
Impact of CPU-bound Processes on IP Forwarding of
Linux and Windows XP

Khaled Salah

(Computer Engineering Department, Khalifa University of Science, Technology and Research
(KUSTAR), Sharjah, UAE
khaled.salah@kustar.ac.ae)

Mohamed Hamawi

(Information and Computer Science Department, King Fahd University of Petroleum and
Minerals (KFUPM), Dhahran, Saudi Arabia

khaledhm@kfupm.edu.sa)

Abstract: These days, commodity-off-the-shelf (COTS) hardware and software are used to
build high-end and powerful workstations and servers to be deployed in today’s local area
networks of private homes and small- to medium-sized business. Typically, these servers are
multipurpose and shared - running networking functionalities involving IP packet forwarding in
addition to other CPU intensive applications. In this paper we study and investigate the impact
of running CPU-bound applications on the performance of IP packet forwarding. We measure
and compare the impact and performance for the two operating systems of choice for home and
small-business users, namely Linux and Windows XP. The performance is studied in terms of
key performance metrics which include throughput, packet loss, round-trip delay, and CPU
availability. For our measurements, we consider today's typical home network hosts of modern
processors and Gigabit network cards. We also consider different configuration setups and
utilize open-source tools to generate relatively high traffic rates. Our empirical results show
that Linux exhibits superior performance over Windows XP in terms of IP forwarding
performance. Results also show that, unlike Windows XP, the IP forwarding performance of
Linux is not significantly impacted by running CPU-bound applications.

Keywords: Computer Networks, IP forwarding, Operating Systems, Linux, Windows,
Network Performance
Categories: C.2, C.2.0, C.2.1, C.2.2, C.2.m

1 Introduction

These days, we witness a wide proliferation of Internet access to home networks. A
home network is typically a wired or wireless local area network connecting multiple
computing devices and home appliances, and with typically a single connection to the
Internet via a residential gateway [Hwang and Tseng, 2005]. This enables home
computing devices and appliances to connect simultaneously to the Internet, thereby
allowing for remote surveillance, monitoring, and control. Computing devices
typically include PC's, standalone web or multimedia servers, laptops, PDAs,
smartphones, gaming devices, etc. Examples of widely deployed smart home
appliances [Sandström et al., 2005]-[Smarthome, 2010] may include webcams,
surveillance and fire sensors, devices for health monitoring and remote diagnosis,

Journal of Universal Computer Science, vol. 16, no. 21 (2010), 3299-3313
submitted: 20/10/09, accepted: 14/10/10, appeared: 1/12/10 © J.UCS

intra-and inter-home communication systems, lighting and temperature control as
well as plant watering and sprinkler control.

Two types of servers are commonly used in local area networks of private homes
and small- to medium-sized business: (1) dedicated or standalone, and (2) shared. A
dedicated or standalone server is a server that is dedicated to run one type of
application with all of its software components installed on a single high-end PC. An
example is the web server (such as the Apache HTTP server). Another good example
commonly used in private home networks is a residential gateway which provides
secure and simultaneous Internet access to home computing devices and appliances
[Hwang and Tseng, 2005] through a dialup, cable, DSL, fiber, or WiMax modem.
Some of today's modems provide a broadband speed from a few hundred Mbps to two
Gbps and more. On the other hand, a shared server is multipurpose and typically runs
multiple different applications in addition to performing networking functionalities.
For example, a residential gateway can run other user applications and may also
perform intrusion detection and firewall filtering.

Today's home networks are typically Gigabit Ethernet local area networks with
servers, client machines, and switches connected at a speed of one and ten Gbps.
Most modern PCs these days get shipped with Gigabit Ethernet NICs (Network
Interface Cards), and the cost of these cards is relatively low. With such high-speed
networks, the network performance bottleneck has become the end servers and
workstations, particularly the ability to process network packets at Gigabit speed
[Salah and El-Badawi, 2003], [Prytz and Johannessen, 2005]. Therefore the network
performance of both dedicated and shared servers is critical. Any performance
degradation can affect hosts connected to the private home network and can be
noticed by both home and external users.

In order to be cost effective, commodity-off-the-shelf (COTS) hardware and
software are used to build high-end and powerful workstations and servers to be
deployed in today’s local area networks of private homes and small- to medium-sized
business. For a home owner, a modern PC is typically the choice. This can be a PC
with an Intel or AMD 3.2 GHz processor and 512 MB RAM. The preferred choice of
the OS for a home owner these days is either Linux or Windows XP. Both OSes are
the most widely used and readily available. The newly Microsoft operating system
Windows Vista is having difficulties being adopted by the vast majority of users, as it
requires more CPU power and hardware resources. As for COTS software, common
utilities may come as part of the OS installation (such as Netfilter, DNS, DHCP,
routing and NAT), or are typically open-source applications that have to be installed
separately to run on the top of the OS such as [Apache, 2010] and [Snort, 2010].

A common problem (for a typical home owner or mid-size enterprise network
engineer or administrator) is determining the most appropriate OS that gives the best
networking performance while being able to run other user applications, some of
which are typically classified as CPU-bound applications. CPU-bound applications
are computationally intensive and require little or no I/O. As a practical example, a
home user can setup a high-end machine that performs networking functionalities of
forwarding and processing IP packets. Some examples of these machines may
include PC-based routers, firewalls, intrusion detection and prevention (or commonly
known as IDS or IPS) servers, Domain Name Service (or DNS) servers, IP address
assignment (or DHCP) servers, and Network Address Translation (or NAT) servers.

3300 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

In addition, the user may choose to utilize further this high-end machine by running
other user applications such as multimedia and gaming.

There exists a handful of research articles in the literature on comparing
application and network performance under Windows and Linux. In [Prytz and
Johannessen, 2005], the performance of UDP stack on Windows XP and Linux was
measured and compared. In [Salah and Hamawi, 2009], the performance in terms of
packet forwarding of Linux, Windows Server and Windows XP were compared. User
and kernel-level packet forwarding were measured. [Newman and Bush, 1999]
presented a comparison of the performance of CPU-bound applications running on
Linux and Windows 95/98/NT. Network applications were not considered. [Alfonsi
and Muttoni, 2004] -[Kavas and Feitelson, 2001] examined the performance of
running parallel applications in a cluster computing environment built from Linux and
Windows NT machines. [Zeadally et al., 2004a] measured and compared the
performance of different network application programming interfaces (APIs) under
different OSes including Unix, Linux, Solaris, and Windows. The authors of
[Zeadally et al., 2004b], [Mohamed et al., 2006] studied the performance of using
IPv6 protocol stack over IPv4 of Windows and Linux-based hosts. The authors
concluded that in general network applications running under Linux machines with
IPv6 protocol stack outperform their respective Windows counterparts.

In this paper we focus primarily on gauging and assessing the impact of running
user applications on the network performance of the two OSes of choice: Windows
XP and Linux. Specifically, we present first an experimental comparative
performance and analysis of networking performance in terms of IP packet
forwarding, and then measure and study the impact of running CPU-bound
applications on such performance. The networking performance of IP forwarding is
studied in terms of throughput, packet loss, round-trip delay, and CPU availability.
Our evaluation methodology is general and is a sufficient, standard, and popular
evaluation methodology to assess network performance of servers, gateways, routers,
and switches [Salim and Olsson, 2001] - [Brander and McQuaid, 1999]. In our
experiments, we used open-source generators to generate relatively high traffic rates
of up to 700 Kpps (packets per seconds).

The rest of the paper is organized as follows. Section II presents our evaluation
methodology to assess and compare the performance of Linux and Windows XP. The
section describes experimental setup, hardware and software configuration, traffic
generation, and experimental tools. Section III reports and compares network
performance measurements of Linux and Windows XP. In particular, the section
compares the performance results for IP forwarding, and the impact of running user
applications on IP forwarding. Finally, Section IV concludes the study and identifies
future work.

2 Evaluation Methodology

In this section we describe our evaluation methodology to assess the network
performance of both Windows XP and Linux. We describe briefly experimental setup,
hardware and software configuration, traffic generation, and tools. More details about
configuration and setup can be found in [Salah and Hamawi, 2009]. We measure the
packet-forwarding performance of Linux and Windows XP machines, and also

3301Salah K., Hamawi M.: Impact of CPU-bound Processes ...

measure the impact of running user applications on the performance of a host's packet
forwarding. Packet-forwarding measurement is a standard evaluation methodology
used in [Salim and Olsson, 2001] - [Brander and McQuaid, 1999] to assess the
network performance of network devices such as servers, gateways, routers, and
switches.

2.1 Experimental Setup

Figure 1 illustrates the basic test bed setup for packet forwarding. The experiment
comprises two machines of a sender and a forwarder. The basic idea is to push the
forwarder to its knees by having the sender generate high traffic and then measure the
performance exhibited by the forwarder in its ability to forward packets back to the
sender. The sender is a powerful dual-processor Linux machine that generates high
traffic and the forwarder is the host under test which is a typical Linux or Windows
XP machine used in home networks. Both machines have two physical NICs
connected with 1 Gbps Ethernet crossover cables, as shown in the figure. Received
packets on network interface eth1 are forwarded to network interface eth0.

The generator is a DELL PowerEdge 1800 machine equipped with two Intel
Xeon processors running at 3.6 GHz with 4 GB RAM. It has an embedded Intel
82541GI Gigabit Ethernet NIC (which is eth0) running with the e1000 driver. The
second interface eth1 is a 3COM Broadcom NetXtreme Gigabit Ethernet card with
BCM5752 controller. The generator is installed with Fedora Core 5 running Linux
2.6.16. The forwarder is an HP Compaq DC7600 PC server equipped with Intel
Pentium 4 processor running at 3.2 GHz with 512 MB RAM. It has two network
interfaces (eth0 and eth1), and each is a 3COM Broadcom NetXtreme Gigabit
Ethernet card with BCM5752 controller. The two versions of operating system that
will be tested on the forwarder are Windows XP Professional and Linux 2.6.16 of
Fedora Core 5.

Figure 1: Test bed setup

2.2 KUTE Traffic Generator and Performance Metrics

To generate traffic from the sender machine, we used the open-source KUTE 1.4
traffic generator [Zander et al., 2005]. KUTE is a kernel-level generator capable of
generating high UDP traffic rates. There are other two open-source and widely used
traffic generators; namely, D-ITG and pktgen [Emma et al., 2010], [Olsson, 2005].
The pktgen is a kernel-level packet generator, while D-ITG is an application-level.
Unlike D-ITG, KUTE can generate and receive UDP packets at much higher traffic
rates. We were able to generate and receive packets at a rate of 700 Kpps with no

3302 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

packet loss when directly connecting both eth1 and eth0 of the sender's machine with
a Gigabit crossover cable. However, with D-ITG, the maximum generated rate with
no packet loss was 235 Kpps. Also unlike pktgen, we had determined experimentally
that KUTE has the ability to generate more accurate packet rates with finer
granularity. It is worth mentioning that there are other open-source performance tools
and benchmarks listed in [CAIDA, 2010] - [ITG, 2010]. We experimented with all of
these traffic generation tools, and we found out that most of these tools and
benchmarks do not generate high traffic rates as that of KUTE and pktgen.

KUTE has two kernel modules: namely, kute_snd and kute_rcv to send and
receive packets, respectively. Statistics calculation of received packets is done by
kute_rcv. Linux kernel 2.6.16 was patched to support KUTE packet reception in fast
mode whereby kute_rcv receives packets immediately after the packets have been
received by the NIC and before calling the kernel's default IP handler ip_rcv. The
kute_rcv discards packets after gathering statistics. From these statistics, the average
generated rate, throughput and packet loss can be calculated. However, KUTE does
not measure RTT delay or the latency of sent and received packets, which is a key
performance metric for our analysis and comparison. Therefore, we had to modify
KUTE code to incorporate such an important measurement feature. To measure the
average delay per packet, we timestamp the sent packet with the system clock at the
sender machine. We used the kernel's do_gettimeofday() function which returns time
in microsecond precision. When the packet is received, we calculate the packet RTT
delay which is the difference between the current system clock and the timestamp set
in the received packet. Whenever a new packet arrives, its delay is added to the total
delay. To get the average delay per packet, this total delay is divided by the total
number of received packets. It is important to re-calculate the UDP checksum after
timestamping the packet to be sent, as the packet payload gets changed with a unique
timestamp for each sent packet.

For our performance measurements and comparison, we considered the
followings key performance metrics: average throughput, packet loss, RTT delay, and
CPU availability. Average throughput measures how many packets per second the
forwarding machine can sustain. Packet loss measures the percentage of packets
dropped by the forwarding machine. RTT delay is the average delay per packet, as
described earlier, and it takes into account the forwarding delay at the forwarding
machine as well as other delays which include transmission, processing, queueing and
propagation delays. CPU availability is measured at the forwarding machine and it
represents the percentage of the available CPU time for user applications. In addition
to measuring RTT delay of the forwarded UDP packets by KUTE, we use ping utility
to measure the round-trip time of ICMP packets. It is to be noted that the
performance metrics of throughput, packet loss, and RTT delay can also be classified
in the literature as network performance metrics when describing the performance of
link, routers, and other network elements. However, in this paper we use these
parameters to reflect the performance of Linux and Windows XP operating systems
when running both networking and computation applications.

We used KUTE to generate a traffic flow for a duration of 30 seconds with a
specific sending rate. At the end of the flow, KUTE would report the total packets
sent, received, and the average delay per packet. The average sending rate was
recorded by calculating the total packets sent by KUTE in 30 seconds. The average

3303Salah K., Hamawi M.: Impact of CPU-bound Processes ...

throughput was recorded by calculating total packets received by KUTE in 30
seconds. Packet loss was calculated by the following simple formula: ((the total
packets sent by KUTE) – (the total packets received by KUTE)) / (the total packets
sent by KUTE). Our final experimental results, shown in Section III, were the
average of five experimental trials. Each 30-second flow generation would constitute
one experimental trial.

The CPU availability at the forwarding machine was measured using the “sar”
Linux utility. Specifically, we issued the shell command "sar -P ALL 2 3" at the
forwarding machine a few seconds after starting the generation of the traffic flow. We
issued the command after few seconds to ensure the desired traffic flow has stabilized
enough and reached somewhat a steady state. This shell command computes the
average of CPU idleness for all available CPUs. The average is the result of three
readings which are taken two seconds apart. For Windows, we wrote a special VB
Script to measure the CPU availability. The script uses API calls of the WMI
(Windows Management Instrumentation) to read counters and collect system
statistics. Specifically, the class Win32_PerfFormattedData_PerfOS_Processor,
which is one of the many classes provided with WMI, was used to get the CPU usage
statistics. It gets the CPU usage percentage via the member PercentProcessorTime.
Similar to Linux measurement, we compute the average of three readings taken two
seconds apart.

3 Performance Measurements

In this section we report and compare the performance of the forwarding machine
under Linux and Windows XP for primarily three cases. In particular, we first
compare performance measurements for kernel-level forwarding (or IP forwarding),
and then examine the impact of running other user applications on IP forwarding
performance. IP forwarding measurement is appropriate for gauging the performance
of standalone servers such as a router or residential gateway. Studying the impact of
user applications on IP forwarding is highly useful and beneficial in gauging the
performance of shared servers, where for example user applications run on PC-based
routers or gateways. The performance is compared and analyzed against different
traffic load conditions generated by the generator machine.

3.1 IP Forwarding

Performance measurements of IP forwarding under Linux and Windows XP for
throughput and packet loss are depicted in Figure 2. Figure 2(a) shows the throughput.
Figure 2(b) shows the corresponding packet loss. It is clear from the figure that Linux
substantially outperforms Windows XP. The figure shows that the maximum
forwarding capacity for Linux and Windows XP are 350 Kpps and 75 Kpps,
respectively. In addition it is important to notice that as incoming traffic load
increases, Linux is able to sustain its performance at steady forwarding rate with no
noticeable performance degradation in throughput. On the other hand, we notice that
Windows XP throughput reaches a peak throughput at an incoming rate of 100 Kpps
and then falls gradually with an increased incoming rate between 100 Kpps and 200
Kpps, before it sustains its forwarding rate at 75 Kpps.

3304 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

The corresponding average round-trip delay per packet due to IP forwarding is
shown in Figure 3(a). Figure 3(b) is a zoom-in version of Figure 3(a) to depict clearly
the delay curve exhibited by Linux. It is obvious from these two figures that Linux
has a substantial performance advantage over Windows XP, with a peak performance
gain ratio of around 1:225. From Figure 3(b) it is shown that there is a sudden
increase of delay around the area corresponding to severe packet loss of Figure 2(b).
That is, in the case of Linux the sudden increase in delay is around 300 Kpps; and in
the case of Windows XP it is around 50 Kpps. As we increase the incoming traffic
rate, the delay for both systems reaches a peak value and then flattens off. This is the
expected behavior of a typical queuing system. The maximum value is determined by
the size of the queue and the mean forwarding capacity of the host under test.

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

K
pp

s)

Incoming Traffic Rate (Kpps)

Linux
Windows

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700

P
ac

ke
t L

os
s

%

Incoming Traffic Rate (Kpps)

Linux
Windows

Figure 2: Throughput and corresponding packet loss of IP forwarding

Figure 4(a) plots and compares the curves of the corresponding CPU availability
measured at the forwarding machine. There is an important observation that can be
made from the curves shown in the figure. It is clear that Linux gives more CPU

3305Salah K., Hamawi M.: Impact of CPU-bound Processes ...

availability at a region of an incoming traffic rate below 350 Kpps. However beyond
a rate of 350 Kpps, the CPU availability of Linux drops to zero, as Linux kernel
networking subsystem starts consuming all CPU power for packet forwarding. On the
other hand, Windows always manages to leave some CPU power for user
applications, as it is shown in the zoom-in version of Figure 4(a). It is clear from
Figure 4(a) that Windows kernel starts consuming more CPU power with increased
traffic rate.

(a)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

se
c)

Incoming Traffic Rate (Kpps)

Linux
Windows

(b)

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

se
c)

Incoming Traffic Rate (Kpps)

Linux
Windows

Figure 3: (a) Average round trip delay; (b) zoom-in delay

When observing closely Figure 4(a), we notice there is a noticeable fluctuation in
the Linux curves for CPU availability. In particular, at an incoming rate of 50 Kpps,
there is a short fall of CPU availability. Also there is similar behavior at around and
shortly after an incoming rate of 200 Kpps, but conversely with a short rise of CPU
availability. Such a fluctuation is primarily due to the interrupt overhead and
handling. Interrupt overhead and handling always have precedence over other kernel
and user tasks. In order to offer sound interpretations of such behavior, we measure
and plot the corresponding interrupt rate for both receiving and transmitting NICs of

3306 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

the forwarding machine, as shown in Figure 4(b). For measuring interrupt rates, we
used the “sar” Linux utility. As depicted in Figure 4(b) there is an increase of
interrupt rate, specifically for the receiving NIC, at an incoming rate of 50 Kpps and
shortly after 200 Kpps. Such increase of interrupt rate is the primary reason for
stealing CPU cycles from user processes, resulting in less CPU availability.

(a)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

C
P

U
 A

va
ila

bi
lit

y
%

Incoming Traffic Rate (Kpps)

Linux
Windows

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700

In
te

rr
up

t R
at

e
In

ts
/s

ec
 (

in
 th

ou
sa

nd
s)

Incoming Traffic Rate (Kpps)

Linux Send NIC
Linux Recv NIC

Figure 4: (a) CPU availability for user applications; (b) corresponding interrupt rate

Figure 4(b) shows that below a rate below 50 Kpps, the interrupt rate of the
receiving NIC increases linearly in relation with the arrival rate. Shortly after that,
the interrupt rate drops significantly, and then it starts increasing again. This is in line
with the expected behavior. Below 50 Kpps, the interrupt rate is low and the
forwarding machine is able to finish the interrupt handling and processing of packets
before the next interrupt. The period of disabling and enabling RxInts (i.e. interrupt
masking period) finishes before the occurrence of the next interrupt. As the incoming
rate increases beyond 50 Kpps, multiple packet arrivals or interrupts occur within this
masking period, thus showing a significant drop in interrupt rate shortly after 50

3307Salah K., Hamawi M.: Impact of CPU-bound Processes ...

Kpps. After 60 Kpps, the interrupt rate starts increasing again but very slowly with
respect to the arrival rate. Interrupt masking still occurs; however, the masking period
is not stretching considerably with heavier traffic load. The CPU still has the power
to handle and process packets relatively quickly. For the default NAPI budget of 300,
at around 250 Kpps, the interrupt rate gradually drops to zero. This is due to
awakening of ksoftirqd and switching to polling, whereby interrupts of the receiving
NIC never get re-enabled as packets do not get exhausted in one polling period [30].
The ksoftirqd is a lower priority kernel thread and is used to prevent starvation of user
processes. The curve of the interrupt rate of the transmitting NIC is straightforward,
and reflects the actual throughput of the forwarding machine of Figure 2(a). The
interrupt rate of transmitting NIC flattens off quickly when reaching the forwarding
capacity. It is worth noting that there is also fluctuation in the curves of the CPU
availability under Windows XP in Figure 4. Such fluctuation is most likely due to
interrupt handling mechanism of Windows XP. The interrupt rate for Windows XP is
not shown because we were not able to find a proper tool or system utility to measure
it.

3.2 Impact of User Applications on IP Forwarding

In this section we examine and evaluate the impact of running user applications on IP
forwarding. This is useful in gauging the performance of shared servers, where for
example user applications run on PC-based routers or gateways. We examine such an
impact under both Linux and Windows XP by measuring the performance of IP
forwarding in terms of throughput, packet loss, and delay while running a CPU-bound
application called Simplex. Simplex is a commonly used nonlinear numerical method
for optimizing multi-dimensional unconstrained problems belonging to search
algorithms. In particular, we used a modified version of the downhill simplex method
code [Kaczmarczyk, 1999]. This program is a computationally heavy application with
no disk or network I/O operations. The execution time is measured in microseconds.

For these measurements, we let Simplex execute for enough time so that it spans
over the duration of the generated flow. We made sure that the flow started and
finished while Simplex was still running. Specifically, the flow was generated for 30
seconds, and the Simplex program was run for around 35 seconds. Simplex was set to
run two seconds prior to the start of the flow.

Figure 5 plots and compares the performance of IP forwarding with and without
running Simplex. The performance is compared in terms of throughput, packet loss,
and delay as depicted in Figures 5(a), (b), and (c), respectively. All of these figures
clearly demonstrate that IP forwarding is not affected by running user applications.
This is because Linux NAPI with the default budget of 300 gives more precedence to
the underlying kernel's networking subsystem than user applications.

3308 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

K
pp

s)

Incoming Traffic Rate (Kpps)

Linux
Linux with Simplex

(b)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

P
ac

ke
t L

os
s

%

Incoming Traffic Rate (Kpps)

Linux
Linux with Simplex

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

se
c)

Incoming Traffic Rate (Kpps)

Linux
Linux with Simplex

Figure 5: Impact of running Simplex on IP forwarding under Linux

3309Salah K., Hamawi M.: Impact of CPU-bound Processes ...

(a)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

K
pp

s)

Incoming Traffic Rate (Kpps)

Windows
Windows with Simplex

(b)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

P
ac

ke
t L

os
s

%

Incoming Traffic Rate (Kpps)

Windows
Windows with Simplex

(c)

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

se
c)

Incoming Traffic Rate (Kpps)

Windows
Windows with Simplex

Figure 6: Impact of running Simplex on IP forwarding under Windows XP

3310 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

Figure 6 depicts the performance of Windows XP packet forwarding while
running the Simplex user application. In contrast to the impact on Linux IP
forwarding performance where no or little impact was shown, Figure 6 demonstrates
that running user applications evidently has a negative impact on Windows XP
forwarding performance, particularly in moderate and heavy load regions. Figures
6(a) and (b) show that the negative impact on throughput and packet loss is around
5%; while the negative impact is around 8.5% for the delay as shown in Figure 6(c).
It is clear that Windows XP steals and allocates more CPU processing power than
Linux from its kernel's networking subsystem to user applications, and thus
compromising its own IP forwarding capacity.

4 Concluding Remarks

In this paper we examined and compared experimentally the performance of Linux
and Windows XP when used in private homes or small- to medium-sized business
network environments. In particular we measured the packet-forwarding performance
of a typical PC when deployed as a standalone or shared server. Packet-forwarding
measurement is a standard and popular benchmark and evaluation methodology to
assess network performance of network elements such as servers, gateways, routers,
and switches. For a standalone server, the performance was measured for a number
of key performance metrics which include throughput, packet loss, latency, and CPU
availability. For a shared server, we measured and analyzed the impact of running
user applications on the performance of IP forwarding.

Our empirical results show that Linux substantially outperforms Windows XP
under almost all traffic load conditions. In addition, the networking performance of
Windows XP is degraded when running other user application, with no obvious
degradation in the case of Linux, and thereby making Linux the preferred platform of
choice for standalone and shared networking servers. In a future study, we plan to
examine and measure network performance of Windows XP and Linux on PCs with
multi-core multiprocessor architecture.

Acknowledgements

We acknowledge the support of KUSTAR and KFUPM for the completion of this
work. We are also very thankful to the authors of the traffic generators of KUTE and
pktgen, Sebastian Zander and Robert Olsson, for assistance in getting their tools up
and running.

References

[About, 2010] About.com, "TCP/IP Network Performance Benchmarks and Tools",Available at
http://compnetworking.about.com/d/networkperformance/TCPIP_Network_Performance_Benc
hmarks_and_Tools.htm, Last visit: October 2010

[Alfonsi and Muttoni, 2004] Alfonsi, G., Muttoni, L.: "Performance Evaluation of a Windows
NT based PC cluster for High Performance Computing," Journal of Systems Architecture,
Elsevier Science, Vol. 50, No. 6, (2004), pp. 345-359

3311Salah K., Hamawi M.: Impact of CPU-bound Processes ...

[Apache, 2010] The Apache Software Foundation, "Apache HTTP Server",
http://www.apache.org/, Last visit: October 2010

[Bovet and Cesati, 2005] Bovet, D., Cesati, M.: “Understanding the Linux Kernel,” O’Riley
Press, 3rd Edition, November 2005.

[Brander and McQuaid, 1999] Brander, S., McQuail, J.: "RFC2544 – Benchmarking
Methodology for Network Interconnect Devices," March 1999.

[CAIDA, 2010] CAIDA.org, "Performance Measurement Tools Taxonomy,"
http://www.caida.org/tools/taxonomy/performance.xml, Last visit: October 2010

[Emma et al., 2010] Emma, D., Pescape, A., Ventre, G.: “D-ITG, Distributed Internet Traffic
Generator”, Available from http://www.grid.unina.it/software/ITG, Last visit: October 2010

[Hwang and Tseng, 2005] Hwang, W.S., Tseng, P.C.: "A QoS-aware Residential Gateway with
Bandwidth Management," IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, August
2005, pp. 840-848.

[ITG, 2010] ITG: "Other Internet Traffic Generators," Available at
http://www.grid.unina.it/software/ITG/link.php, Last visit: October 2010

[Kaczmarczyk, 1999] Kaczmarczyk, G.: “Downhill Simplex Method for Many (~20)
Dimensions”, Available at http://paula.univ.gda.pl/~dokgrk/simplex.html, last modification:
1999.

[Kavas and Feitelson, 2001] Kavas, A., Feitelson, D.G.: "Comparing Windows NT, Linux, and
QNX as the Basis for Cluster Systems," Journal of Concurrency and Computation" Practice &
Experience, Vol. 13, No. 15, December 2001, pp. 1303-1332.

[Lancaster and Taked, 1999] Lancaster, D., Taked, K.: “Comparative performance of a
commodity Alpha cluster running Linux and Windows NT”. In proceedings of the IEEE
Workshop on Cluster Computing, May 1999.

[Meyer and Rakotonirainy, 2003] Meyer, S., Rakotonirainy, A.: "A survey of research on
context-aware homes," In Proceedings of the Australasian information Security Workshop
Conference on ACSW Frontiers 2003, Adelaide, Australia, pp. 159-168.

[Mohamed et al., 2006] Mohamed, S., Buhari, M., Saleem, H.: "Performance Comparison of
Packet Transmission over IPv6 Network on Different Platforms," IEE Proceedings –
Communications, Vol. 153, No. 3, June 2006, pp. 425-433

[Morris et al., 2000] Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.: “The Click Modular
Router,” ACM Transactions on Computer Systems, vol. 8, no. 3, August 2000, pp. 263-297

[Newman and Bush, 1999] Newman, T., Bush, J.: "Performance Comparison," Linux Journal,
Vol. 1999, No. 7, November 1999.

[Olsson, 2005] Olsson, R.: “pktgen the Linux Packet Generator,” Proceedings of Linux
Symposium, Ottawa, Canada, 2005.

[Prytz and Johannessen, 2005] Prytz, G., Johannessen, S.: "Real-Time Performance
Measurements using UDP on Windows and Linux", The 10th IEEE Conference on Emerging
Technologies and Factory Automation, 2005, Catania, Italy, September 19-22, 2005, pp. 925-
932

[Salah and El-Badawi, 2003] Salah, K., El-Badawi, K.: " Evaluating System Performance in
Gigabit Networks ", The 28th IEEE Local Computer Networks (LCN), Bonn/Königswinter,
Germany, October 20-24, 2003, pp. 498-505

3312 Salah K., Hamawi M.: Impact of CPU-bound Processes ...

[Salah and Hamawi, 2009] Salah, K., Hamawi, M.: “Comparative Packet Forwarding
Measurement of Three Popular Operating Systems,” International Journal of Network and
Computer Applications, Elevier Science, Vol. 32, No. 5, September 2009, pp. 1039-1048

[Salim and Olsson, 2001] Salim, J. H., Olsson, R.: “Beyond Softnet,” Proceedings of the 5th
Annual Linux Showcase and Conference, November 2001, pp 165-172

[Sandström et al., 2005] Sandström, G., Gustavsson, S., Lundberg, S., Keijer, U., Junestrand,
S.: "Long-Term Viability of Smart Home Systems -- Business Modelling and Conceptual
Requirements on Technology," Proceedings of. Home-Oriented Informatics and Telematics,
(HOIT 2005), 2005, pp. 71–86.

[Smarthome, 2010] Smarthome.com, Available at http://www.smarthome.com, Last visit:
October 2010

[Snort, 2010] Snort.org, “Snort - the De Facto Standard for Intrusion detection and Prevention,”
Available at http://www.snort.org, Last visit: October 2010

[Zander et al., 2005] Zander, S., Kennedy, D., Armitage, G.: “KUTE - A High Performance
Kernel-based UDP Traffic Engine,” Center for Advanced Internet Architectures (CAIA).
Technical Report 050118A, January 2005.

[Zeadally et al., 2004a] Zeadally, S., Zhang, L., Zhu, Z., Lu, J.: "Network Application
Programming Interfaces (APIs) Performance on Commodity Operating Systems," Journal of
Information and Software Technology, Elsevier Science, Vol. 46, No.6, May 2004, pp. 397-
402.

[Zeadally et at., 2004b] Zeadally, S., Wassem, R., Raicu, I.: "Comparison of End-System IPv6
Protocol Stacks," IEE Proceedings – Communications, Vol 151, No. 3, June 2004, pp. 238-242.

3313Salah K., Hamawi M.: Impact of CPU-bound Processes ...

