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1 Introduction  

Operating systems are present in our everyday lives, through desktop or embedded 
computing systems. Given the applications running on them as well as the nature 
of the corporate and personal data stored on these systems, their criticality is 
increasing. Therefore, we posed the following questions: how reliable are today's 
operating systems? Is it possible to evaluate statically such large pieces of code 
within reasonable amounts of time and effort. Are there any particular obstacles 
particular with OS?  

Currently, very few tools are dedicated to the static analysis of OS code written 
in C and which are used in practice. For open-source Linux code we may use the 
commercial tool Coverity Prevent [Coverity, 09] that implements numerous 
heuristics and uses model checking. For Microsoft Windows the SDV toolkit 
[Microsoft, 09a] is used for checking the correct use of kernel API by Windows 
drivers, as well as the research tools VCC [Microsoft, 09b] and HAVOC [Microsoft, 
09c]. However, several other tools can analyse ANSI C programs and its compiler-
dependent variants. They differ mainly in terms of analysis precision and degree of 
automation: MathWorks Polyspace [MathWorks, 09] and Absint Astree [Absint, 09] 
are very automated tools based on abstract interpretation (AI) [Cousot, 77] capable 
of analysing large code bases; Caduceus [LRI, 09] and HAVOC make use of Hoare 
Logic, requiring manually specifying the C code in detail by predicates and assertions 
and using several semi-automated or automated theorem provers to discharge the 
verification conditions; VCC and BLAST [EPFL, 09] allow one to check concurrency 
properties (mainly safety) using model checking;  many other tools [SAT, 09] are 
only reasoning at the syntax level instead of the semantic level (as was done in 
previous tools), such as Splint [Splint, 09] or QA C [PR, 09].  

We decided to provide a partial answer to these previous questions by means of 
some application experiments on typical OS codes (see below), namely analysing 
them using a novel static analysis tool, Frama-C [CEA, 09]. The latter has been 
developed during experiments done to meet the needs of an automated analysis tool 
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based on AI complemented by a very expressive specification language with proof 
support (see below). 

2 Context of the Experiments 
2.1 Project OPENTC 

The context of the experiments is the European research project OPENTC 
[OPENTC, 09] dedicated to the development of a secure Linux Operating 
System (OS) for desktop and server machines based on x86 family of 
processors. The XEN and L4 hypervisors are some of the ground stones for 
security, together with the TPM as well as all the other software layers that are 
necessary between them and their applications (management, encryption, etc.). A 
sub-project of OPENTC is devoted to the verification and validation of the new OS 
code as well as the preparation of the Common Criteria [CC, 06] Certification at level 
EAL5. It was decided to verify and validate (V&V) some of the most critical OS 
components. Given the sometimes limited availability of the documentation and 
support from code authors, it was decided to focus on components developed by 
OPENTC partners. We selected the OSLO boot loader, some hardware drivers 
(the Infineon TPM TSS driver [Infineon, 09] and the vGallium graphics driver 
[TG, 09]) and the hypervisor kernels XEN [Chrisnall, 09] and L4/Fiasco [TUD, 
09]. The static analysis team was in charge of verifying successively the XEN 
kernel, OSLO and vGallium.  
This was a challenging experiment as 1) the verification tool Frama-C and the 
targets were under development at the same time, and 2) the targets belong to a 
class of applications that has not been handled before, namely OS code. Indeed, 
most applications subject to formal analysis are usually embedded software. 
This paper reports on the analysis of XEN as this it is based on pre-existing solid 
Linux kernel code, and whose results might be generalized to Linux. We will report 
on the complete set of targets in a forthcoming paper. 

2.2 XEN 

During the last few years virtualisation tools have taken an important role for server 
and desktop OS as they provide means to isolate several OS running concurrently on 
the same platform from each other. They can also provide an additional level of 
security and safety to the entire platform. One of the most widely distributed and 
used virtualisation tools is XEN [Chrisnall, 09], whose code is based on Linux 
kernel code. XEN has initially been developed by Cambridge University Computing 
Lab. (CUCL) as part of their research and has now made its way to becoming a solid 
and commercial product [Citrix, 09].  
For the XEN experiment, we considered version 3.0.3, that was considered to be 
sufficiently stable at this time by the CUCL team. The source code of the kernel 
concerning the x86 architecture has approximately 135K lines of C. In order to 
remain within the project budget, it was necessary for us to consider a representative 
sub-part of this code. CUCL decided that we shall consider the most critical part, 
namely the XEN kernel API functions, also called hypercalls [Chrisnall, 09]. From a 
total of 21 hypercalls, the 5 most critical hypercalls were selected (see below). 
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The verification team's task consisted in finding as many bugs as possible within 
these functions and reporting the findings to CUCL for corrections. 

2.3 Methodology 

Experimenting with such a large application as the XEN kernel  requires that a 
software engineering approach be taken and that details are considered only when 
necessary. 
At first, we had to understand the architecture of the code and the structure of the 
different source files. XEN is similarly organized as the Linux kernel, where 
drivers and machine specific files are grouped in well-defined directories and 
the main code is functionally structured. 
Documentation was very limited, especially concerning the design and the internal 
structure of the functions. We had to rely on the XEN developers and users mailing 
lists. 
Analyzing the code requires determining some entry points where the analysis starts. 
As we decided to analyze specific hypercalls (kinds of systems calls), these functions 
were clearly defined in the code. Five hypercalls have been considered, whose 
signature is as follows: 
 
int do_mmu_update( 

XEN_GUEST_HANDLE(mmu_update_t) ureqs, unsigned int 
count,  
XEN_GUEST_HANDLE(uint) pdone,  
unsigned int foreigndom) 

long do_grant_table_op( 
   unsigned int cmd, 

XEN_GUEST_HANDLE(void) uop, unsigned int 
count) 

long do_memory_op( 
unsigned long cmd, 
XEN_GUEST_HANDLE(void) arg) 

long do_domctl( 
XEN_GUEST_HANDLE(xen_domctl_t)  
u_domctl) 

int do_page_fault( 
struct cpu_user_regs *regs) 

void __init __start_xen( 
multiboot_info_t *mbi) 

 
We included the main initialization function in the list above, namely __start_xen, 
as this appeared to be essential for building up a context used by the other 
hypercalls of XEN. Numerous initializations are done in this function, allowing us 
to understand what is really going on in XEN, especially about global variables. 
 
As the reader might see above, each hypercall has several parameters whose 
value is a priori unknown. In order to constrain these parameters, we build a main 
function for each one, from where the analysis starts and setting some parameters 
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to pre-determined known values and leaves the other parameters to be any value 
and then calls the hypercall. In particular, the mbi parameter of function 
start_xen  was set  to  
 
multiboot info t MULTI_BOOT_INFO_CEA = { 
  flags = 107, 
  mem_lower = 640, 
  mem_upper = 3667483, 
  boot_device = -2147287041, 
  cmdline = __pa(&CEA CMDLINE), 
  mods_count = 1, 
  mods_addr = __pa(&CEA MODS_ADDR), 
  u.elf_sec = { num = 3, 
        size = 40, 
        addr = 1740800, 
        shndx = 2 }, 
  mmap_length = 8*sizeof(memory_map_t),  
  mmap_addr = (unsigned long) (&(CEA_MMAP)) 

}; 
where the constant values were taken from a real machine (Pentium D, 4 Gb RAM) 
running XEN. Most hypercalls' parameters were kept as general as possible. 

The XEN source code contains some assembly code located in specific files or 
in-lined in the C code. As Frama-C does not analyze assembly code, we 
manually transformed this code into equivalent but simpler C code, in order to 
keep an acceptable level of precision during the analysis. 

Next, we entered an iterative process where we could launch the analyzer on the 
source code and examine the results. Frama-C churns out thousands of lines of 
messages that are then manually filtered in order to understand what happened 
during the analysis and see what alarms rang. The messages also contain traces of 
what functions were traversed during the analysis (it is in fact an abstract 
execution of the code using abstract variables). One can follow the interpreter's 
work to determine the location and causes of the problems. These were mainly due 
to what Frama-C calls divergences, meaning that the value of some variables became 
meaningless at some point (i.e. equal to any value of their domain, also called the 
supremum). If there is only one execution path Frama-C stops analyzing, 
otherwise it continues with another path. Each divergence had to be understood at 
the code level and adjustments were made such that 1) either Frama-C 
understands what the code does precisely, or 2) some pragmas, formatted as 
comments, are added to the code to guide the interpreter, or 3) some missing 
feature was added to Frama-C, such as understanding the predefined C library 
functions. 

Iterations stopped when the code of each hypercall was entirely analyzed. 
Final ly,  the resul t s  o f the analyses were exp loi ted to  extrac t  the  

alarms and interpret them in light of the source code's real execution. This 
requires investigating the code and also sometimes asking developers for further 
explanation of the code 's  interna ls  when i t  became too obscure .  Many 
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alarms were discarded at this stage as they were fa lse  a larms,  leaving us  
wi th  a  much lo wer number o f a larms ( sec be low) .  

2.4  The Frama-C Toolkit  

Frama-C is an open-source static analysis tool that targets ANSI C programs as 
well as a subset of the C++ language. Frama-C is an open toolkit with a plug-in 
architecture, that allows one to connect different kinds of analysis tools together 
such that they can cooperate and provide precise results. Currently, the following plug-
ins are provided with Frama-C: 
• Valviewer: this is the core module thtat computes for a given function, let 
main, an abstract interpretation of the code and returns a set of alarms. Each alarm 
is a potential error and relates to a given location within the code and a set of local 
and global variables. For instance, in the following function 

1   int i, t[10]; 
2 
3   void main(void) { 
4   for (i=0; i<=8+2; i++)  
5      t[i]=i;  
6   } 
 

ValViewer produces the following warning about an out-of-bound access at line 5: 

rte.c:5: Warning: accessing out of bounds index. 
assert ( (0 <= i) && (i < 10)); 

The interpreter also provides an assertion that can be inserted into the code, 
but that must be discharged by other plug-ins (see below). For each variable and 
each location, Valviewer provides an over-approximation of the set of values taken 
by this variable at the indicated location. The domain of values computed is 
guaranteed to be correct, i.e. contains the real set of values taken by the variable 
during any execution. Over-approximations might therefore lead to false alarms. 
• Slicer: this module slices the source code and produces a copy of the 
program that keeps only parts relevant to a given variable or location. The code 
obtained is generally much shorter and therefore easier to analyze by other plug-ins. 
• Jessie: this module implements a deductive verification tool, based on  
Home Logic [Hoare, 69]. Each C function must be annotated by extra predicates 
(pre-, post-conditions, loop and data-types invariants, assertions, etc.) written in 
the ACSL (standing for ANSI C Specification Language [CEA, 09]) and that 
builds up its specifications. The Jessie module proves that the code is correct w.r.t 
this specification. To reach this goal, some verification conditions (VC) are 
computed using the WP calculus [Dijkstra, 76] and are handed over to some 
automatic or semi-automatic theorem provers. The code is correct iff all VC are 
satisfied. 
• Code browsing: some modules help to examine and to understand the 
code by navigating through the data flow representation of the program, or by 
highlighting the locations impacted by a given code change (impact analysis) or 
by highlighting the locations where a given variable is used. 
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• Semantic constants unfolding: this module allows replacing 
expressions that Valviewer has determined to be always constant by the constant 
value itself. 
•  Aoraï:  th is  i s  a  new module  under  deve lopment o r  the  
ver i fica t ion o f tempora l  proper t ies wri t ten in  some LTL. This i s  
useful  for  reasoning about  threads and shared var iables .  

2.5  Experimental  Result s  

The alarms discovered were classified into several categories. Let us give the  
di f ferent  categories used,  through table  1  be low.  

Let us add some more explanations. Category 2 is relevant to functions to 
which we added some pre-condition to strengthen it. The abstract interpreter tries 
to satisfy simple assertions, and indicates if they are certainly true, but some 
assertions remain either undefined or false, which falls into this category. 

We analysed hypercalls in the following order: first we spent much time with 
__start_xen, and then we analyzed the other less complex hypercalls. For 
each one, we keep only new errors, leaving out those already reported in previous 
hypercalls. The bugs discovered in the target hypercalls can be grouped into the 
categories as indicated in table 2 below. Their status of understanding is given by  
table 3 below. 

Some interesting bugs were detected and confirmed by CUCL, such as: 
• Incompatible declarations for 7 internal functions: 
smp_apic_timer_interrupt, smp_call_function_interrupt, 
do_nmi, do_memory_op, __init cyrix_init_mtrr, __init 
centaur_init_mtrr, and __init amd_init_mtrr. For instance the 
function do_memory_op is declared in file hypercall.h as  
 
 extern long do_memory_op (int cmd,   
                  XEN_GUEST_HANDLE(void) arg) 
 
and in file memory.c as 
 
 long do_memory_op (unsigned long cmd,  

        XEN_GUEST_HANDLE(void) arg) 
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Table 1: Categories of Alarms 
Categories Name Comments 

 
1 Out of bounds 

A variable read or written has values out of its 
declared domain 

2 
 

Pre-condition not satisfied 
 

Assertion certainly not satisfied 

3 
Missing return statement in function

Self-explanatory 

4 
Incorrect retum statement 

 
A function that declares to return void has still a 

return statement 

 
5 Incompatible declaration 

A function or variable signature is different from its 
implementation 

6 
 

Different declarations for a global 
Some global item is declared several times but with 

a different type. Severe error. 

7 

 
Volatile global variable 

initialized or missing constants 
initializations 

 

Volatile variables do not need to be initialized. 
When this is still detected, the interpreter warns 

8 
 

Constant not initialized Self-explanatory 

9 Unknown size 

 
Sometimes variables cannot be initialized because 

of an unknown size 

10 
Addresses comparisons 

 
Comparing addresses to fixed values in memory is 

something very dangerous, as addresses might 
change or types may change during time, so the 

interpreter warns 

11 Divergence 

 
The interpreter is said to diverge when at some 

location it bas too much imprecision (generally on 
some pointer) 

12 Others 

 
Other rare alarms are incompatible pointer size, 

uninitialized constants, etc. 
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• Useless return statement: 8 functions declare to return void but still return 
some value. These are hvm_init_ap_context, __serial_rx, 
__put_user_bad, hvm_vcpu_down, vmx_clear_vmcs, show_stack, 
__enter_scheduler, and ns_write_reg. For instance, in file 
console.c:166 the body of function __serial_rx starts by 
 
 static void __serial_rx(char c, struct  
  cpu_user_regs *regs) 
 { if (xen_rx) return  
  handle_keypress(c,regs); 
   … 

 
• Incompatible global variable type: in file setup.c a global variable stack 
is declared as 
 
 char * stack[2*STACK_SIZE] 
 
where STACK_SIZE is a machine-dependent constant, and is also pre-declared in file 
mm.c as 
 
 extern char stack[]; 
 
which is a clear error. 

 
One may notice a significant number of unknown alarms, mainly due to 

redundancies: the same error applies to a group of variables, but at several different 
lines, such as in the following set of messages: 

mm.c:3408: Warning: out of bounds read. &pl2e->l2 
mm.c:3418: Warning: out of bounds write. pl2e 
mm.c:3421: Warning: out of bounds read. &pl2e->l2 
mm.c:3433: Warning: out of bounds read. &pl2e->l2 
mm.c:3433: Warning: out of bounds write. pl1e+i 
mm.c:3437: Warning: out of bounds write. pl2e 
mm.c:3443: Warning: out of bounds read. &pl2e->l2 
mm.c:3448: Warning: out of bounds read. &pl2e->l2 
mm.c:3456: Warning: out of bounds read. pl1e 
mm.c:3458: Warning: out of bounds read. pl1e 
mm.c:3459: Warning: out of bounds write. Pl1e 

The detailed list of all warnings can be found in [OPENTC, 07]. The gross ratio 
of confirmed bugs on the total number of warnings is approx. 10%. Categories 8, 9 
and 11 are present here as we had discovered some of occurrences with previous 
versions of Frama-C or XEN but not in current version. Categories not mentioned 
contain no errors. 
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Table 2: Number of alarms per categories 

Hyper-calls 1 2 3 4 5 6 7 10 12 Total 

do_mmu_ 
update 

24 11 2 8 7 1 27 4 1 85 

do_grant_ 
table 

1 1       1 3 

do_memory
_op 

2       3 2 7 

do_dom_ctl          0 

do_page_ 

fault 

1         1 

__start_xen 54 10   1  4 2 3 74 

Total 82 22 2 8 8 1 31 9 7 170 

Table 3: Number of alarms per status 

Categories False 
alarms 

Unknown 
alarms 

Confirmed  
bugs Total 

do_mmu _up 
date 9 61 15 85 

do_grant_
table 0 3 0 3 

do_memory_ 
op 3 4 0 7 

do_dom_ctl 0 0 0 0 

do_page_ 
fault 

1 0 0 1 

__star_xen 7 66 1 74 

Total 20 134 16 170 
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3 Conclusions 

The analysis of the six functions (five hypercalls and the main initialization 
function) bas produced 170 alarms given above. The details of each alarm can be 
found in [OPENTC, 07] publicly available. Each of the hypercalls' analyses was 
produced in less than 30 minutes on a DELL Poweredge 2900 server equipped with 
16 Gb of RAM. It took about one hour to analyze (partially) the code of __start 
xen. 

We have classified these warnings into several categories and examined each of 
them precisely, using the source code, its preprocessed version and the publicly 
available documentation. We could conclude on 36 cases among 170 but left some 
unknown errors. Their investigation needs further knowledge of the XEN code and 
higher precision during the analysis. The latter can be achieved by reducing 
approximations, on tables in particular (by default a table is approximated by the 
'sum' of the approximations of its elements. Using the Frama-C option -plevel 
<n> allows to adjust the size of the approximation to some higher value but with 
a substantially higher analysis time), and during the translation of assembly code 
into C. 

As general conclusions we note that: 
• Abstract interpretation is indeed the most promising technique to extract run-
time level bugs from the code with little user assistance. 
• Extrapolating the results above, 10.5 hours would be required to analyse all 
XEN hypercalls, which is reasonable. 
• The code analysed has a ratio of approx. 1.54 bugs per KLOC. This is rather 
low compared to other open-source code such as Vgallium, whose ratio is approx. 
10.13 bugs/KLOC. XEN can be considered as high quality code. 
• In order to increase the quality of the XEN code, all bugs must be examined 
and, if necessary, corrected. In case of doubt, we recommend to insert all assertions 
generated by Frama-C, leaving their proof for later. 
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