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Abstract: These days, commodity-off-the-shelf (COTS) hardware and software are used to 
build high-end and powerful workstations and servers to be deployed in today’s local area 
networks of private homes and small- to medium-sized business. Typically, these servers are 
multipurpose and shared - running networking functionalities involving IP packet forwarding in 
addition to other CPU intensive applications.  In this paper we study and investigate the impact 
of running CPU-bound applications on the performance of IP packet forwarding.  We measure 
and compare the impact and performance for the two operating systems of choice for home and 
small-business users, namely Linux and Windows XP.  The performance is studied in terms of 
key performance metrics which include throughput, packet loss, round-trip delay, and CPU 
availability. For our measurements, we consider today's typical home network hosts of modern 
processors and Gigabit network cards.  We also consider different configuration setups and 
utilize open-source tools to generate relatively high traffic rates. Our empirical results show 
that Linux exhibits superior performance over Windows XP in terms of IP forwarding 
performance.  Results also show that, unlike Windows XP, the IP forwarding performance of 
Linux is not significantly impacted by running CPU-bound applications. 
 
Keywords: Computer Networks, IP forwarding, Operating Systems, Linux, Windows, 
Network Performance 
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1 Introduction  

These days, we witness a wide proliferation of Internet access to home networks.  A 
home network is typically a wired or wireless local area network connecting multiple 
computing devices and home appliances, and with typically a single connection to the 
Internet via a residential gateway [Hwang and Tseng, 2005].  This enables home 
computing devices and appliances to connect simultaneously to the Internet, thereby 
allowing for remote surveillance, monitoring, and control.  Computing devices 
typically include PC's, standalone web or multimedia servers, laptops, PDAs, 
smartphones, gaming devices, etc.  Examples of widely deployed smart home 
appliances [Sandström et al., 2005]-[Smarthome, 2010] may include webcams, 
surveillance and fire sensors, devices for health monitoring and remote diagnosis, 
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intra-and inter-home communication systems, lighting and temperature control as 
well as plant watering and sprinkler control. 

Two types of servers are commonly used in local area networks of private homes 
and small- to medium-sized business: (1) dedicated or standalone, and (2) shared.  A 
dedicated or standalone server is a server that is dedicated to run one type of 
application with all of its software components installed on a single high-end PC.  An 
example is the web server (such as the Apache HTTP server).  Another good example 
commonly used in private home networks is a residential gateway which provides 
secure and simultaneous Internet access to home computing devices and appliances 
[Hwang and Tseng, 2005] through a dialup, cable, DSL, fiber, or WiMax modem.  
Some of today's modems provide a broadband speed from a few hundred Mbps to two 
Gbps and more.  On the other hand, a shared server is multipurpose and typically runs 
multiple different applications in addition to performing networking functionalities.  
For example, a residential gateway can run other user applications and may also 
perform intrusion detection and firewall filtering. 

Today's home networks are typically Gigabit Ethernet local area networks with 
servers, client machines, and switches connected at a speed of one and ten Gbps.   
Most modern PCs these days get shipped with Gigabit Ethernet NICs (Network 
Interface Cards), and the cost of these cards is relatively low.  With such high-speed 
networks, the network performance bottleneck has become the end servers and 
workstations, particularly the ability to process network packets at Gigabit speed 
[Salah and El-Badawi, 2003], [Prytz and Johannessen, 2005].  Therefore the network 
performance of both dedicated and shared servers is critical.  Any performance 
degradation can affect hosts connected to the private home network and can be 
noticed by both home and external users. 

In order to be cost effective, commodity-off-the-shelf (COTS) hardware and 
software are used to build high-end and powerful workstations and servers to be 
deployed in today’s local area networks of private homes and small- to medium-sized 
business.  For a home owner, a modern PC is typically the choice.  This can be a PC 
with an Intel or AMD 3.2 GHz processor and 512 MB RAM.  The preferred choice of 
the OS for a home owner these days is either Linux or Windows XP.  Both OSes are 
the most widely used and readily available. The newly Microsoft operating system 
Windows Vista is having difficulties being adopted by the vast majority of users, as it 
requires more CPU power and hardware resources.  As for COTS software, common 
utilities may come as part of the OS installation (such as Netfilter, DNS, DHCP, 
routing and NAT), or are typically open-source applications that have to be installed 
separately to run on the top of the OS such as [Apache, 2010] and [Snort, 2010]. 

A common problem (for a typical home owner or mid-size enterprise network 
engineer or administrator) is determining the most appropriate OS that gives the best 
networking performance while being able to run other user applications, some of 
which are typically classified as CPU-bound applications. CPU-bound applications 
are computationally intensive and require little or no I/O.    As a practical example, a 
home user can setup a high-end machine that performs networking functionalities of 
forwarding and processing IP packets.  Some examples of these machines may 
include PC-based routers, firewalls, intrusion detection and prevention (or commonly 
known as IDS or IPS) servers, Domain Name Service (or DNS) servers, IP address 
assignment (or DHCP) servers, and Network Address Translation (or NAT) servers. 
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In addition, the user may choose to utilize further this high-end machine by running 
other user applications such as multimedia and gaming. 

There exists a handful of research articles in the literature on comparing 
application and network performance under Windows and Linux.  In [Prytz and 
Johannessen, 2005], the performance of UDP stack on Windows XP and Linux was 
measured and compared.  In [Salah and Hamawi, 2009], the performance in terms of 
packet forwarding of Linux, Windows Server and Windows XP were compared.  User 
and kernel-level packet forwarding were measured.  [Newman and Bush, 1999] 
presented a comparison of the performance of CPU-bound applications running on 
Linux and Windows 95/98/NT. Network applications were not considered.  [Alfonsi 
and Muttoni, 2004] -[Kavas and Feitelson, 2001] examined the performance of 
running parallel applications in a cluster computing environment built from Linux and 
Windows NT machines.  [Zeadally et al., 2004a] measured and compared the 
performance of different network application programming interfaces (APIs) under 
different OSes including Unix, Linux, Solaris, and Windows.  The authors of 
[Zeadally et al., 2004b], [Mohamed et al., 2006] studied the performance of using 
IPv6 protocol stack over IPv4 of Windows and Linux-based hosts.  The authors 
concluded that in general network applications running under Linux machines with 
IPv6 protocol stack outperform their respective Windows counterparts. 

In this paper we focus primarily on gauging and assessing the impact of running 
user applications on the network performance of the two OSes of choice: Windows 
XP and Linux.  Specifically, we present first an experimental comparative 
performance and analysis of networking performance in terms of IP packet 
forwarding, and then measure and study the impact of running CPU-bound 
applications on such performance. The networking performance of IP forwarding is 
studied in terms of throughput, packet loss, round-trip delay, and CPU availability.  
Our evaluation methodology is general and is a sufficient, standard, and popular 
evaluation methodology to assess network performance of servers, gateways, routers, 
and switches [Salim and Olsson, 2001] - [Brander and McQuaid, 1999].  In our 
experiments, we used open-source generators to generate relatively high traffic rates 
of up to 700 Kpps (packets per seconds). 

The rest of the paper is organized as follows.  Section II presents our evaluation 
methodology to assess and compare the performance of Linux and Windows XP. The 
section describes experimental setup, hardware and software configuration, traffic 
generation, and experimental tools.  Section III reports and compares network 
performance measurements of Linux and Windows XP.  In particular, the section 
compares the performance results for IP forwarding, and the impact of running user 
applications on IP forwarding.  Finally, Section IV concludes the study and identifies 
future work. 

2 Evaluation Methodology 

In this section we describe our evaluation methodology to assess the network 
performance of both Windows XP and Linux. We describe briefly experimental setup, 
hardware and software configuration, traffic generation, and tools.  More details about 
configuration and setup can be found in [Salah and Hamawi, 2009].  We measure the 
packet-forwarding performance of Linux and Windows XP machines, and also 
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measure the impact of running user applications on the performance of a host's packet 
forwarding.  Packet-forwarding measurement is a standard evaluation methodology 
used in [Salim and Olsson, 2001] - [Brander and McQuaid, 1999] to assess the 
network performance of network devices such as servers, gateways, routers, and 
switches.   

2.1 Experimental Setup 

Figure 1 illustrates the basic test bed setup for packet forwarding.  The experiment 
comprises two machines of a sender and a forwarder.  The basic idea is to push the 
forwarder to its knees by having the sender generate high traffic and then measure the 
performance exhibited by the forwarder in its ability to forward packets back to the 
sender.  The sender is a powerful dual-processor Linux machine that generates high 
traffic and the forwarder is the host under test which is a typical Linux or Windows 
XP machine used in home networks.  Both machines have two physical NICs 
connected with 1 Gbps Ethernet crossover cables, as shown in the figure.  Received 
packets on network interface eth1 are forwarded to network interface eth0. 

The generator is a DELL PowerEdge 1800 machine equipped with two Intel 
Xeon processors running at 3.6 GHz with 4 GB RAM. It has an embedded Intel 
82541GI Gigabit Ethernet NIC (which is eth0) running with the e1000 driver. The 
second interface eth1 is a 3COM Broadcom NetXtreme Gigabit Ethernet card with 
BCM5752 controller.  The generator is installed with Fedora Core 5 running Linux 
2.6.16. The forwarder is an HP Compaq DC7600 PC server equipped with Intel 
Pentium 4 processor running at 3.2 GHz with 512 MB RAM. It has two network 
interfaces (eth0 and eth1), and each is a 3COM Broadcom NetXtreme Gigabit 
Ethernet card with BCM5752 controller.  The two versions of operating system that 
will be tested on the forwarder are Windows XP Professional and Linux 2.6.16 of 
Fedora Core 5. 

 

Figure 1: Test bed setup 

2.2 KUTE Traffic Generator and Performance Metrics 

To generate traffic from the sender machine, we used the open-source KUTE 1.4 
traffic generator [Zander et al., 2005].  KUTE is a kernel-level generator capable of 
generating high UDP traffic rates.  There are other two open-source and widely used 
traffic generators; namely, D-ITG and pktgen [Emma et al., 2010], [Olsson, 2005].  
The pktgen is a kernel-level packet generator, while D-ITG is an application-level.  
Unlike D-ITG, KUTE can generate and receive UDP packets at much higher traffic 
rates.  We were able to generate and receive packets at a rate of 700 Kpps with no 
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packet loss when directly connecting both eth1 and eth0 of the sender's machine with 
a Gigabit crossover cable.  However, with D-ITG, the maximum generated rate with 
no packet loss was 235 Kpps.  Also unlike pktgen, we had determined experimentally 
that KUTE has the ability to generate more accurate packet rates with finer 
granularity.  It is worth mentioning that there are other open-source performance tools 
and benchmarks listed in [CAIDA, 2010] - [ITG, 2010].  We experimented with all of 
these traffic generation tools, and we found out that most of these tools and 
benchmarks do not generate high traffic rates as that of KUTE and pktgen. 

KUTE has two kernel modules: namely, kute_snd and kute_rcv to send and 
receive packets, respectively.  Statistics calculation of received packets is done by 
kute_rcv.  Linux kernel 2.6.16 was patched to support KUTE packet reception in fast 
mode whereby kute_rcv receives packets immediately after the packets have been 
received by the NIC and before calling the kernel's default IP handler ip_rcv. The 
kute_rcv discards packets after gathering statistics.  From these statistics, the average 
generated rate, throughput and packet loss can be calculated. However, KUTE does 
not measure RTT delay or the latency of sent and received packets, which is a key 
performance metric for our analysis and comparison.  Therefore, we had to modify 
KUTE code to incorporate such an important measurement feature. To measure the 
average delay per packet, we timestamp the sent packet with the system clock at the 
sender machine.  We used the kernel's do_gettimeofday() function which returns time 
in microsecond precision.  When the packet is received, we calculate the packet RTT 
delay which is the difference between the current system clock and the timestamp set 
in the received packet.   Whenever a new packet arrives, its delay is added to the total 
delay. To get the average delay per packet, this total delay is divided by the total 
number of received packets.  It is important to re-calculate the UDP checksum after 
timestamping the packet to be sent, as the packet payload gets changed with a unique 
timestamp for each sent packet. 

For our performance measurements and comparison, we considered the 
followings key performance metrics: average throughput, packet loss, RTT delay, and 
CPU availability.  Average throughput measures how many packets per second the 
forwarding machine can sustain.  Packet loss measures the percentage of packets 
dropped by the forwarding machine.  RTT delay is the average delay per packet, as 
described earlier, and it takes into account the forwarding delay at the forwarding 
machine as well as other delays which include transmission, processing, queueing and 
propagation delays. CPU availability is measured at the forwarding machine and it 
represents the percentage of the available CPU time for user applications.  In addition 
to measuring RTT delay of the forwarded UDP packets by KUTE, we use ping utility 
to measure the round-trip time of ICMP packets.  It is to be noted that the 
performance metrics of throughput, packet loss, and RTT delay can also be classified 
in the literature as network performance metrics when describing the performance of 
link, routers, and other network elements.  However, in this paper we use these 
parameters to reflect the performance of Linux and Windows XP operating systems 
when running both networking and computation applications. 

We used KUTE to generate a traffic flow for a duration of 30 seconds with a 
specific sending rate.  At the end of the flow, KUTE would report the total packets 
sent, received, and the average delay per packet.  The average sending rate was 
recorded by calculating the total packets sent by KUTE in 30 seconds.   The average 
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throughput was recorded by calculating total packets received by KUTE in 30 
seconds.  Packet loss was calculated by the following simple formula: ((the total 
packets sent by KUTE) – (the total packets received by KUTE)) / (the total packets 
sent by KUTE).  Our final experimental results, shown in Section III, were the 
average of five experimental trials.  Each 30-second flow generation would constitute 
one experimental trial. 

The CPU availability at the forwarding machine was measured using the “sar” 
Linux utility.  Specifically, we issued the shell command  "sar -P ALL 2 3"  at the 
forwarding machine a few seconds after starting the generation of the traffic flow. We 
issued the command after few seconds to ensure the desired traffic flow has stabilized 
enough and reached somewhat a steady state.  This shell command computes the 
average of CPU idleness for all available CPUs.  The average is the result of three 
readings which are taken two seconds apart.  For Windows, we wrote a special VB 
Script to measure the CPU availability.  The script uses API calls of the WMI 
(Windows Management Instrumentation) to read counters and collect system 
statistics.  Specifically, the class Win32_PerfFormattedData_PerfOS_Processor, 
which is one of the many classes provided with WMI, was used to get the CPU usage 
statistics.  It gets the CPU usage percentage via the member PercentProcessorTime. 
Similar to Linux measurement, we compute the average of three readings taken two 
seconds apart. 

3 Performance Measurements 

In this section we report and compare the performance of the forwarding machine 
under Linux and Windows XP for primarily three cases. In particular, we first 
compare performance measurements for kernel-level forwarding (or IP forwarding), 
and then examine the impact of running other user applications on IP forwarding 
performance. IP forwarding measurement is appropriate for gauging the performance 
of standalone servers such as a router or residential gateway.  Studying the impact of 
user applications on IP forwarding is highly useful and beneficial in gauging the 
performance of shared servers, where for example user applications run on PC-based 
routers or gateways.   The performance is compared and analyzed against different 
traffic load conditions generated by the generator machine. 

3.1 IP Forwarding 

Performance measurements of IP forwarding under Linux and Windows XP for 
throughput and packet loss are depicted in Figure 2. Figure 2(a) shows the throughput.  
Figure 2(b) shows the corresponding packet loss.  It is clear from the figure that Linux 
substantially outperforms Windows XP.  The figure shows that the maximum 
forwarding capacity for Linux and Windows XP are 350 Kpps and 75 Kpps, 
respectively.  In addition it is important to notice that as incoming traffic load 
increases, Linux is able to sustain its performance at steady forwarding rate with no 
noticeable performance degradation in throughput.  On the other hand, we notice that 
Windows XP throughput reaches a peak throughput at an incoming rate of 100 Kpps 
and then falls gradually with an increased incoming rate between 100 Kpps and 200 
Kpps, before it sustains its forwarding rate at 75 Kpps. 
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The corresponding average round-trip delay per packet due to IP forwarding is 
shown in Figure 3(a). Figure 3(b) is a zoom-in version of Figure 3(a) to depict clearly 
the delay curve exhibited by Linux.  It is obvious from these two figures that Linux 
has a substantial performance advantage over Windows XP, with a peak performance 
gain ratio of around 1:225.  From Figure 3(b) it is shown that there is a sudden 
increase of delay around the area corresponding to severe packet loss of Figure 2(b).  
That is, in the case of Linux the sudden increase in delay is around 300 Kpps; and in 
the case of Windows XP it is around 50 Kpps.  As we increase the incoming traffic 
rate, the delay for both systems reaches a peak value and then flattens off.  This is the 
expected behavior of a typical queuing system. The maximum value is determined by 
the size of the queue and the mean forwarding capacity of the host under test. 
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Figure 2: Throughput and corresponding packet loss of IP forwarding 

Figure 4(a) plots and compares the curves of the corresponding CPU availability 
measured at the forwarding machine.  There is an important observation that can be 
made from the curves shown in the figure.  It is clear that Linux gives more CPU 
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availability at a region of an incoming traffic rate below 350 Kpps.  However beyond 
a rate of 350 Kpps, the CPU availability of Linux drops to zero, as Linux kernel 
networking subsystem starts consuming all CPU power for packet forwarding.  On the 
other hand, Windows always manages to leave some CPU power for user 
applications, as it is shown in the zoom-in version of Figure 4(a).  It is clear from 
Figure 4(a) that Windows kernel starts consuming more CPU power with increased 
traffic rate. 
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Figure 3: (a) Average round trip delay; (b) zoom-in delay 

When observing closely Figure 4(a), we notice there is a noticeable fluctuation in 
the Linux curves for CPU availability.  In particular, at an incoming rate of 50 Kpps, 
there is a short fall of CPU availability.  Also there is similar behavior at around and 
shortly after an incoming rate of 200 Kpps, but conversely with a short rise of CPU 
availability.  Such a fluctuation is primarily due to the interrupt overhead and 
handling.  Interrupt overhead and handling always have precedence over other kernel 
and user tasks.  In order to offer sound interpretations of such behavior, we measure 
and plot the corresponding interrupt rate for both receiving and transmitting NICs of 
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the forwarding machine, as shown in Figure 4(b).  For measuring interrupt rates, we 
used the “sar” Linux utility.  As depicted in Figure 4(b) there is an increase of 
interrupt rate, specifically for the receiving NIC, at an incoming rate of 50 Kpps and 
shortly after 200 Kpps. Such increase of interrupt rate is the primary reason for 
stealing CPU cycles from user processes, resulting in less CPU availability. 
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Figure 4: (a) CPU availability for user applications; (b) corresponding interrupt rate 

Figure 4(b) shows that below a rate below 50 Kpps, the interrupt rate of the 
receiving NIC increases linearly in relation with the arrival rate.  Shortly after that, 
the interrupt rate drops significantly, and then it starts increasing again.  This is in line 
with the expected behavior.  Below 50 Kpps, the interrupt rate is low and the 
forwarding machine is able to finish the interrupt handling and processing of packets 
before the next interrupt.  The period of disabling and enabling RxInts (i.e. interrupt 
masking period) finishes before the occurrence of the next interrupt.  As the incoming 
rate increases beyond 50 Kpps, multiple packet arrivals or interrupts occur within this 
masking period, thus showing a significant drop in interrupt rate shortly after 50 

3307Salah K., Hamawi M.: Impact of CPU-bound Processes ...



Kpps.  After 60 Kpps, the interrupt rate starts increasing again but very slowly with 
respect to the arrival rate.  Interrupt masking still occurs; however, the masking period 
is not stretching considerably with heavier traffic load.  The CPU still has the power 
to handle and process packets relatively quickly. For the default NAPI budget of 300, 
at around 250 Kpps, the interrupt rate gradually drops to zero.  This is due to 
awakening of ksoftirqd and switching to polling, whereby interrupts of the receiving 
NIC never get re-enabled as packets do not get exhausted in one polling period [30].  
The ksoftirqd is a lower priority kernel thread and is used to prevent starvation of user 
processes.  The curve of the interrupt rate of the transmitting NIC is straightforward, 
and reflects the actual throughput of the forwarding machine of Figure 2(a).  The 
interrupt rate of transmitting NIC flattens off quickly when reaching the forwarding 
capacity.  It is worth noting that there is also fluctuation in the curves of the CPU 
availability under Windows XP in Figure 4.  Such fluctuation is most likely due to 
interrupt handling mechanism of Windows XP.  The interrupt rate for Windows XP is 
not shown because we were not able to find a proper tool or system utility to measure 
it. 

3.2 Impact of User Applications on IP Forwarding 

In this section we examine and evaluate the impact of running user applications on IP 
forwarding.  This is useful in gauging the performance of shared servers, where for 
example user applications run on PC-based routers or gateways.  We examine such an 
impact under both Linux and Windows XP by measuring the performance of IP 
forwarding in terms of throughput, packet loss, and delay while running a CPU-bound 
application called Simplex.  Simplex is a commonly used nonlinear numerical method 
for optimizing multi-dimensional unconstrained problems belonging to search 
algorithms.  In particular, we used a modified version of the downhill simplex method 
code [Kaczmarczyk, 1999]. This program is a computationally heavy application with 
no disk or network I/O operations.  The execution time is measured in microseconds. 

For these measurements, we let Simplex execute for enough time so that it spans 
over the duration of the generated flow. We made sure that the flow started and 
finished while Simplex was still running.  Specifically, the flow was generated for 30 
seconds, and the Simplex program was run for around 35 seconds. Simplex was set to 
run two seconds prior to the start of the flow. 

Figure 5 plots and compares the performance of IP forwarding with and without 
running Simplex. The performance is compared in terms of throughput, packet loss, 
and delay as depicted in Figures 5(a), (b), and (c), respectively.  All of these figures 
clearly demonstrate that IP forwarding is not affected by running user applications.  
This is because Linux NAPI with the default budget of 300 gives more precedence to 
the underlying kernel's networking subsystem than user applications. 
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Figure 5: Impact of running Simplex on IP forwarding under Linux 
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Figure 6: Impact of running Simplex on IP forwarding under Windows XP 
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Figure 6 depicts the performance of Windows XP packet forwarding while 
running the Simplex user application.  In contrast to the impact on Linux IP 
forwarding performance where no or little impact was shown, Figure 6 demonstrates 
that running user applications evidently has a negative impact on Windows XP 
forwarding performance, particularly in moderate and heavy load regions.  Figures 
6(a) and (b) show that the negative impact on throughput and packet loss is around 
5%; while the negative impact is around 8.5% for the delay as shown in Figure 6(c).  
It is clear that Windows XP steals and allocates more CPU processing power than 
Linux from its kernel's networking subsystem to user applications, and thus 
compromising its own IP forwarding capacity. 

4 Concluding Remarks 

In this paper we examined and compared experimentally the performance of Linux 
and Windows XP when used in private homes or small- to medium-sized business 
network environments.  In particular we measured the packet-forwarding performance 
of a typical PC when deployed as a standalone or shared server.  Packet-forwarding 
measurement is a standard and popular benchmark and evaluation methodology to 
assess network performance of network elements such as servers, gateways, routers, 
and switches.  For a standalone server, the performance was measured for a number 
of key performance metrics which include throughput, packet loss, latency, and CPU 
availability.  For a shared server, we measured and analyzed the impact of running 
user applications on the performance of IP forwarding. 

Our empirical results show that Linux substantially outperforms Windows XP 
under almost all traffic load conditions.  In addition, the networking performance of 
Windows XP is degraded when running other user application, with no obvious 
degradation in the case of Linux, and thereby making Linux the preferred platform of 
choice for standalone and shared networking servers.  In a future study, we plan to 
examine and measure network performance of Windows XP and Linux on PCs with 
multi-core multiprocessor architecture. 
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