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Abstract: This paper concerns the best approach to the capture of local texture fea-
tures for use in content-based image retrieval (CBIR) applications. From our previous
work, two approaches have been suggested, the multiscale block-based approach and the
automatic texture segmentation approach. Performance comparison as well as advan-
tages and disadvantages of the two methods are presented in this paper. The databases
used are the Brodatz and VisTex databases, as well as three museum image collections
of various sizes and contents, with each collection presenting different challenges to
the CBIR systems. Experimental observations suggest that the two approaches both
perform well, with the multiscale technique having the edge in retrieval performance
and scale invariance, while the segmentation technique has the edge in lighter com-
putational complexity as well as having the shape information for later purposes. The
choice between the two approaches thus depends on application.
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1 Introduction

In query by texture, the main goal of the retrieval system is to be able to
retrieve images containing similar texture to the given query texture. Many
texture feature extraction techniques are available in the literature including
the grey level co-occurence matrices [Haralick et al. 1973], simultaneous autore-
gressive model [Kashyap and Chellappa 1983, Mao and Jain 1992], fractal di-
mension [Chaudari and Sarkar 1995, Chen and Bi 1999, Kaplan 1999], Markov
random field [Krishnamachari and Chellappa 1997, Wang et al. 1998], the Ga-
bor transform [Dunn and Higgins 1995, Mittal et al. 1999], Law’s texture fea-
ture [Laws 1980], and wavelet-based techniques [Hsin 2000, Lee and Chen 2002,
Muneeswaran et al. 2005, Chang and Kuo 1993, Mallat 1989], with each having
their own advantages and disadvantages.

Fig. 1 shows the architecture of a simple content-based image retrieval (CBIR)
system using texture features. In natural scene images, texture usually appears
only in some part of the image. Applying the feature extractor to the image
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Figure 1: A simple content-based image retrieval system architecture for retriev-
ing image with similar textures to the query

globally will result in an incorrect representation for the textures within the
image. Instead of global features, local features from the texture regions should
be extracted. It is thus very important to find the best approach, in terms of
accuracy and computational speed, in utilizing the texture feature extraction
method to obtain local statistics. Two approaches are considered in this paper,
block oriented decomposition and automatic texture segmentation.

Using the block decomposition approach, features are extracted from several
sub-image blocks [Chan et al. 2001, Natsev et al. 1999, Smith and Chang 1994,
Manjunath and Ma 1996, Guo and Zhang 1997]. Assuming the sub-image blocks
are small enough and efficiently structured, this method will produce feature vec-
tors for each and every texture present in the image. However, since there are
many blocks, and the textured and non-textured blocks are treated as equal,
there is more risk of confusing the algorithm and reducing the discrimination
accuracy.

Using the automatic texture segmentation approach, the image is first seg-
mented into several textured and non-textured regions, and the feature vectors
are then computed only on the textured regions [Porter and Canagarajah 1996,
Liu and Zhou 2004, Perry and Lowe 1989, Yang et al. 2004]. By automatic seg-
mentation, we mean a segmenter which does not need a priori knowledge either
on the type of the texture or the number of textures present in the image. Once
the image is segmented, texture features can then be extracted from the texture
regions alone. However, as is the case with all segmentation problems, it is diffi-
cult to obtain an accurate segmentation, especially around the boundary of the
texture, which can later affect the retrieval result.

We have conducted a comprehensive experimentation on several state of the
art texture feature extraction techniques and found that the discrete wavelet
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frames (DWF) is the best technique to be used in our application domain,
that is museum digital image collections of various kinds. In our previous work
[Fauzi 2004, Fauzi and Lewis 2008], we have also studied several block oriented
decompositions and proposed an improvement over the hitherto best found
method, resulting in the multiscale block decomposition algorithm. In another
work [Fauzi 2004, Fauzi and Lewis 2006], we have developed a novel automatic
texture segmenter, which was subsequently improved to become a texture identi-
fier, as an alternative to the block-based method in content-based image retrieval
system. However since the approaches were developed and published indepen-
dently, no direct comparison was made between the two approaches in the pre-
vious papers.

In this paper, a comprehensive evaluation of the two approaches in content-
based image retrieval, based on the DWF technique, is presented. The perfor-
mance of the two approaches is compared, especially the retrieval performance
and computational complexity. To the best of our knowledge, there has not been
any work elsewhere comparing these two approaches, hence we hope this re-
search provides a good barometer for future texture-based CBIR applications.
Most CBIR systems use the block oriented decomposition for extracting local
texture since there are only a limited number of automatic texture segmentation
algorithms available. Therefore it would also be interesting to see if segmentation
is really needed in content-based image retrieval applications.

This paper is organized as follows. The next section will briefly describe the
discrete wavelet frames technique, followed by the two approaches to be used, the
multiscale block decomposition algorithm and the automatic texture segmenter.
Section 3 describes the different image databases used in the experiment, with
the experimental observations presented in section 4. Finally conclusions are
presented in section 6.

2 Review of the Algorithms Involved

This section describes the two approaches to texture-based image retrieval. How-
ever the multiscale and segmentation-based methods are used only to capture
local texture regions of an image. To extract the texture feature itself, the en-
hanced discrete wavelet frames technique is used as it was found that the tech-
nique is the most suitable for our application domain. This section summarizes
the two approaches together with the enhanced discrete wavelet frames method.

2.1 Discrete Wavelet Frames

The discrete wavelet frames (DWF) is nearly identical to the standard wavelet
transform, except that one upsamples the filters, rather than downsamples the
image. While the frame representation is over-complete, and computationally
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Initialize the feature vector FV ,

H  = height of the image,
W = width of the image,
L = minimum of ( H ,W),

while ( L >= 64)

Divide image into several 64x64 sub-images S ,

for i=1: S
Get sub-image i,
Perform DWF decomposition,
Compute feature vector,
Update FV,

end

K = nearest dyadic integer smaller than L,
Reduce image by a factor of K/L ,
H  = new height of the image,
W = new width of the image,
L  = minimum of ( H ,W)

end

Figure 2: Pseudocode of the multiscale-based CBIR algorithm

more intensive than the standard wavelet transform, it holds the advantage of
being translationally invariant [Unser 1995].

Given an image, the DWF uses a pair of 1D lowpass and highpass filters
to filter the image horizontally and verticaly. The filtering process is performed
without the sub-sampling process, resulting in four filtered images, or channels,
of the same size as the input image. The decomposition is then continued in
the LL channel only, but since the image is not sub-sampled, the filter has to
be upsampled by inserting zeros in between its coefficients. The total number of
filtered images generated by DWF decomposition is the same as in the standard
wavelet transform, which is 3l−1, where l is the number of decomposition levels.
Usually the energy in each channel is used as the feature to describe the image.

2.2 Multiscale Block Decomposition

In [Fauzi and Lewis 2008], we proposed a multiscale texture retrieval technique
for use with content-based image retrieval applications. Fig. 2 shows the pseu-
docode of the proposed algorithm. Using this algorithm, we start with one
database image and divide it into several 64 × 64 overlapping blocks. For each
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block, the discrete wavelet frames method is used to extract features from the
local region. After all the blocks generated for this level have been processed,
the image is reduced in size by a certain factor, representing the next resolution
image.

The above process is repeated for all the blocks in this resolution. Finally
when the length of either dimension of the images reached 64, the process is
stopped, and all the feature vectors created are stored. During retrieval, the
feature vector of the query texture is compared with all the feature vectors of
the image, and the one with the smallest distance is considered as the best match
for that particular image. This is repeated for all images in the database and
the distances are sorted so that retrieval can be based on increasing distance.

There are two approaches considered when generating the overlapping blocks,
namely case 1 overlapping and case 2 overlapping. Using case 1 overlapping,
an overlapping range between 0 and 63 pixels is allowed, while using case 2
overlapping, the range is improved to between 32 and 63 pixels. For a square sub-
image, the number of sub-images generated, K for case 1 and case 2 overlapping
for any single level is calculated as:

Kcase1 =
(⌈

M
64

⌉)2

(1)

Kcase2 =
(⌈

M
64

⌉
∗ 2 − 1

)2

(2)

where M is the length of the sub-image, and �.� is defined to be the smallest
integer greater than or equal to a given number. The �.� operator ensures the sub-
images are interconnected and no sections of the image will be left out. Figure 3
shows an example of sub-images generated for a 256×256 image for both case 1
and case 2 overlapping, and Figure 4 shows the variation of overlapping amount
with different sizes of image for the two approaches. Note for dyadic size images,
the overlapping between sub-images for the two cases is at its minimum, i.e. 0
and 32 pixels respectively.

In terms of sub-image coverage, the minimum coverage of case 2 overlapping
(≥ 9

16 ) is more than twice that of case 1 overlapping (≥ 1
4 ) (for detail mathe-

matical derivation, readers are referred to [Fauzi and Lewis 2008]). Even though
case 2 overlapping has a much better coverage than case 1 overlapping, the to-
tal number of sub-images generated however increases almost quadratically with
the increase in the length of the image, which may effect the computation time
considerably.

2.3 Automatic Texture Segmenter

In [Fauzi and Lewis 2006], we proposed an automatic texture segmentation al-
gorithm for content-based image retrieval application. Figure 5 shows the pseu-
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(a)

(b)

Figure 3: (a) Sub-images generated by case 1 overlapping, showing 0 pixel over-
lapping for dyadic image size (b) Additional sub-images generated for case 2
overlapping, ensuring minimum of 32 pixels overlapping

Figure 4: Amount of pixels overlapping for various image sizes (left) case 1
overlapping, and (right) case 2 overlapping

docode for the automatic segmentation algorithm itself, while Fig. 6 shows the
pseudocode for incorporating the automatic segmentation into a CBIR system.
The algorithm uses a modified DWF technique together with mean-shift cluster-
ing technique to automatically segment different textured regions without the
need for information of either the type of texture or the number of textures
which exist within the image.

The modified DWF is proposed for better clustering of data points as com-
pared to the standard DWF and the standard wavelet transform. It uses the
richer coefficients of the DWF to generate the pyramid structure of the wavelet
transform. Instead of throwing away every other coefficients during the sub-
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L = number of decomposition levels,

Perform DWF decomposition up to  L levels, followed by data reduction,

Apply adaptive smoothing  for every channels,

Data = 4 channels from the highest level,

while data != base level
Apply mean shift algorithm,
Apply fuzzy clustering to obtain membership function, U,
Interpolate U  to the next resolution,
Data = Interpolated U  + 3 channels of the next level,

end

Assign each pixel to the class it has the highest probability of.

Figure 5: Pseudocode of the detailed segmentation algorithm

Identify the number of segments J,

Initialize the feature vector  FV,

for i = 1: J
Get segment i,
T = (Identify if the segment is textured),
if T  is true

Perform DWF decomposition for the segment,
Compute the feature vector,
Update FV,

end
end

Figure 6: Pseudocode of the segmentation-based CBIR algorithm

sampling stage as in the case for standard wavelet transform, new wavelet co-
efficients are computed by taking the mean energy within distinct blocks of
size 2k × 2k, where k corresponds to the decomposition level. Mean shift clus-
tering, on the other hand, is used to automatically determine the number of
segments within the image through the modified multi-resolution DWF data
space. It consists of five stages, namely data sampling, mode seeking, cluster
center derivation, cluster center validation and cluster delineation.

The segmentation process consists of two stages, the top-down decomposi-
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tion using DWF followed by bottom-up segmentation using mean shift clustering.
During the top-down phase, the image is decomposed into pyramid structured
DWF up to a certain level, l, followed by adaptive smoothing to reduce vari-
ances. In the subsequent bottom-up phase, starting from the highest level (low-
est resolution), the four DWF channels at that level are used as the input to the
mean-shift clustering process. The output is a 2D membership function describ-
ing the probability of every pixel belonging to the different clusters identified.
The membership function is then interpolated and combined with the 3 DWF
channels at the next resolution, and the whole process is repeated. At the base
level, the membership function is of the same size as the original image, and the
segmented image can be obtained by assigning every pixel to the class for which
it has the highest probability.

To use the texture segmentation algorithm in CBIR, it is extended to become
a texture identifier. For a particular segment, by comparing the total energy in
the middle frequency channel with the ones in the low frequency channels, we
can estimate whether or not the segment is textured. The feature extraction can
then be performed on the textured regions only, and the feature vectors for each
texture segment are stored. During retrieval, the feature vectors of the query
texture will be compared to all feature vectors of all images inside the database,
and the retrieval is carried out based on increasing distance.

3 Experimental Databases

Several databases were used throughout the experimental section. For quantita-
tive evaluation of the performance of the DWF, multiscale block decomposition
and the segmentation algorithms, the Brodatz texture database [Brodatz 1966]
as well as the VisTex database [Picard et al. 1995] are used. To evaluate differ-
ent aspects of the techniques, different sub-sets of databases are derived from
these two databases. Since the ground truth of the data is known, quantitative
evaluation can easily be obtained. The different databases used throughout the
experiments are summarized in Table 1.

For the experiments on the discrete wavelet frames technique, the 112 tex-
tures (of size 512×512) from the Brodatz collection are divided into 16 non-
overlapping sub-images (of size 128×128), resulting in 1792 images in total cor-
responding to 112 classes (DB1). To test the algorithm on color texture database,
the VisTex database is used, where 16 non-overlapping images are extracted from
the 167 parent images, yielding 2672 images in total (DB2). The ability of the
algorithm to retrieve images from the same class of the query is recorded. The
retrieval is conducted for all images, and the average recall rate is recorded.

For the multiscale-based retrieval experiment, nine overlapping sub-images
of size 256×256 were extracted from each of the 112 Brodatz images, resulting
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Table 1: Summary of different databases used throughout the experiments

Database Description
DB1 Brodatz textures of 128×128 size, 16 textures per class × 112

classes = 1792 images.
DB2 Vision textures of 128×128 size, 16 textures per class × 167

classes = 2672 images.
DB3 Brodatz textures of size 256×256, 9 textures per class × 112

classes = 1008 images. 10 Vision textures of size 80×80 were
pasted onto the first 90 Brodatz textures to create 90 target
images.

DB4 Same as DB3, but the Vision textures pasted is increased to
140×140.

DB5 Same as DB3, but the Vision textures pasted is increased to
200×200

DB6 Same as DB3, but the Brodatz textures can be of any size.
DB7 National Gallery image collections, totalling 1462 images.
DB8 Victoria and Albert Museum image collections, totalling 16959

images.
DB9 C2RMF image collections, totalling 2500 images.

Figure 7: Example of target images created from the Brodatz and Visual texture
databases.

in 1008 images. Out of this, 90 images are selected as target images, and ten
Visual Texture images are each cut-and-pasted on nine different locations in the
90 selected Brodatz textures (DB3, DB4, DB5). The ten Visual texture images
are used as query images, and the ability of the multiscale algorithm to retrieve
the Brodatz images which contain the pasted VisTex texture is recorded. Figure
7 shows an example of the nine target images for one of the query image. Besides
the dyadic size image database, the experiment was also conducted on arbitrary
size Brodatz image collections (DB6).
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For the segmentation-based retrieval experiment, the same setup as in the
multiscale approach above is used, and the ability of the algorithm to retrieve
Brodatz images in which one of its segments contains similar texture to the
query is recorded. As for evaluating the segmentation algorithm itself, several
multi-textured images are created from the Brodatz datasets and the ability of
the algorithm to correctly segment the images are recorded. The multi-texture
images contain between two to five different textures, arranged in a manner in
which calculation of misclassified pixels is possible.

For evaluation of the algorithms in a real application area, museum databases
are used. The images from our three collaborators, which are the collection
from the National Gallery (NG), the Victoria and Albert Museum (VA) and the
C2RMF databases will be used in the retrieval experiments, and is named DB7,
DB8 and DB9 respectively. The three databases carry quite different challenges.
The VA database, with 16959 images, has mainly images of objects hence is not
too complex, but the database size is the largest. The NG database, with 1462
images, contains more complex images because all of its images are paintings of
scenes. Finally the C2RMF database, with 2500 images, offers the most difficult
challenge since many of its images are quite ”smudgy” paintings (because they
are originally for use in restoration research) and also not many textures are
significantly visible.

4 Experimental Results and Discussion

In this section, experimental results for the discrete wavelet frames, multiscale-
based and segmentation-based techniques on the different databases are pre-
sented. Throughout the section, the precision and recall are used to measure the
retrieval performance:

Precision =
Number of retrieved images that are relevant

number of retrieved images
(3)

Recall =
Number of relevant images that are retrieved

number of relevant images
(4)

For each experiment, only the top N retrieved images are considered, where
N is the number of relevant images. The precision and recall will therefore record
similar measurements. Throughout the section, we will refer to this measurement
as the recall rate, except for the last experiment on real museum images where
the precision for the top 10 retrieved images are recorded instead because of the
lack of ground truth data.

4.1 Discrete Wavelet Frames Experiments

Several state of the art texture feature extraction techniques have been experi-
mented, which includes the multiresolution simultaneous auto-regressive model

411Henderson-Sellers B., Ralyte J.: Situational Method Engineering ...



Table 2: Percentage of recall rate for different texture methods

Texture Average Computational Speed (sec)
Method Recall Rate 128×128 256×256
PWT 70.48 0.09 0.21
TWT 70.42 0.45 0.95
DWF 71.56 0.19 0.58
Gabor 6×3 71.77 2.23 53.30
Gabor 6×4 74.34 2.78 59.11
DCT 55.96 0.06 0.57
Law’s 64.49 0.17 2.23
GLCM 44.99 1.27 3.68
MRSAR 74.10 15.01 61.16

(MRSAR), Gabor filters (18 and 24 filters), discrete wavelet frames, pyramid and
tree-structured wavelet transform (PWT and TWT respectively), Law’s method,
discrete cosine transform (DCT) and grey-level co-occurrence matrix (GLCM).
The performance of the nine techniques in retrieving 100 homogeneous textures
from the Brodatz database DB1 is presented in Table 2.

From the table, it can be observed that the best recall rate is obtained by
the Gabor 6×4 filters and the MRSAR methods, followed by the Gabor 6×3
filters and DWF methods. However from the computational complexity point
of view, Gabor and MRSAR is computationally very heavy. The DWF method,
on the other hand, is computationally very light, which suggests that it is the
optimal method for texture retrieval, with high recall rate and low computational
complexity.

The second experiment was conducted to find the optimal value for all the
parameters of the DWF, such as the wavelet basis, the number of decomposition
levels and the image padding type, as well as the distance metric used during
the retrieval stage. In the previous experiment, three levels of decomposition is
used, based on Daubechies wavelet, using periodic padding. In this experiment,
several wavelet bases were tested, including the Haar wavelet, Symlet with 4, 8
and 16 taps, Coiflet with 6, 12 and 18 taps, and Daubechies with 8 and 16 taps.
Up to five levels of decomposition were tested, as well as the periodic, symmetric
and zero padding configuration. 4 different distance metrics were tested, which
are the Manhattan, Euclidean, normalized Manhattan and normalized Euclidean
metrics. It was found that the parameters used in the previous experiment actu-
ally generated the best performance. The choice of wavelet basis is actually not
very crucial but nonetheless the Daubechies 8-tap wavelet is chosen. As for the
distance metric, the normalized Euclidean outperforms the other metrics.

The final experiments were conducted to further improve the performance of

412 Henderson-Sellers B., Ralyte J.: Situational Method Engineering ...



Table 3: Summary of the optimal parameters for DWF

Parameters Optimal Parameter Value/Type
Level of decomposition 3
Wavelet basis Not crucial, but Daubechies 8-tap is chosen
Padding type Periodic
Distance metric Normalized Euclidean
Features Standard deviation of energy and zero-crossings
Channels All channels

the DWF. Two approaches were considered. Firstly, instead of computing the
energy in each of the DWF channel, several other statistical features were tested.
These include the standard deviation of coefficients, standard deviation of energy,
maximum and minimum value, maximum energy, maximum row and column
sum energy, and the number of zero-crossings. It was found that combining the
standard deviation of energy with the number of zero-crossings gives the highest
recall rate. Secondly, several channel combinations were tested to see if dropping
any channel would affect the performance of the DWF. It was found that in order
to get the highest performance, all channels must be used. For color textures, all
the textures are first converted to gray scale before DWF is applied. The choice
of conversion operator does not seem to affect the performance of the algorithm
substantially.

Table 3 summarizes the optimal parameters recorded for DWF. These DWF
settings yield 20 features per texture image, and manages to improve the recall
rate to 80.67% for database DB1. Experiments on the VisTex database DB2,
which consists of color textures, recorded an average recall rate of 68.58%. This
is quite a high recall rate considering the level of confusion the VisTex database
brings.

4.2 Multiscale-based Texture Retrieval Experiments

Three sets of experiments were conducted to test the robustness of the multiscale
algorithm. In the first experiment, the sensitivity of the sub-image locations is
tested in order to compare case 1 overlapping with case 2 overlapping. For this
experiment, the evaluation is based on a single scale only, i.e. the algorithm
is expected to retrieve sub-images that correspond to the original scale only.
Database DB3 was used for this experiment. The target sub-images pasted on
the database images of size 256 × 256 is of size 80 × 80 pixels while the size
of the query images is 64 × 64. It was found that the performance of case 2
overlapping doubles the recall rate for case 1 overlapping (80% to 40%). This is
a huge gap as far as retrieval performance is concerned. We can conclude that
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Table 4: Recall rate (%)for five different scales of query images

Database Scale 1 Scale Scale Scale Scale
(Original) 2 3 4 5

DB3 100 71.1 18.9 4.4 5.5
DB4 96.7 78.8 37.7 38.9 100
DB5 100 86.7 46.7 41.1 94.4

case 1 overlapping, although it has a much lower computational intensity, is far
behind case 2 overlapping in terms of retrieval performance.

The second set of experiments is aimed at testing the multiscale nature of the
multiscale algorithm, using case 2 overlapping approach. However because of the
nature of the multiscale algorithm, where the image is downsampled to get to the
next scale, database DB3 which uses 80×80 target textures is not very suitable.
This is because, for such a small target region, the probability of the algorithm
to capture the region at multiple scales is slim. This can be seen in Table 4 for
the DB3 database, where the recall rate decreases with different scales. Because
of this, databases DB4 and DB5, which employ 140×140 and 200×200 target
textures respectively, were also used. Five different scales were tested for the
query images. The size of the query image remains the same at 64 × 64 pixels.
The five different scales for the query images are produced from the original
VisTex texture by appropriate resizing of the original images. From Table 4, it
is observed that, for the databases DB4 and DB5, the multiscale algorithm does
reduce the scale dependent nature of DWF. Without the multiscale algorithm,
if the query image is of different scale to the target texture, the recall rate will
be very low. However with the multiscale algorithm, it can be seen that similar
but different scales textures can also be retrieved by the DWF. This is true
especially for scale 5, where the scale is close to half the scale of the target
texture. The difference will be more obvious if the database images used are
larger than 256 × 256, since more scales will be involved.

The results reported in the previous experiments actually represents the
worst case result for the multiscale algorithm. Remember that the database
images used are all of dyadic size, hence the overlapping is at the minimum.
If a database consisting of a collection of random size images is used, the re-
trieval performance will be better. To prove this, another set of experiments was
conducted. For this experiment, database DB6 was used. From each 512 × 512
scanned Brodatz texture image, nine randomly sized images are produced, which
can be of any height, width and location within the parent images. This results
in 1008 random sized images in the database. Next, for each ten Vision textures,
target images of size 80× 80 are randomly pasted onto 9 different database im-
ages, resulting in 90 modified database images consisting of target textures. Each

414 Henderson-Sellers B., Ralyte J.: Situational Method Engineering ...



Table 5: Percentage of correctly detected number of textures

No. of No. Images with No. of textures
textures of correctly detected for the
in an images detected no. incorrect case
image tested of textures 2 3 4 5

2 16 15 1
3 12 11 1
4 13 12 1
5 9 7 2

Total 50 45 (90%) 0 1 2 2

of the ten VisTex textures (of size 64× 64) is used as the query for the retrieval
experiment. An average of 88% recall rate is reported from the experiment. If
we compare this rate with the rate using the dyadic image sizes, where the rate
is 80%, the difference is rather significant.

4.3 Segmentation-based Texture Retrieval Experiments

Before we can evaluate the retrieval results using the segmentation-based ap-
proach, it is important to first evaluate the segmentation algorithm itself. The
performance of the segmentation algorithm is evaluated by its ability to identify
the correct number of textures in the image, as well as its precision in defining
the boundaries of the segmented images. The precision is measured by comput-
ing the percentage of misclassified pixels in the segmented images. We applied
our texture segmentation algorithm to several images of composite textures with
size 256 × 256 pixels.

Textures from the Brodatz album are used to make up the composite tex-
ture images, ranging from two to five textures per image, by a cut-and-paste
technique. Textures pasted are of either rectangular or square shape in order to
make the computation of misclassified pixels easier. None of the textures used in
our experiment can be discriminated by grey level values alone. All together, we
have applied our algorithm to 50 composite textures, and the results are summa-
rized in Table 5. A return of 90% correctly detected number of textures is very
promising. Except for one of the three-textured images, which the algorithm de-
tected to have five textures, all other incorrect results only miss by plus/minus
one texture. Experiments on synthetic textures and real scene image also shows
good segmentation accuracy.

The texture segmentation algorithm, after extension to become texture iden-
tifier, is evaluated quantitatively in the same manner as in the evaluation of the
multiscale algorithm. From visual inspection of the conducted experiments, a
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Table 6: Recall rate (%)for the segmentation-based retrieval

Database Scale 1 Scale Scale Scale Scale
(Original) 2 3 4 5

DB3 4.4 3.3 6.7 1.1 2.2
DB4 38.9 60 38.9 15.6 11.1
DB5 35.6 60 38.9 16.7 10

textured region usually gives a ratio of less then 10, while a non-textured region
can be from 10 up to infinity. However this is not always true as our collection
of images is very large and it is impossible to visually inspect the ratio of all the
textures. To avoid a situation where a genuine texture is missed, a threshold of
20 is used.

For the retrieval experiment, the same databases used in the multiscale ex-
periments, i.e. database DB3, DB4, and DB5, were used. Obviously the number
of textures in any particular image in this database is two at the maximum, even
though the algorithm is able to segment many more segments. However for this
quantitative evaluation of the algorithm, we restrict our images to a maximum
of two textures, so that a fair comparison can be made. The segmentation-based
approach for images having more than two textures per image will be addressed
in the museum databases in the next section.

A summary of the retrieval results for the segmentation-based approach is
presented in Table 6. From the table, the performance on DB3 in particular
is very poor. For all scales of the query, the average recall rate is well below
10%. The main reason for this poor result is the small region of the target
textures. For database DB3, the target textures are of size 80×80 in a 256×256
image. This constitutes less than 10% of the total image area, which means
the segmenter itself in the first place will have problems segmenting the small
regions. An investigation on the segmentation performance on the 90 target
textures revealed that only 41% of them gave satisfactory segmentation results.

As the size of the target textures is increased (by using databases DB4 and
DB5), the texture segmenter is able to work much better, where satisfactory
segmentation results increased to 65%. This in turn results in a much improved
retrieval result. Another observation that can be deduced from Table 6 is that,
unlike the multiscale approach, the retrieval system is not scale invariant. If the
scale of the target textures is different from the query texture, they will not be
retrieved, which explains the poor recall rate for scale 4 and 5.

In general, the segmentation-based retrieval depends a lot on the accuracy
of the segmenter itself. For the experiments discussed above, the average re-
trieval rate is not very high, and several factors have been identified. Firstly,
if two textures in an image are quite similar, there is a high chance that the
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two regions will not be segmented. The two textures will be regarded as one,
and the features extracted are compromised. Secondly, some Brodatz textures
are non-homogeneous and complex (e.g. D039, D040, D041, D042, D043, D044,
D045, D062, D067, D086, D090, please refer to [Brodatz 1966]), resulting in
over-segmentation. Thirdly if one of the over-segmented regions is statistically
similar to the target texture, then it will be regarded as one texture, and again
the features extracted from the target texture are compromised. Finally some
Brodatz textures are coarse in general but with fine textures inside (e.g. D011).
The lack of multiscale property in the segmenter means they can only segment
either one of these coarse or fine textures.

4.4 Comparison on Brodatz and VisTex Databases

Using the results in the previous sections, a comparison between the multiscale-
based and the segmentation-based retrieval approaches can be drawn. Based
on the recall rate obtained from the ground truth data, the multiscale-based
method clearly outperforms the segmentation-based method. Not only does the
multiscale-based approach give a better recall rate, it also enjoys the multiscale
property that can reduce the scale dependence, which the segmentation-based
approach lacks.

In terms of speed, they can be divided into 2 types, online retrieval response,
and offline feature extraction response. Both are important although, since the
online response involves users, it may be deemed more important. While the
speed can be improved using faster computers, finding the approach with lighter
computational load is still important in case hardware requirement is an issue.
For the offline feature extraction stage, the segmentation approach recorded
a lower computational load compared to the multiscale approach. Depending
on the image size, the multiscale approach can take up to a few minutes to
perform the feature extraction of several hundreds generated sub-images. For the
same image, the segmentation approach recorded a much faster response, hence
can be advantageous when the retrieval system involves a very large database
size. As an example, to extract features from museum images of size 768 × 512,
the multiscale and segmentation approaches recorded an average of 110 and 25
seconds respectively.

During the online retrieval stage, again the segmentation approach gives a
faster response. This is because the number of feature vectors of the segmentation-
based algorithm for a particular image is much lower than for the multiscale-
based algorithm. For the multiscale method, up to hundreds of feature vectors
need to be matched with the query for a single database image, whereas for the
segmentation method, only N feature vectors need to be compared, where N is
the number of textures which exist within the image. As an example, the mul-
tiscale and segmentation approaches recorded an average of 11 and 1.5 seconds
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Figure 8: Example of retrieval result for National Gallery database. The query
image is located at the top left, followed by the top ten retrieved images us-
ing the multiscale-based approach, and the top ten retrieved images using the
segmentation-based approach

respectively for retrieving similar images from the DB6 database.

4.5 Comparison on Real Museum Databases

The multiscale-based and the segmentation-based approaches are both evaluated
on the three museum databases (DB7, DB8, DB9). The retrieval performance
will be based mainly on human visual inspection as there is no ground truth
associated with these databases. However due to a limitation in space, it is not
possible to give too many examples of the retrieval performance of the algo-
rithms. The precision rate will also be used to provide some rough quantitative
measurements of the retrieval performances by considering the top 10 retrieved
images. Fig. 8, 9 and 10 show examples of retrieval results using both approaches
on the DB7, DB8 and DB9 databases respectively.
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Figure 9: Example of retrieval result for Victoria and Albert Museum database.
The query image is located at the top left, followed by the top ten retrieved
images using the multiscale-based approach, and the top ten retrieved images
using the segmentation-based approach

The most important observation from all the experiments conducted on mu-
seum images is that both algorithms work well with all databases, quantitatively
and qualitatively. From Fig. 8, 9 and 10, both algorithms manage to retrieve visu-
ally similar texture, even for the DB9 database, although its performance is not
as good as for the DB7 and DB8 databases. This is because the ”smudgy” nature
of images within the C2RMF images brings a level of confusion. The DB7 and
DB8 databases on the other hand show a much better retrieval result. Even for
a database size of 16959 images for the Victoria and Albert Museum database,
both query by texture algorithms manage to retrieve similar textures to the query,
implying that the algorithms are not affected by the size of the databases. In
terms of the precision, the multiscale-based approach recorded 60%, 100% and
60% rates for the DB7, DB8 and DB9 respectively. The segmentation-based
approach, on the other hand, recorded 50% precision each for all 3 databases.
Both algorithms can be said to be applicable for content-based image retrieval
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Figure 10: Example of retrieval result for C2RMF database. The query im-
age is located at the top left, followed by the top ten retrieved images us-
ing the multiscale-based approach, and the top ten retrieved images using the
segmentation-based approach

of museum collections.
The next observation is to compare the performance between the multiscale-

based and the segmentation-based approaches. From the experiments, it was
observed that the multiscale-based approach gives better performance than the
segmentation-based approach. One example can be seen from Fig. 8. In this
particular example, the multiscale-based approach manages to retrieve two im-
ages which have exactly the same texture as the query (images ranked first and
third) while the segmentation-based approach can only manage to retrieve one
of them. This is probably caused by a fault in the segmentation process or the
lack of multiscale property within the segmentation-based approach. It was also
observed that in general the patches retrieved by the multiscale-based approach
are also much more similar to the query. The algorithm however can also suffer
from some odd retrieval result. For example, when two textures are captured by
a sub-image, the resulting feature vector might be similar to a feature vector of
a completely different query texture, and hence will be retrieved as one of the
top matches.

The segmentation-based algorithm has the advantage of retrieval speed, al-
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though the accuracy is not as good as the multiscale-based approach. The com-
putational load for the feature extraction process is also lower than that of the
multiscale-based approach. If it takes the multiscale-based algorithm more than
one minute on average to process each database image during the feature extrac-
tion process, then for a database of 16959 images as in the VA database, it will
take a few days to create the feature vectors for the entire database. Even though
this process is carried out in advance and does not involve the users, it is still
a problem, at least for the system administrator. Hence the segmentation-based
approach holds the advantage in this particular respect. Although this approach
lacks the multiscale property, it can on the other hand provide the shape of the
segmented objects. This might be useful for later purposes such as object iden-
tification or shape-from-texture processes. On the downside, this approach can
suffer from a fault during the segmentation process, where either a texture is
classified as insignificant or a texture is classified together with another texture.

5 Conclusion

Overall, the advantages and disadvantages of both algorithms can be summa-
rized as follows. The multiscale-based approach has the advantage of much bet-
ter accuracy at the expense of computational load. The multiscale nature of this
approach also adds to its advantages as it has been proven to be useful in cap-
turing both coarse and fine textures. The choice between the multiscale-based
and the segmentation-based approaches therefore depends on application. If the
user is willing to trade a longer time for a better accuracy and scale invariance,
then the multiscale-based approach will be suitable. However if the user requires
quick retrieval and is willing to tolerate a slightly less reliable outcome, then the
segmentation-based approach is more suitable. An algorithm which combines the
advantages of the multiscale-approach with the advantages of the segmentation-
based approach to produce a better texture-based CBIR system would be worthy
of exploration.
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