

[Hofmann and Pierce 1995] M. Hofmann and B. Pierce. Positive subtyping.
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), 186-197, 1995.

[Johnson, Rosebrugh and Wood 2002] M. Johnson, R. Rosebrugh, and R. J. Wood.
Entity-relationship-attribute designs and sketches. Theory and Applications of
Categories 10, 94–112, 2002.

747Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

[Johnson and Rosebrugh 2007] M. Johnson and R. Rosebrugh. Fibrations and univer-
sal view updatability. Theoretical Computer Science, 388, 109–129, 2007.

[Lellahi and Spyratos 1991] K. Lellahi and N. Spyratos. Towards a categorical data
model supporting structured objects and inheritance. LNCS 504, 86–105,1991.

[O’Hearn and Tennent 1995] P. O’Hearn and R. Tennent. Parametricity and local vari-
ables. Journal of the ACM 42, 658–709, 1995.

[Oles 1982] F. J. Oles. A category-theoretic approach to the semantics of programming
languages. PhD Thesis, Syracuse University, 1982.

[Oles 1986] F. J. Oles. Type algebras, functor categories and block structure. In Alge-
braic methods in semantics, 543–573. Cambridge Press, 1986.

[Pierce 1991] B. Pierce. Basic category theory for computer scientists. MIT Press,
1991.

[Pierce and Schmitt 2003] B. Pierce and A. Schmitt. Lenses and view update transla-
tion. Working Draft, April 2003.

[Piessens and Steegmans 1995] F. Piessens and E. Steegmans. Categorical data spec-
ifications. Theory and Applications of Categories, 1, 156–173, 1995.

[Piessens and Steegmans 1997] F. Piessens and E. Steegmans. Selective Attribute
Elimination for Categorical Data Specifications. Proceedings of the 6th Inter-
national AMAST. Ed. Michael Johnson. Lecture Notes in Computer Science,
1349:424-436, 1997.

748 Johnson M., Rosebrugh R., Wood R.J.: Algebras and Update Strategies

