
A Note on the P-completeness of Deterministic One-way

Stack Language

Klaus-Jörn Lange
(WSI, Universiy of Tübingen, Germany

lange@linux.de)

Abstract: The membership problems of both stack automata and nonerasing stack
automata are shown to be complete for polynomial time.

Keywords: Automata, Grammars, Complexity classes, Completeness

Categories: F.1.3, F.4.3

1 Introduction

Stack Automata (abbreviated SA) are a well-known extension of push-down
automata. As those they have a stack which can be manipulated by push and
pop operations. In addition, stack automata are allowed to read inside of their
stack without modifying its content (see [GGH67b, GGH67a, Gre69]). A stack
automaton which has no pop transitions, i.e.: is only able of pushing symbols
and of stack reading, is called nonerasing (abbreviated NeSA). A checking stack
automaton (ChSA for short) is a nonerasing stack automaton which executes
no more push move after doing its first stack reading move. In the following a
prefix D (resp. N) denotes a deterministic (resp. nondeterministic) automaton.
In addition, a prefix 1− or 2− denotes whether the input head operates one-way
or two-way. The abbreviations denote the corresponding language classes.

The complexities of the two-way case are well-known and show a uniform
behaviour ([Iba71]):

- Both 2-DSA and 2-NSA are DEXPOLYTIME-complete.
- Both 2-DNeSA and 2-NNeSA are PSPACE -complete.
- 2-DChSA is DSPCE(log n)-complete, 2-NChSA is PSPACE -complete.

In the one-way case, the following is known ([GGH67a, Iba71, SB74, Rou73]):

- 1-NSA, 1-NNeSA, and 1-NChSA are NP -complete.
- 1-DSA and 1-DNeSA are contained in P .
- 1-DChSA is contained in LOGSPACE.
By saying that a class F of formal languages is complete for a complexity class

C we mean that both F is contained in C and that F contains some language
which is C-complete.

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 795-799
submitted: 12/8/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS



This leaves open the exact complexity (wrt completeness) of both 1-DSA
and 1-DNeSA. In the following section this question is solved in the affirmative
by showing both classes to contain P-complete sets. Finally, the last section
addresses the relations to Formal langauges in terms of grammars subject to
LL[1] or LR[1] conditions.

2 The P-completeness of deterministic stack languages

Theorem 1. Both 1-DSA and 1-DNeSA are P -complete.

Proof: It is sufficient to show the P -hardness of 1-DNeSA, since 1-DNeSA ⊂
1-DSA. As a first step, the P -complete Monotone Circuit Value Problem ([Gol77])
is converted into a form recognizable by nonerasing stack automata.

We code a monotone, levelled circuit C consisting in ∨- and ∧-gates of fan-in
two by a word 〈C〉 ∈ #{0, 1}∗(#{∨,∧}a∗ba∗)∗$. The {0, 1}∗-prefix codes the
input bits, i.e. the bottom level of the circuit. Then each level of the circuit is
coded by a word in ({∨,∧}a∗ba∗)∗. These words are separated by #-symbols.
The j-th gate gi,j of level i with inputs gi−1,k1 and gi−1,k2 from level i-1 is coded
as a string ∨ak1bak2 if gi,j is an ∨-gate, and as ∧ak1bak2 , otherwise. This string
is placed as the j-th subword in the word beginning after the i-th occurrence of
a #-symbol.

The set L:= {〈C〉 | C is a levelled, monotone circuit and the last gate of
the last level evaluates to 1 } is P -complete. We now show that there is an
deterministic one-way nonerasing stack automaton A accepting L.

A works in phases one for each level of the circuit. After a phase the stack
of A will contain a sequence of 0s and 1s on its top which are the values of the
evaluated gates of the correspondig level. The boolean values on top of the stack
correspond to the rightmost gates of that level while the values further down
represent the gates more to the left.

On input w ∈ #{0, 1}∗(#{∨,∧}a∗ba∗)∗$ A first pushes the #{0, 1}∗#-prefix
onto its stack and then iteratively evaluates each level. Reading a symbol τ ∈
{∨,∧} on its input tape A goes into stack reading mode and reads down to
the second last occurence of a #-symbol. This symbol marks the beginning of
the last completely evaluated level. Then for each symbol a on its input tape A

reads upwards in the stack one symbol in {0, 1} until a symbol b is found on the
input tape. Then the 0 or 1 found on the current reading position of the stack
represents the value of the first input of the gate to be evaluated. This value is
remembered by the finite memory of A. Now A again reads down to the next
#-symbol (which marks the beginning of the last completely evaluated level)
and performs the same procedure with the next string of a-symbols on the input
tape coding the second input of the gate to be evaluated. Now the value of the

796 Lange K.-J.: A Note on the P-completeness ...



actual gate can be determined according to τ and the two values collected on
the stack. (In case of too many a-symbols on the input, A rejects.) Then A goes
up to the top of the stack, turns into stack writing mode and pushes the new
value on top of the stack. This is repeated until a #-symbol is read on the input
tape. A then pushes a # on the stack and starts with the evaluation of the next
level. When a $ is found A accepts if the last value written on the stack has been
a 1 and rejects otherwise. �	

At this point readers familiar with Lindenmayer and Macro Languages might
wonder about the relations to the Deterministic Stack Push-Down Automata by
Engelfriet, Schmidt, and van Leeuwen in [ESvL80]. They looked at stack au-
tomata which do not read from an input tape but instead produce an output.
There is no difference between this generating and accepting power for nondeter-
ministic machines, but it is crucial in the deterministic case. While deterministic
reading automata can branch their computations according to the input, deter-
ministic writing automata have to make their decisions without getting informa-
tion by some input. How severe this restriction is can be seen by the fact, that
language families defined by these deterministic writing automata in [ESvL80]
are even not closed under inverse homomorphisms.

On the other hand, Engelfriet et al. extended the deterministic automaton
by the ability of pushing items nondeterministically on the stack, as long as
the automaton is not in stack reading mode1. It is this nondeterminism which
makes e.g. the membership problem of deterministic nonerasing stack push-down
languages NSPACE(log n)-complete ([ESvL80, JS77]). If we would add this fea-
ture to deterministic reading automata, then deterministic nonerasing stack lan-
guages would no longer be contained in P but could have an NP -complete
membership problem.

Since polynomially time bounded two-way deterministic (nonerasing) stack
automata which are augmented by a logarithmically space bounded working tape
(abbreviated as DAuxSApt and DAuxNeSApt) obviously contain the LOG-
closure of 1-DSA(resp. 1-DNeSA), we get as a consequence:

Corollary [VC90] P = DAuxSApt = DAuxNeSApt.

3 Grammatical Determinism

The languages accepted by nondeterministic (one-way) automata are often repre-
sentable as those generated by grammars. Then the deterministic version of these
automata usually corresponds to grammars subject to an LR- or LL-condition.
For example, the deterministic contextfree languages are the those generated by
1 Alternatively one could regard writing automata with a nondeterministic stack con-

tent as transducers which on two-way inputs (in form of their stack) from a regular
set generate outputs from a Macro or Lindenmayer Language

797Lange K.-J.: A Note on the P-completeness ...



contextfree grammars subject to an LR[1] condition and the languages gener-
ated by contextfree grammars subject to anLL[k] condition form a hierarchy
w.r.t. k strictly contained in the family of deterministic contextfree languages
([Har78]). But still their wordproblem is as hard as in the LR-case ([Sud78])
Also in the case of linear contextfree languages LR-conditions are less restrictive
than LL-conditions and characterize determinism in the corresponding machine
model ([HL93, IJR88]).

When looking for grammatical representations of one-way stack languages
one should consider the abundance of variations of this model ([ESvL80]). Of
particular interest in this connection are the nested stack languages of Aho
([Aho69]). They show close relations to stack languages. For instance, Beeri was
able to show the equivalence of two-way stack automata and two-way nested
stack automata([Bee75]):

Proposition2. 2-NSA= 2-NNestedSA.

Aho found a grammatical characterization of Nested Stack languages in terms
of Indexed Languages2([Aho68]).

Rounds showed that one-way nested stack automata have a polynomially
bounded running time ([Rou73]). Hence the indexed languages are contained in
NP and any deterministic restriction of them in P . It is known that already
some strict subfamilies of the indexed languages have an NP -complete member-
ship problem ([vL75]). As a corollary of Theorem 1 we get that the deterministic
nested stack languages are in P and can have an P -complete membership prob-
lem.

This note is closed with some remarks concerning grammatical characteriza-
tions of deterministic nested stack languages. It is not obvious how to restrict
indexed grammars by an LL or LR condition. Without giving the details here
the main idea is to modifyy slightly the way an index production is used in a
derivation. It is then possible to see that the language L of Theorem 1 is an
indexed LR[1]-language. We conjecture that the indexed LR[1]-languages coin-
cide with 1-DNestedSA. The relation seems to be different at first sight iff we
consider LL[1] (see [PDS80, PDS84]): but also in this case it is possible to show

Theorem 3 (Reinhardt). Indexed LL(1)-Languages are P-complete.

It should be remarked that in this construction the use of erasing productions
is crucial.

References

[Aho68] Aho, A.: Indexed grammars – an extension of context-free-grammars; J.
Assoc. Comp. Mach., 15:647–671, 1968.

2 In fact Aho first found (at least published) the grammars and then the automata

798 Lange K.-J.: A Note on the P-completeness ...



[Aho69] Aho, A.: Nested stack automata; J. Assoc. Comp. Mach., 16:383–406,
1969.

[Bee75] Beeri, C.: Two-way nested stack automata are equivalent to two-way stack
automata; J. Comp. System Sci., 10:317–339, 1975.

[ESvL80] Engelfriet, J., Schmidt, E. M., and van Leeuwen, J.: Stack machines and
classes of nonnested macro languages; J. Assoc. Comp. Mach., 27:96–117,
1980.

[GGH67a] Ginsburg, S., Greibach, S., and Harrison, M.: One-way stack automata; J.
Assoc. Comp. Mach., 14:389–418, 1967.

[GGH67b] Ginsburg, S., Greibach, S., and Harrison, M.: Stack automata and compil-
ing; J. Assoc. Comp. Mach., 14:172–201, 1967.

[Gol77] Goldschlager, L. M.: The monotone and planar circuit value problems are
log space complete for p; SIGACT News, 9:25–29, 1977.

[Gre69] Greibach, S.: Checking automata and one-way stack languages; J. Comp.
System Sci., 3:196–217, 1969.

[Har78] Harrison, M.: Introduction to Formal Language Theory Addison-Wesley,
Reading Mass., 1978.

[HL93] Holzer, M. and Lange, K.-J.: On the complexity of linear LL(1) and LR(1)
grammars; In Proc. of the 9th FCT, number 710 in LNCS, pages 299–308.
Springer Verlag, 1993.

[Iba71] Ibarra, O.: Characterizations of some tape and time complexity classes of
Turing machines in terms of multihead and auxiliary stack automata; J.
Comp. System Sci., 5:88–117, 1971.

[IJR88] Ibarra, O., Jiang, T., and Ravikumar, B.: Some subclasses of context-free
languages in NC1; 29:112–117, 1988.

[JS77] Jones, N. and Skyum, S.: Recognition of deterministic ETOL languages in
logarithmic space; Inform. and Control, 35:177–181, 1977.

[PDS80] Parchmann, R., Duske, J., and Specht, J.: On deterministic indexed lan-
guages; Inform. Contr., 45:48–67, 1980.

[PDS84] Parchmann, R., Duske, J., and Specht, J.: Indexed LL(k) grammars; Acta
Cybernetica, 7:33–53, 1984.

[Rou73] Rounds, W. C.: Complexity of recognition in intermediate-level languages;
In Proc. of the 14th Annual IEEE Symposium on Switching and Automata
Theory, pages 145–158, 1973.

[SB74] Shamir, E. and Beeri, C.: Checking stacks and context-free programmed
grammars accept p-complete languages; In Proc. of 2nd ICALP, num-
ber 14 in LNCS, pages 277–283. Springer, 1974.

[Sud78] Sudborough, I.: On the tape complexity of deterministic context-free lan-
guages; J. Assoc. Comp. Mach., 25:405–414, 1978.

[VC90] Vinay, V. and Chandru, V.: The expressibility of nondeterministic auxil-
iary stack automata and its relation to treesize bounded alternating aux-
iliary pushdown automata; In Proc. of 10th FST&TCS, number 472 in
LNCS, pages 104–114. Springer, 1990.

[vL75] van Leeuwen, J.: The membership question for ETOL languages is poly-
nomially complete; Inform. Proc. Lett., 3:138–143, 1975.

799Lange K.-J.: A Note on the P-completeness ...


