
Static Analysis of the XEN Kernel using Frama-C

Armand Puccetti
(CEA LIST

Centre d'Etudes Nucléaires
F-91191 Gif Sur Yvette Cedex, France

armand.puccetti@cea.fr)

Abstract: In this paper, we describe the static analysis of the XEN 3.0.3 hypervisor using the
Frama-C static analysis tool.

Keywords: Abstract interpretation, static analysis, virtualisation, Linux
Categories: D.2.4

1 Introduction

Operating systems are present in our everyday lives, through desktop or embedded
computing systems. Given the applications running on them as well as the nature
of the corporate and personal data stored on these systems, their criticality is
increasing. Therefore, we posed the following questions: how reliable are today's
operating systems? Is it possible to evaluate statically such large pieces of code
within reasonable amounts of time and effort. Are there any particular obstacles
particular with OS?

Currently, very few tools are dedicated to the static analysis of OS code written
in C and which are used in practice. For open-source Linux code we may use the
commercial tool Coverity Prevent [Coverity, 09] that implements numerous
heuristics and uses model checking. For Microsoft Windows the SDV toolkit
[Microsoft, 09a] is used for checking the correct use of kernel API by Windows
drivers, as well as the research tools VCC [Microsoft, 09b] and HAVOC [Microsoft,
09c]. However, several other tools can analyse ANSI C programs and its compiler-
dependent variants. They differ mainly in terms of analysis precision and degree of
automation: MathWorks Polyspace [MathWorks, 09] and Absint Astree [Absint, 09]
are very automated tools based on abstract interpretation (AI) [Cousot, 77] capable
of analysing large code bases; Caduceus [LRI, 09] and HAVOC make use of Hoare
Logic, requiring manually specifying the C code in detail by predicates and assertions
and using several semi-automated or automated theorem provers to discharge the
verification conditions; VCC and BLAST [EPFL, 09] allow one to check concurrency
properties (mainly safety) using model checking; many other tools [SAT, 09] are
only reasoning at the syntax level instead of the semantic level (as was done in
previous tools), such as Splint [Splint, 09] or QA C [PR, 09].

We decided to provide a partial answer to these previous questions by means of
some application experiments on typical OS codes (see below), namely analysing
them using a novel static analysis tool, Frama-C [CEA, 09]. The latter has been
developed during experiments done to meet the needs of an automated analysis tool

Journal of Universal Computer Science, vol. 16, no. 4 (2010), 543-553
submitted: 10/10/09, accepted: 21/10/09, appeared: 28/4/10 © J.UCS

based on AI complemented by a very expressive specification language with proof
support (see below).

2 Context of the Experiments
2.1 Project OPENTC

The context of the experiments is the European research project OPENTC
[OPENTC, 09] dedicated to the development of a secure Linux Operating
System (OS) for desktop and server machines based on x86 family of
processors. The XEN and L4 hypervisors are some of the ground stones for
security, together with the TPM as well as all the other software layers that are
necessary between them and their applications (management, encryption, etc.). A
sub-project of OPENTC is devoted to the verification and validation of the new OS
code as well as the preparation of the Common Criteria [CC, 06] Certification at level
EAL5. It was decided to verify and validate (V&V) some of the most critical OS
components. Given the sometimes limited availability of the documentation and
support from code authors, it was decided to focus on components developed by
OPENTC partners. We selected the OSLO boot loader, some hardware drivers
(the Infineon TPM TSS driver [Infineon, 09] and the vGallium graphics driver
[TG, 09]) and the hypervisor kernels XEN [Chrisnall, 09] and L4/Fiasco [TUD,
09]. The static analysis team was in charge of verifying successively the XEN
kernel, OSLO and vGallium.
This was a challenging experiment as 1) the verification tool Frama-C and the
targets were under development at the same time, and 2) the targets belong to a
class of applications that has not been handled before, namely OS code. Indeed,
most applications subject to formal analysis are usually embedded software.
This paper reports on the analysis of XEN as this it is based on pre-existing solid
Linux kernel code, and whose results might be generalized to Linux. We will report
on the complete set of targets in a forthcoming paper.

2.2 XEN

During the last few years virtualisation tools have taken an important role for server
and desktop OS as they provide means to isolate several OS running concurrently on
the same platform from each other. They can also provide an additional level of
security and safety to the entire platform. One of the most widely distributed and
used virtualisation tools is XEN [Chrisnall, 09], whose code is based on Linux
kernel code. XEN has initially been developed by Cambridge University Computing
Lab. (CUCL) as part of their research and has now made its way to becoming a solid
and commercial product [Citrix, 09].
For the XEN experiment, we considered version 3.0.3, that was considered to be
sufficiently stable at this time by the CUCL team. The source code of the kernel
concerning the x86 architecture has approximately 135K lines of C. In order to
remain within the project budget, it was necessary for us to consider a representative
sub-part of this code. CUCL decided that we shall consider the most critical part,
namely the XEN kernel API functions, also called hypercalls [Chrisnall, 09]. From a
total of 21 hypercalls, the 5 most critical hypercalls were selected (see below).

544 Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

The verification team's task consisted in finding as many bugs as possible within
these functions and reporting the findings to CUCL for corrections.

2.3 Methodology

Experimenting with such a large application as the XEN kernel requires that a
software engineering approach be taken and that details are considered only when
necessary.
At first, we had to understand the architecture of the code and the structure of the
different source files. XEN is similarly organized as the Linux kernel, where
drivers and machine specific files are grouped in well-defined directories and
the main code is functionally structured.
Documentation was very limited, especially concerning the design and the internal
structure of the functions. We had to rely on the XEN developers and users mailing
lists.
Analyzing the code requires determining some entry points where the analysis starts.
As we decided to analyze specific hypercalls (kinds of systems calls), these functions
were clearly defined in the code. Five hypercalls have been considered, whose
signature is as follows:

int do_mmu_update(

XEN_GUEST_HANDLE(mmu_update_t) ureqs, unsigned int
count,
XEN_GUEST_HANDLE(uint) pdone,
unsigned int foreigndom)

long do_grant_table_op(
 unsigned int cmd,

XEN_GUEST_HANDLE(void) uop, unsigned int
count)

long do_memory_op(
unsigned long cmd,
XEN_GUEST_HANDLE(void) arg)

long do_domctl(
XEN_GUEST_HANDLE(xen_domctl_t)
u_domctl)

int do_page_fault(
struct cpu_user_regs *regs)

void __init __start_xen(
multiboot_info_t *mbi)

We included the main initialization function in the list above, namely __start_xen,
as this appeared to be essential for building up a context used by the other
hypercalls of XEN. Numerous initializations are done in this function, allowing us
to understand what is really going on in XEN, especially about global variables.

As the reader might see above, each hypercall has several parameters whose
value is a priori unknown. In order to constrain these parameters, we build a main
function for each one, from where the analysis starts and setting some parameters

545Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

to pre-determined known values and leaves the other parameters to be any value
and then calls the hypercall. In particular, the mbi parameter of function
start_xen was set to

multiboot info t MULTI_BOOT_INFO_CEA = {
 flags = 107,
 mem_lower = 640,
 mem_upper = 3667483,
 boot_device = -2147287041,
 cmdline = __pa(&CEA CMDLINE),
 mods_count = 1,
 mods_addr = __pa(&CEA MODS_ADDR),
 u.elf_sec = { num = 3,
 size = 40,
 addr = 1740800,
 shndx = 2 },
 mmap_length = 8*sizeof(memory_map_t),
 mmap_addr = (unsigned long) (&(CEA_MMAP))

};
where the constant values were taken from a real machine (Pentium D, 4 Gb RAM)
running XEN. Most hypercalls' parameters were kept as general as possible.

The XEN source code contains some assembly code located in specific files or
in-lined in the C code. As Frama-C does not analyze assembly code, we
manually transformed this code into equivalent but simpler C code, in order to
keep an acceptable level of precision during the analysis.

Next, we entered an iterative process where we could launch the analyzer on the
source code and examine the results. Frama-C churns out thousands of lines of
messages that are then manually filtered in order to understand what happened
during the analysis and see what alarms rang. The messages also contain traces of
what functions were traversed during the analysis (it is in fact an abstract
execution of the code using abstract variables). One can follow the interpreter's
work to determine the location and causes of the problems. These were mainly due
to what Frama-C calls divergences, meaning that the value of some variables became
meaningless at some point (i.e. equal to any value of their domain, also called the
supremum). If there is only one execution path Frama-C stops analyzing,
otherwise it continues with another path. Each divergence had to be understood at
the code level and adjustments were made such that 1) either Frama-C
understands what the code does precisely, or 2) some pragmas, formatted as
comments, are added to the code to guide the interpreter, or 3) some missing
feature was added to Frama-C, such as understanding the predefined C library
functions.

Iterations stopped when the code of each hypercall was entirely analyzed.
Final ly, the resul t s o f the analyses were exp loi ted to extrac t the

alarms and interpret them in light of the source code's real execution. This
requires investigating the code and also sometimes asking developers for further
explanation of the code 's interna ls when i t became too obscure . Many

546 Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

alarms were discarded at this stage as they were fa lse a larms, leaving us
wi th a much lo wer number o f a larms (sec be low) .

2.4 The Frama-C Toolkit

Frama-C is an open-source static analysis tool that targets ANSI C programs as
well as a subset of the C++ language. Frama-C is an open toolkit with a plug-in
architecture, that allows one to connect different kinds of analysis tools together
such that they can cooperate and provide precise results. Currently, the following plug-
ins are provided with Frama-C:
• Valviewer: this is the core module thtat computes for a given function, let
main, an abstract interpretation of the code and returns a set of alarms. Each alarm
is a potential error and relates to a given location within the code and a set of local
and global variables. For instance, in the following function

1 int i, t[10];
2
3 void main(void) {
4 for (i=0; i<=8+2; i++)
5 t[i]=i;
6 }

ValViewer produces the following warning about an out-of-bound access at line 5:

rte.c:5: Warning: accessing out of bounds index.
assert ((0 <= i) && (i < 10));

The interpreter also provides an assertion that can be inserted into the code,
but that must be discharged by other plug-ins (see below). For each variable and
each location, Valviewer provides an over-approximation of the set of values taken
by this variable at the indicated location. The domain of values computed is
guaranteed to be correct, i.e. contains the real set of values taken by the variable
during any execution. Over-approximations might therefore lead to false alarms.
• Slicer: this module slices the source code and produces a copy of the
program that keeps only parts relevant to a given variable or location. The code
obtained is generally much shorter and therefore easier to analyze by other plug-ins.
• Jessie: this module implements a deductive verification tool, based on
Home Logic [Hoare, 69]. Each C function must be annotated by extra predicates
(pre-, post-conditions, loop and data-types invariants, assertions, etc.) written in
the ACSL (standing for ANSI C Specification Language [CEA, 09]) and that
builds up its specifications. The Jessie module proves that the code is correct w.r.t
this specification. To reach this goal, some verification conditions (VC) are
computed using the WP calculus [Dijkstra, 76] and are handed over to some
automatic or semi-automatic theorem provers. The code is correct iff all VC are
satisfied.
• Code browsing: some modules help to examine and to understand the
code by navigating through the data flow representation of the program, or by
highlighting the locations impacted by a given code change (impact analysis) or
by highlighting the locations where a given variable is used.

547Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

• Semantic constants unfolding: this module allows replacing
expressions that Valviewer has determined to be always constant by the constant
value itself.
• Aoraï: th is i s a new module under deve lopment o r the
ver i fica t ion o f tempora l proper t ies wri t ten in some LTL. This i s
useful for reasoning about threads and shared var iables .

2.5 Experimental Result s

The alarms discovered were classified into several categories. Let us give the
di f ferent categories used, through table 1 be low.

Let us add some more explanations. Category 2 is relevant to functions to
which we added some pre-condition to strengthen it. The abstract interpreter tries
to satisfy simple assertions, and indicates if they are certainly true, but some
assertions remain either undefined or false, which falls into this category.

We analysed hypercalls in the following order: first we spent much time with
__start_xen, and then we analyzed the other less complex hypercalls. For
each one, we keep only new errors, leaving out those already reported in previous
hypercalls. The bugs discovered in the target hypercalls can be grouped into the
categories as indicated in table 2 below. Their status of understanding is given by
table 3 below.

Some interesting bugs were detected and confirmed by CUCL, such as:
• Incompatible declarations for 7 internal functions:
smp_apic_timer_interrupt, smp_call_function_interrupt,
do_nmi, do_memory_op, __init cyrix_init_mtrr, __init
centaur_init_mtrr, and __init amd_init_mtrr. For instance the
function do_memory_op is declared in file hypercall.h as

 extern long do_memory_op (int cmd,
 XEN_GUEST_HANDLE(void) arg)

and in file memory.c as

 long do_memory_op (unsigned long cmd,

 XEN_GUEST_HANDLE(void) arg)

548 Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

Table 1: Categories of Alarms
Categories Name Comments

1 Out of bounds

A variable read or written has values out of its
declared domain

2

Pre-condition not satisfied

Assertion certainly not satisfied

3
Missing return statement in function

Self-explanatory

4
Incorrect retum statement

A function that declares to return void has still a

return statement

5 Incompatible declaration

A function or variable signature is different from its
implementation

6

Different declarations for a global
Some global item is declared several times but with

a different type. Severe error.

7

Volatile global variable

initialized or missing constants
initializations

Volatile variables do not need to be initialized.
When this is still detected, the interpreter warns

8

Constant not initialized Self-explanatory

9 Unknown size

Sometimes variables cannot be initialized because

of an unknown size

10
Addresses comparisons

Comparing addresses to fixed values in memory is

something very dangerous, as addresses might
change or types may change during time, so the

interpreter warns

11 Divergence

The interpreter is said to diverge when at some

location it bas too much imprecision (generally on
some pointer)

12 Others

Other rare alarms are incompatible pointer size,

uninitialized constants, etc.

549Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

• Useless return statement: 8 functions declare to return void but still return
some value. These are hvm_init_ap_context, __serial_rx,
__put_user_bad, hvm_vcpu_down, vmx_clear_vmcs, show_stack,
__enter_scheduler, and ns_write_reg. For instance, in file
console.c:166 the body of function __serial_rx starts by

 static void __serial_rx(char c, struct
 cpu_user_regs *regs)
 { if (xen_rx) return
 handle_keypress(c,regs);
 …

• Incompatible global variable type: in file setup.c a global variable stack
is declared as

 char * stack[2*STACK_SIZE]

where STACK_SIZE is a machine-dependent constant, and is also pre-declared in file
mm.c as

 extern char stack[];

which is a clear error.

One may notice a significant number of unknown alarms, mainly due to

redundancies: the same error applies to a group of variables, but at several different
lines, such as in the following set of messages:

mm.c:3408: Warning: out of bounds read. &pl2e->l2
mm.c:3418: Warning: out of bounds write. pl2e
mm.c:3421: Warning: out of bounds read. &pl2e->l2
mm.c:3433: Warning: out of bounds read. &pl2e->l2
mm.c:3433: Warning: out of bounds write. pl1e+i
mm.c:3437: Warning: out of bounds write. pl2e
mm.c:3443: Warning: out of bounds read. &pl2e->l2
mm.c:3448: Warning: out of bounds read. &pl2e->l2
mm.c:3456: Warning: out of bounds read. pl1e
mm.c:3458: Warning: out of bounds read. pl1e
mm.c:3459: Warning: out of bounds write. Pl1e

The detailed list of all warnings can be found in [OPENTC, 07]. The gross ratio
of confirmed bugs on the total number of warnings is approx. 10%. Categories 8, 9
and 11 are present here as we had discovered some of occurrences with previous
versions of Frama-C or XEN but not in current version. Categories not mentioned
contain no errors.

550 Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

Table 2: Number of alarms per categories

Hyper-calls 1 2 3 4 5 6 7 10 12 Total

do_mmu_
update

24 11 2 8 7 1 27 4 1 85

do_grant_
table

1 1 1 3

do_memory
_op

2 3 2 7

do_dom_ctl 0

do_page_

fault

1 1

__start_xen 54 10 1 4 2 3 74

Total 82 22 2 8 8 1 31 9 7 170

Table 3: Number of alarms per status

Categories False
alarms

Unknown
alarms

Confirmed
bugs Total

do_mmu _up
date 9 61 15 85

do_grant_
table 0 3 0 3

do_memory_
op 3 4 0 7

do_dom_ctl 0 0 0 0

do_page_
fault

1 0 0 1

__star_xen 7 66 1 74

Total 20 134 16 170

551Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

3 Conclusions

The analysis of the six functions (five hypercalls and the main initialization
function) bas produced 170 alarms given above. The details of each alarm can be
found in [OPENTC, 07] publicly available. Each of the hypercalls' analyses was
produced in less than 30 minutes on a DELL Poweredge 2900 server equipped with
16 Gb of RAM. It took about one hour to analyze (partially) the code of __start
xen.

We have classified these warnings into several categories and examined each of
them precisely, using the source code, its preprocessed version and the publicly
available documentation. We could conclude on 36 cases among 170 but left some
unknown errors. Their investigation needs further knowledge of the XEN code and
higher precision during the analysis. The latter can be achieved by reducing
approximations, on tables in particular (by default a table is approximated by the
'sum' of the approximations of its elements. Using the Frama-C option -plevel
<n> allows to adjust the size of the approximation to some higher value but with
a substantially higher analysis time), and during the translation of assembly code
into C.

As general conclusions we note that:
• Abstract interpretation is indeed the most promising technique to extract run-
time level bugs from the code with little user assistance.
• Extrapolating the results above, 10.5 hours would be required to analyse all
XEN hypercalls, which is reasonable.
• The code analysed has a ratio of approx. 1.54 bugs per KLOC. This is rather
low compared to other open-source code such as Vgallium, whose ratio is approx.
10.13 bugs/KLOC. XEN can be considered as high quality code.
• In order to increase the quality of the XEN code, all bugs must be examined
and, if necessary, corrected. In case of doubt, we recommend to insert all assertions
generated by Frama-C, leaving their proof for later.

Acknowledgements

Our thanks go to the Commission of the European Communities, Information
Society and Media Directorate for funding the OPENTC project under contract
027635.

References

[Absint, 09] Absint, The Astrée analyser, 2009, http://www.absint.de/astree/.

[CC, 06] Common Criteria for Information Technology Security Evaluation,Version 3.1
CCMB-2006-09-001, 2006.

[CEA, 09] CEA, INRIA, The Frama-C Software Verification Toolkit, 2009, http://frama-
c.cea.fr.

[Chrisnall, 08] Chrisnall, D., The Definitive Guide to the Xen Hypervisor, Prentice Hall, 2008.

[Citrix, 09] Citrix, Xenserver, 2009,

552 Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

http://citrix.com/English/ps2/products/product.asp?contentID=683148.

[Cousot, 77] Cousot, P., Cousot, R., Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, POPL, 1977.

[Coverity, 09] Coverity Inc., Coverity Prevent static analyzer, 2009,
http://www.coverity.com/products

[Dijkstra, 76] Dijkstra, E.W., A Discipline of Programming, Prentice Hall, 1976.

[EPFL, 09] EPFL, University of Berkeley, The Berkeley Lazy Abstraction Software
Verification Tool (BLAST), 2009, http://mtc.epfl.ch/software-tools/blast/.

[Hoare, 69] Hoare, C.A.R., An Axiomatic Basis for Computer Programming, CACM, Vol.
12, n°7, 1969.

[Infineon, 09] Infineon, The TPM Trusted Software Stack, 2009,
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab692
1ae011f.

[LRI, 09] LRI, The Caduceus C Verification Tool, 2009, http://caduceus.lri.fr/.

[MathWorks, 09] The MathWorks, The Polyspace verification tool, 2009,
http://www.mathworks.com/products/polyspace/index.html.

[Microsoft, 09a] Microsoft Research, The Static Driver Verifier (SDV) tool, 2009,
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx.

[Microsoft, 09b] Microsoft Research, A Verifier for Concurrent C (VCC), 2009,
http://research.microsoft.com/en-us/projects/vcc/.

[Microsoft, 09c] Microsoft Research, The HAVOC tool, 2009,
http://research.microsoft.com/en-us/projects/havoc/.

[OPENTC, 07] OPENTC, WP07 Deliverable D07.2, 2007,
http://www.opentc.net/deliverables2007/Open_TC_D07.2_V_and_V_report_2.pdf.

[OPENTC, 09] OPENTC, FP6 IST Integrated Project OPENTC, 2009, http://www.opentc.net.

[PR, 09] The Programming Research, The QA C tool, 2009,
http://www.programmingresearch.com/QAC_MAIN.html.

[SAT, 09] Static Analysis Tools list, 2009, http://www.testingfaqs.org/t-static.html#PRLQAC.

[Splint, 09] The open-source Splint tool, 2009, http://www.splint.org/.

[TG, 09] Tungsten Graphics, The Gallium3D graphics drivers, 2009,
http://www.tungstengraphics.com/wiki/index.php/Gallium3D.

[TUD, 09] Technical University Dresden, The L4/Fiasco micro-kernel, 2009,
http://os.inf.tu-dresden.de/fiasco/.

553Puccetti A.: Static Analysis of the XEN Kernel using Frama-C

