
Support for Schema Evolution in Data Stream

Management Systems

James F. Terwilliger

(Microsoft Corporation, Redmond, Washington, USA

james.terwilliger@microsoft.com)

Rafael J. Fernández-Moctezuma

(Portland State University, Portland, Oregon, USA

rfernand@cs.pdx.edu)

Lois M. L. Delcambre

(Portland State University, Portland, Oregon, USA

lmd@cs.pdx.edu)

David Maier

(Portland State University, Portland, Oregon, USA

maier@cs.pdx.edu)

Abstract: Unlike Database Management Systems (DBMSs), Data Stream Manage-
ment Systems (DSMSs) do not evaluate queries over static data sets — rather, they
continuously produce result streams to standing queries, and often operate in a context
where any interruption can lead to data loss. Support for schema evolution in such an
environment is currently unaddressed. In this work we address evolution in DSMSs by
introducing a new element to streams, called an accent, that precedes and describes an
evolution. We characterize how a subset of commonly used query operators in DSMS
act on and propagate accents with respect to three evolution primitives: Add Attribute,
Drop Attribute, and Alter Data.

Key Words: data streams, schema evolution

Category: H.2.1, H.2.4, H.2.8

1 Introduction

Similar to traditional Database Management Systems (DBMSs), Data Stream

Management Systems (DSMSs) allow users to declaratively construct and ex-

ecute queries. Unlike a DBMS, which allows a user to issue a query over a

persistent database instance and retrieve a single answer, a DSMS continuously

produces results from a standing query as new data flows through the system.

Data often arrives faster than it can be persisted in a streaming environment,

so any time a standing query ceases operation, data are potentially lost.

Data streams are typically treated as unbounded with a consistent schema,

but assuming that the schema for a stream never changes is unreasonable. With

current DSMS technologies, supporting schema evolution entails bringing down a

Journal of Universal Computer Science, vol. 16, no. 20 (2010), 3073-3101
submitted: 1/7/10, accepted: 13/9/10, appeared: 1/11/10 © J.UCS

standing query and instantiating an evolved version of the query against the new

schema. In the presence of stateful operators, either state must be propagated

from the old query to the evolved query to resume computation, or query answers

derived from old state might be lost, in addition to the data that arrived and was

not processed during downtime. We address the problem of schema evolution in

DSMSs by describing the semantics of a system where queries can automatically

respond to evolution and thus continue query evaluation without interruption.

Traditional challenges in DSMSs such as low-latency result production and ef-

ficient use of resources have been addressed by addingmarkers in the stream that

signal progress, i.e. that signal some notion that all tuples that match a given con-

dition in an unbounded stream have already been seen. Examples include CTIs

in CEDR [Barga et al. 2007], heartbeats in Gigascope [Johnson et al. 2005], and

punctuations in NiagaraST [Li et al. 2008, Tucker et al. 2003]. We see an op-

portunity to use embedded markers in a stream to support data and schema

evolution. In this paper, we introduce markers called accents into a data stream

alongside tuples. Traditional query operators produce a query answer by oper-

ating on the input relation(s), but stream query operators additionally operate

on the aforementioned markers. We continue this trend here by defining stream

query operators that can process data and schema evolution accents.

The goal is to have the operators that can appear in a standing query that

was instantiated before an accent was issued remain active during and after the

processing of the accent. The following challenges arise for each operator: (1)

Determine whether the operator can adapt to the schema changes in an accent,

and (2) define and implement the processing of each accent for the operator,

minimizing blocking and state accumulation while adapting to the evolution. The

definition of the processing for each operator includes the local processing of the

accent; local processing may involve modifying the query operator parameters,

modifying the data stored in local state, preparing to modify future incoming

data arriving from input streams, and emitting accents at the proper time to be

processed by downstream query operators.

We support evolution that affects only a subset of the stream; for instance,

we allow adding new attributes to a stream only for tuples that meet a specified

condition. This capability allows evolution to occur gradually, allowing data

from different sources to evolve at their own pace (e.g., a firmware upgrade

distributed to a collection of sensor sources, which cannot be guaranteed to

complete simultaneously).

This paper is organized as follows: Section 2 defines the evolution problem

in the context of data streams. Section 3 introduces our approach to express-

ing evolution needs. Section 4 defines the formal semantics of evolution for a

meaningful subset of relational operators. In Section 5, we introduce notions of

correctness that allow us to reason about whether accent-aware queries produce

3074 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

proper results. Section 6 introduces a mechanism called operator signatures that

allow us to reason about the properties of operators at a high level. We discuss

related work in Section 7 and outline opportunities for future work in Section

8. This paper is an extended version of a paper that introduced the basic idea

behind accents [Fernández-Moctezuma et al. 2009]; the unique contributions of

this paper beyond that work are the introduction and formalization of operator

correctness, the work on signatures, as well as more complete descriptions of the

considered operators.

2 The Evolution Problem Exposed

Our examples use the schema sensors(ts, s, t), placement(s, l) to de-

scribe a stream of temperature readings from a sensor network and the placement

of those sensors. A monotonically increasing attribute ts represents timestamps,

s uniquely identifies a sensor in the network, l is a sensor location, and t is a

reading in Fahrenheit. Consider the following standing query in extended Rela-

tional Algebra:

γAVERAGE
{l,wid},t (W5 minutes

ts,wid (sensors ��sensors.s=placement.s placement))

This query joins the two data streams sensors and placement on s, then

assigns each resulting tuple a window identifier, wid, (for tumbling windows of

length 5 minutes) based on the value of the ts attribute. Finally, it computes the

average temperature per location and window id. We explore several evolution

scenarios and how they affect this query.

Example 1. A firmware update changes temperature units. Sensors

receive a firmware update and temperature is now reported in Celsius. Note

that sensors may not receive the update simultaneously. Consider the example

in Figure 1(a), where Sensor #2 has implemented the firmware update as of time

ts = 5, but none of the other sensors have (tuples in Celsius are underlined in

the figure). The content of one window includes tuples with both Fahrenheit

and Celsius, and the aggregation in the query produces inconsistent results.

Thus, in addition to propagating the desired change through the operators (and

the output), we also need to account for subsets of the stream having different

semantics. Operators need to know which sensor readings need to be scaled back

to Fahrenheit or scaled forward to Celsius. Figure 1(b) shows the same stream

but with a marker embedded in the stream indicating the point at which the

temperature units change. The marker describes the following information:

– The sensor whose data semantics have changed (s = 2).

– Two functions y → (y − 32) × (5/9) and y → y × (9/5) + 32 indicating

formulae that can be applied to compare tuples that occur after the marker

against those that appear before it. More details appear in Section 3.

3075Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

Note that, inside the stream, the data evolution marker propagates through

several of the operators, right up to the aggregation operator. If at some point,

Sensor #1 also switches to Celsius, that marker could propagate through the

query as well. However, the aggregate operator now knows that all sensors have

switched to Celsius (assuming that it knows the domain of sensors to be {1, 2})
and can emit its own marker to say all results from that point forward will be in

Celsius. The operator would, from that point forward, receive and emit all data

in Celsius.

Example 2. A firmware update extends the schema. Sensors now

produce pressure information in addition to temperature, resulting in a new

schema: sensors(ts,s,t,p). The query shown above can either continue to

produce the same results by projecting out the new attribute, or the query

can be modified to produce averages for pressure, as well as temperature. In

general, as a response to evolution, a query may be (1) unaffected, (2) adapted

to accommodate the evolution, or (3) rendered unable to execute correctly. As

with Example 1, the stream may contain a mix of old and new data.

3 Modeling Streams and Evolution

To support schema flexibility, we redefine streams to have optional attributes in

a similar fashion to Lorel [Abiteboul et al. 1997] or RDF [RDF 2004]. We define

a tuple in a data stream to be a partial function t from the global set of possible

attribute symbols C to a set of attribute values V . Let X be an element in C.
If t(X) is defined, the tuple t has the value t(X) for attribute X ; if t(X) is

undefined, it is semantically equivalent to evaluating to ⊥ (null) for attribute X .

We represent a tuple as a set of attribute-value pairs enclosed by angle brackets.

The tuple with value 1 for A and value 2 for B, and ⊥ for all other attributes is

<A:1, B:2>.

According to the previous definition, a tuple can accommodate any attribute

in C. In practice, a schema R restricts the attributes that any tuple in a stream

with schema R presents. Formally, we say a schema R is a list of attributes

from C, a list that evolves over time based on constructs to be introduced in

this section but has some definitive starting point at the beginning of query

operation.

A stream is a (possibly infinite) list T of tuples. The stream has an intrinsic

order based on the arrival of tuples into the system, and may not necessarily

correlate with order with respect to an attribute such as timestamp. A prefix

(substream) of stream T is a finite set of tuples that appear consecutively in T .

We consider three evolution primitives in data streams:

– Add Attribute +(A): attribute A is added to tuples in an incoming stream

S — specifically, adding an attribute A to the schema of S.

3076 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

Figure 1: Query plan with sample tuples from Example 1. (a) A change in domain

in temperature readings from sensor 2 (tuples in bold) propagates through the

query leading to an erroneous average indicated by an X. (b) Schema evolution

descriptions (see Section 3), indicated by entries with double braces, indicates

the shift in domain allowing operators to handle the evolution and compute the

correct average indicated by a checkmark.

– Drop Attribute −(A): attribute A is removed from an incoming stream (more

accurately, ensures that future tuples are undefined on attribute A).

– Alter Data �(A,α, β): data in attribute A is altered by the invertible, order-

preserving function α whose inverse is β. Order-preserving means that if

x < y, α(x) < α(y). We further assume that the functions are affine, so that

the functions may commute with common aggregates (the sum aggregate

can be derived from average and count aggregates, which interact well with

affine maps). In practice, this property is satisfied by the two most com-

mon functions that we envision — scaling and translating. Clearly, there are

functions that one might consider using in an Alter Data primitive that are

invertible but neither order-preserving nor affine, such as a function that

translates strings into an abbreviated form or vice versa.

We refer to the actions +,−, and � as evolution primitives. To model evolution

3077Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

in a stream, we define an accent as a description coupled with an evolution

primitive. A description is a partial function d from the set of attribute symbols

C to P × V , where P is the set of simple comparators {=, �=, <,≤, >,≥}. For
example, d(A) = (<, 10) is interpreted as the predicate A < 10. We disallow

the evaluation of symbols not present in a given schema, hence, d(⊥) = (<

, 10) is meaningless. For readability, we use the traditional infix notation in our

examples in this paper. The description d itself is the conjunction of all predicates

corresponding to the defined inputs of d. We denote an accent as [[d, e]], where

d is a description and e is an evolution primitive, for example [[X < 10,+(Y)]].

An accented stream S̃ is a stream of tuples and accents, where accents anticipate

and describe evolutions. That is, an accent precedes all data that conforms to

the new schema or data representation indicated by the evolution primitive.

In this paper, we only consider accents whose evolution primitive e refers to a

column on which the description d is not defined. Thus, as an example, the follow-

ing accent is not allowed because of the potential ambiguity and the complexity

of the processing required: [[amount < 100, �(amount, y → y× 1.1, y → y/1.1)]].

Accents represent evolution of schema and data on the subset of tuples in a

stream that satisfy the predicates in the description. In Figure 1(b), the accent

[[s = 2, �(t, y → (y− 32)× (5/9), y → y× (9/5)+ 32]] indicates that temperature

values t from Sensor #2 have been translated from Fahrenheit to Celsius (the α

function). In the example, the join and window operators simply propagate the

accent because the temperature attribute is not involved in the join or windowing

condition. By propagating the accent immediately upon receipt, the join and

windowing operators guarantee anticipatory placement of accents in the stream.

The aggregate operator γ applies the inverse function β to data from Sensor #2

(until such time as all sensors have been updated to report Celsius) to produce

the correct aggregation values. No accent is propagated after γ in the example

as no other accents have arrived from the stream at that point; however, should

accents arrive subsequently altering the temperature on all other sensors (i.e.,

enough accent descriptions to cover the domain of attribute s), the window

operator could then issue an accent to its output and start emitting tuples in

Celsius.

An accent a = [[d, e]] establishes, for tuples that satisfy description d, a

relationship between tuples that occur before a versus after it in the stream:

– If e is an Add Attribute primitive +(X), then any tuple t that follows accent

a in the stream and satisfy d may be defined for t(X), while tuples before

a are undefined for t(X) (up to any point where primitive −(X) appears

earlier than a in the stream, if present).

– If e is a Drop Attribute primitive −(X), then t(X) must be undefined for

any tuple t that follows accent a in the stream that satisfies d (up until a

corresponding Add Attribute primitive occurs, if any).

3078 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

– If e is an Alter Data primitive �(X,α, β), then tuples that follow accent a

in the stream and satisfy d have their values for attribute X translated by

α. Let t and t′ be tuples in the stream that match description d. Recall

that order of arrival induces an ordering on tuples. Assume t < a < t′.
Then, t ≡ t′ if ∀B∈C,B �=X(t(B) = t′(B)) ∧ (t(X) = β(t′(X)) (or equivalently

α(t(X)) = t′(X))).

An accented stream is valid if its placement of Add or Drop Attribute accents

respect the properties specified above. For instance, one cannot place two accents

that add the same attribute for the same description in a stream unless one finds

a corresponding Drop Attribute accent between them. The primitive � describes
how to reason about equality over tuple values, e.g.., it induces an equivalence

relation over tuples relative to their location. For instance, consider the finite

substream in Figure 1 (b). Any service operating on the stream, whether it

be a query operator or an application reading a query output, may treat the

temperature value at ts = 0 and the temperature value at ts = 5 for s = 2 as

equal, since (77− 32)× (5/9) = 25 (converting 77 Fahrenheit to 25 Celsius).

4 Modeling Stream Operator Behavior

Most DSMSs support a variety of query operators that accept streams as input

and produce streams as output. For instance, for any finite substream of tuples

T as input to the operator σC<V (where C ∈ C, the set of possible attributes),

the operator produces as output the finite substream {t ∈ T |t(C) < V }. In this

section, we describe the semantics of stream operators when they work on ac-

cented streams; in particular, we describe how and when accents are output. We

also detail the circumstances under which operators fail to support a particular

accent, i.e., when a query operator fails to support an evolution.

Our description of how operators process accents includes a discussion of the

state associated with the management of accents. We provide some ideas of how

state can be managed in this section. Note that efficient management of state in

DSMSs (for example, in stateful operators) is enabled by markers in the stream

[Barga et al. 2007, Johnson et al. 2005, Li et al. 2008, Tucker et al. 2003]. Our

work on using those markers to assist in accent state management is still a work

in progress and is discussed briefly in Section 8.

We use the notation S̃ to denote accented streams and S̃O to denote an

operator’s accented output stream. Here, we define how six well-known stream

operators react the presence of accents, including how they propagate accents.

We use a notional algebra consisting of the following operators: Select, Project,

Union, Join, Window, and Aggregate. Our notional algebra exemplifies the most

common relational operators found in stream systems, namely, stateless rela-

tional operations (such as filtering), stateful relational operations (such as join),

3079Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

and blocking operations (such as average). While stream algebras are richer than

the subset presented (for example, speculative systems use a cleanse operator

[Barga et al. 2007]), the presented subset illustrates the use of our framework.

The specific operator implementations are not the only correct ones. We have

chosen these to minimize stateful behavior and simplify discussion. In our nota-

tion, the arrow symbol ”→” represents logical implication.

Select (σCθV S̃) Select operator on a single predicate CθV with attribute C,

comparator θ, and value V on stream S̃. The attribute named in the selection

condition C is necessary to the Select operator’s functioning. This restriction

means that C must be present in the schema at the time the query was issued.

Responses to various accents are as follows:

* [[d,+(X)]]: If X �= C, propagate [[d,+(X)]] to S̃O. If X = C, the accent

is not propagated since the attribute X must already exist. Practically

speaking, as the attribute must already exist for the operator to function,

so we do not expect such an accent to arrive.

* [[d,−(X)]]: Regardless of description d, if X = C, Select fails to sup-

port the evolution, and the query aborts execution. If X �= C, output

[[d,−(X)]] to S̃O.

* [[d, �(X,α, β)]]: If X = C, adjust the selection predicate to be Cθ(α(V))

for tuples described by d (leaving it as CθV for all others), and propagate

the accent [[d, �(X,α, β)]] to S̃O. If X �= C, no adjustment is necessary

and [[d, �(X,α, β)]] is propagated to S̃O.

Project (ΠCS̃) Project tuples on the attribute set C. The project operator

may seem trivial at a glance, but in fact is sensitive to accents with a descrip-

tion that refers to attributes projected out, which we define as R = C −C;

C is the set of all possible attribute symbols. We define the operation of

project assuming no mechanism exists to map descriptions referring to R to

descriptions referring to C — we relax this definition in Section 6:

* [[d,+(X)]]: If d refers only to attributes in C and X ∈ C, output

[[d,+(X)]] to S̃O. If d refers to attributes in R, abort. Otherwise, no

accent is output to S̃O. Notice that this assumes that the project at-

tribute list C may include attributes that may not exist in the original

schema of the stream, allowing one to specify a project operator in a

query that may anticipate the arrival of additional attributes.

* [[d,−(X)]]: If d refers only to attributes in C and X ∈ C, output

[[d,−(X)]] to S̃O. If d refers to attributes in R, abort. Otherwise, no

accent is output to S̃O.

3080 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

* [[d, �(X,α, β)]]: If d refers only to attributes in C and X ∈ C, output

[[d, �(X,α, β)]] to S̃O. If d refers only to attributes in C and X /∈ C, no

accent is output. If d refers to attributes in R, then abort.

Union (S̃ ∪ T̃) Union of input streams S̃ and T̃ . Because tuples are defined as

partial functions, there is no need for there to be union compatibility between

S and T . To coordinate the processing of accents across input streams, we

assume maintenance of input-related state to keep track of the descriptions

we have seen on each input. By state we mean maintaining a list of received

accents.

* [[d,+(X)]]: W.l.o.g., assume the accent is seen on input S̃. If an accent

adding attribute X is not in input T̃ ’s state, add [[d,+(X)]] to the state

of input S̃ and propagate [[d,+(X)]] to S̃O.

If an accent [[f,+(X)]] is in input T̃ ’s state:

• Replace [[f,+(X)]] with [[f ∧ ¬d,+(X)]] in input T̃ ’s state — or

remove [[f,+(X)]] from T̃ ’s state if f → d.

• If d �→ f , add [[¬f∧d,+(X)]] to S̃’s state and output [[¬f∧d,+(X)]]

to output stream S̃O. The effect is to propagate a new accent to the

output that covers tuples that were not described by a previously

propagated accent.

For instance, consider a case where accent [[a = “FOO′′,+(X)]] is in

input T̃ ’s state when accent [[b < 5,+(X)]] arrives on S̃. We perform

three actions: First, replace the accent in T̃ with [[a = “FOO′′ ∧ b ≥
5,+(X)]], representing the predicate of tuples to watch for on input S̃

with attribute X not yet added. Second, add accent [[a �= “FOO′′ ∧ b <

5,+(X)]] to the input state of S̃, representing the set of tuples from T̃

that have not yet added X . Finally, propagate accent [[a �= “FOO′′ ∧
b < 5,+(X)]], indicating the set of tuples that now have attribute X

added to the output but were not yet added by the previous accent

[[a = “FOO′′,+(X)]].

As a simpler case, consider accent [[a = “FOO′′,+(X)]] in state for T̃

when accent [[a = “FOO′′,+(X)]] arrives on S̃. All new incoming and

outgoing tuples with a = “FOO′′ have added attribute X , so the accent

is removed from state and no additional accent propagates.

* [[d,−(X)]]: Union maintains state, but does not propagate a drop at-

tribute accent until it has been seen on both inputs. W.l.o.g., assume

the accent is seen on input S̃. If an accent dropping attribute X is not

in input T̃ ’s state, add [[d,−(X)]] to state of input S̃, but propagate

nothing.

3081Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

If an accent [[f,−(X)]] is in input T̃ ’s state:

• Replace [[f,−(X)]] with [[f ∧ ¬d,−(X)]] in input T̃ ’s state — or

remove it if f → d.

• If d �→ f , add [[¬f ∧ d,−(X)]] to input S̃’s state.

• Output [[f ∧d,−(X)]] to S̃O (describing the set of tuples covered by

both descriptions).

* [[d, �(X,α, β)]]: Union also does not propagate an accent with an Alter

Data primitive until there is coordination. W.l.o.g., assume the accent

is seen on input S̃. If no accent describing an Alter Data on X by α

is in input T̃ ’s state, any subsequent tuple t seen in input S̃ will have

its X value replaced with β(t(X)) in S̃O. The requirement to do that

processing is represented by placing the accent [[d, �(X,α, β)]] in input

S̃’s state.

If an accent [[f, �(X,α, β)]] is in input T̃ ’s state:

• Replace [[f, �(X,α, β)]] with [[f ∧¬d, �(X,α, β)]] in input T̃ ’s state —

or remove it if f → d. The effect of removing or contracting accent

[[f, �(X,α, β)]] from the state of input T̃ is that all subsequent tuples

from t will not be altered (unless they match the new description).

Hence, such tuples will propagate unaltered to output.

This scenario is illustrated in depth in Figure 2.

• If d �→ f , add [[¬f ∧ d, �(X,α, β)]] to input S̃’s state to indicate all

subsequent tuples from S̃ that match ¬f ∧ d should be altered.

• Output [[f ∧ d, �(X,α, β)]] to S̃O.

Note: this description of the Union operator is incomplete; to be complete,

incoming accents may need to have their descriptions altered based on any

Alter Data accents in the operator’s state.

Join (S̃ �J (CS̃,CT̃) T̃) Join input streams S̃ and T̃ using equi-join conditions

J , which reference attributes CS̃ and CT̃ from streams S̃ and T̃ respectively.

Join’s behavior on accents that reference the join attributes are operationally

the same as Union, i.e., there needs to be synchronization before propagation,

and that synchronization is irrespective of the specific join condition J .

Similar to Select, dropping attributes named in the join condition causes

Join to fail.

* [[d,+(X)]]: W.l.o.g., assume the accent is seen on input S̃. If an accent

adding attribute X is not in input T̃ ’s state, add [[d,+(X)]] to state of

input S̃ and output [[d,+(X)]] to S̃O. If an accent adding attribute X

3082 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

Figure 2: An example of the Union operator responding to accents on both

inputs.

is in input T̃ ’s state ([[f,+(X)]]), abort execution (fail), since duplicate

attributes (even from distinct streams) are not allowed, and we assume

schema disjointness.

* [[d,−(X)]]: If X ∈ (CS̃ ∪ CT̃), fail; otherwise, propagate the accent.

* [[d, �(X,α, β)]]: W.l.o.g., assume the accent is seen on input S̃ and no

accent describing an Alter Data on X by α is in input T̃ ’s state. Any

subsequent tuple t seen in input S̃ must have its X component replaced

by β(t(X)) before the join occurs. We indicate that action by adding

[[d, �(X,α, β)]] to input S̃’s state. If an accent [[f, �(X,α, β)]] is in input

T̃ ’s state:

• Replace [[f, �(X,α, β)]] with [[f ∧ ¬d, �(X,α, β)]] in input T̃ ’s state

— or remove it if f → d — with the effect that the operator will no

longer alter t for tuples matching description f .

• If d �→ f , add [[¬f ∧ d, �(X,α, β)]] to input S̃’s state to indicate that

subsequent matching tuples on S̃ will be altered by β.

• Output [[f ∧ d, �(X,α, β)]] to S̃O.

Note that, because the join condition J is an equi-join, we need not alter

condition J on arrival of � primitives. Such primitives only propagate

when they arrive on both inputs, and thus the attributes must still be

equal between the two inputs.

3083Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

We expect that in practice the set of attributes on which descriptions are

defined and the set of attributes on which evolution primitives are defined

do not generally overlap. The definition of Join specified here would be com-

plicated by considering cases where those two sets of attributes overlap.

Window (Ww
C,widS̃) Consider a windowing operator for input stream S̃, argu-

ment attributes C, output attribute wid, and windowing function w : C →
wid. The Window operator applies a function w to t[C] for tuples t ∈ S̃ to

produce a Window ID, most often used for grouping by subsequent aggregate

operators. Attributes in C are essential to Window’s operation.

* [[d,+(X)]]: By our validity conditions,X �∈ C (as with Select, in practice

this check is not necessary as the attribute already exists). Thus, Window

propagates [[d,+(X)]] to S̃O.

* [[d,−(X)]]: Regardless of description d, if X ∈ C, Window fails to sup-

port the evolution, and the query aborts execution. If X /∈ C, Window

propagates [[d,−(X)]] to S̃O.

* [[d, �(X,α, β)]]: If X ∈ C, adjust the windowing function to operate on

β(X) for tuples described by d, and the accent is not emitted in S̃O. If

X /∈ C, make no adjustment and output [[d, �(X,α, β)]] to S̃O.

* In all cases, if the description d in accent [[d, e]] refers to attributes in C,

use the windowing function w to reconstruct a new description d′ that
refers instead to the new windowing attribute wid. Clearly, the origi-

nal accent should not propagate unaltered because its description refers

to attributes that will likely be dropped by a later operation. Accents

should thus “move” to the new windowing attribute, which is difficult

because the windowing attribute is likely at a lower granularity than the

other attributes. Thus, accents are “moved” slightly to accommodate the

window boundaries.

For instance, if an accent with description t > 10∧region = A arrives at a

windowing operator that windows on attribute t, replace the description

with wid > z ∧ region = A, where z = w(10) + 1 (i.e., the next window

after the window that time value 10 is in). Also, if e = �(X,α, β), add

[[t > 10∧ t ≤ b∧ region = A, �(X,α, β)]] to the input state of S̃ where b

is the value of t that marks the boundary between the window z and the

previous one. All tuples that match the accent in the state have function

β applied as necessary so that the Alter Data accent effectively begins

along a window boundary.

Aggregate (γf
G,ES) Aggregation operator with aggregate function f , grouping

attributes G, and exclusion attributes E on input S. This operator performs

3084 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

a grouping operation, similar to the GROUP BY clause in SQL. The operator

partitions the input tuples of stream S according to their values for attributes

G, and produces the result of the aggregation function for each partition.

Unlike the traditional GROUP BY clause (and also unlike the standard

stream query aggregate operator as used in Figure 1), rather than specify

the attributes to aggregate (such as the t attribute in the example in Section

2) we specify the attributes that should not be aggregated (such as the

ts and s attributes in the same example). In other words, the operator

ignores attributes E (i.e., the excluded attributes) and aggregates on all other

non-grouping attributes. This method of specification allows data found in

newly added attributes to be aggregated (such as the pressure attribute in

Example 2 in Section 2):

* [[d,+(X)]]: If X ∈ E, do nothing. If X /∈ E, propagate [[d,+(X)]] to S̃O,

adjust internal aggregation to apply the aggregate f to the X attribute

of all tuples described by d.

* [[d,−(X)]]: If X ∈ E, do nothing. If X ∈ G, abort the query because

Aggregate fails to support the evolution. If X /∈ G, propagate [[d,−(X)]]

to S̃O, and purge any partial aggregates that may appear in state for

attribute X that match description d, since that data has effectively been

dropped.

* [[d, �(X,α, β)]]: If X ∈ E, do nothing. If d refers to any attributes but

those in G, then abort. Otherwise, propagate the accent to output. Since

partial aggregates are being computed, apply α(X) to computations in

memory. In other words, tuples that match description d may appear

both before and after the accent arrives and has been propagated. Since

the accent propagates immediately, any tuples that arrived before the ac-

cent will now contribute to output that appears after the accent. Thus,

applying αX to all partial computations assures that all data for a par-

ticular aggregation is subject to the post-accent semantics, regardless

of the arrival order of tuples and accents. So, for instance, if tuples ar-

rive expressed in Fahrenheit and, mid-computation, an accent arrives

changing to Celsius, the operator converts partially aggregated results

to Celsius regardless of the units used for each input tuple.

5 Correctness of Accent Propagation and Processing

In Section 4, we described the operational handling of accents by operators

in an algebra and the affect this handling has in accent-related state. In this

section, we present some notions of correctness. We introduce two such notions

3085Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

— propagation correctness and point-in-time correctness — and spend most of

the section describing the latter.

Propagation correctness is a sentiment that when an accent enters a query,

the operators in that query make a best effort to propagate the accent to query

output (short of operator abort or impossibility due to attributes missing in op-

erator output). In addition, query output is valid with respect to the Add and

Drop Attribute properties introduced in Section 3. There, we introduced accents

as a means to convey schema evolution signals in a stream. With propagation

correctness, we also imbue accents with an intent to propagate. Alternative cor-

rectness models are possible; for instance, consider a system that, rather than

propagating an Alter Data accent, captures them in an operator’s state and ef-

fectively undoes all of its effects. Returning to the example of Figure 1, operators

could absorb Alter Data accents and then transform all subsequent incoming tu-

ples accordingly. Thus, though data may arrive at the first operator as a mixture

of Fahrenheit and Celsius, all data would emerge in Fahrenheit — the original se-

mantics for the stream. The data that emerges from the operator is still correct,

but even if all sensors switch to Celsius data, the query would still produce data

in Fahrenheit. Propagation correctness ensures that the semantics of a query’s

output evolve as its input evolves, which gives application clients the choice as

to how to deal with evolving data.

The operators as defined in Section 4 are correct by construction with respect

to propagation. Each operator propagates all accents except when the accent

causes an operator to cease functioning or if the accent description or primitive

refers to attributes that do not and cannot exist in the operator output. Queries

are thus correct in this respect by induction over individual operators.

Point-in-time correctness captures the notion that operators produce correct

results with respect to data. We draw inspiration for point-in-time correctness

from the CEDR stream system [Barga et al. 2007]. In CEDR, operators can work

on data that may be retracted in the future; the correctness of how an operator

acts on such data is guaranteed by comparing the output of the operator against

what the operator would have output if the input was already in its final state.

The definition of a CEDR operator on retraction-free data is then used as a

baseline semantics against which the semantics of the operators in the presence

of retractions are compared.

We adopt a similar approach with accents; we can prove an operator’s be-

havior on a snapshot of accented input to be correct by comparing it against

the operator’s behavior on the same snapshot that has been restructured so that

it is essentially unaccented, where all tuple data occurs together. We call this

restructured stream a canonical accented stream prefix.

Let s = (s1, s2, . . . , sn) represent a finite substream in an accented stream S̃.

A replacement for that substream is another finite substream t = (t1, t2, . . . , tn)

3086 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

such that replacing s with t in-place in S̃ does not affect the information content

of the stream. By “information content”, we mean that + and − primitives still

have valid placement, e.g. one cannot add an attribute that already exists. Also,

tuples must still respect the equivalence relations that are induced by � primitives,

that tuples on either side of an Alter Data primitive may be compared via the

primitives α function. For instance, ([[d, e]], t) is a replacement for (t, [[d, e]]) for

any tuple t that does not match description d. Two finite substreams of accented

streams S̃ and S̃′ are content equivalent S̃ ≡ S̃′ if one can transform S̃ into S̃′

using replacements.

A finite substream of an accented stream is canonical when all accents with

a + primitive appear at the beginning of the substream, followed by all tuples,

followed by all accents with a � primitive, and ending with all accents with a −
primitive. To canonize a substream S̃ is to find a canonical substream (denoted as

Ŝ) that is content equivalent to the original substream. A canonical substream

thus represents a point in time for query output that looks very much like a

relation, where the query output is aware of all attributes that exist or have

ever existed up to that point and all data has the semantics as it existed at the

time of query specification. That the � primitives are moved to the end of the

substream rather than the beginning is a convenience that makes proofs more

straightforward.

We use canonization as part of our formal descriptions; operators do not can-

onize results as part of their operation, nor do they require canonized input. As

mentioned before, we use point-in-time correctness in this paper on a snapshot

of accented input, which is not the same as simply taking the current state of

a query’s output. This distinction is not necessary for many operators, but is

important for operators that maintain state. For instance, the aggregation oper-

ator technically will not produce results for an aggregation until it has received

a clear signal — a punctuation in Niagra or a CTI in CEDR — that the tuples

in a given aggregation window have all been accounted for. In other words, an

aggregate operator that takes the average of all temperatures from sensor 1 be-

tween 3:00 and 4:00 cannot produce a result until it has some guarantee that all

such tuples have arrived. The mere presence of a tuple that arrives from 4:05 is

insufficient, as the tuples may arrive out of order. A full point-in-time correctness

proof for a stateful operator must thus take punctuation into consideration.

For an operator implementation to be point-in-time correct on a snapshot of

accented input, it must respect the commutativity diagram in Figure 3 on any

input where the query does not abort. The diagram states that for a given set of

accented input substreams, the operator produces accented output substreams

whose canonical versions are equivalent to the output the operator produces

on canonical input. Accents in output streams must respect accent properties,

e.g., that following a drop attribute accent in a stream, all tuples matching

3087Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

Figure 3: Commutativity diagram for an operator Op. Top: Accented streams are

processed Op on inputs S̃i to output accented streams T̃i. Bottom: Canonical

version of the input substreams Si result in canonical output substreams Ti.

Accented substreams can be canonized on both ends to show equivalence.

the accent’s description are undefined for the dropped attribute. Our notion of

correctness implies that there is no information loss due to accent-aware stream

processing.

5.1 Replacement Equivalences

This section details a list of replacement equivalences that can be applied to

an accented stream to create another, content-equivalent accented stream by

commuting stream elements. Each individual replacement can be proven correct

trivially based on the properties of valid streams, which is to say that accents

in the stream are faithful to the tuples they represent. For instance, if one finds

accent [[d,+(X)]] in the stream, the stream would not be valid if the accent were

immediately preceded by a tuple that satisfies d and is defined on X , for in that

case the accent does not correctly model the content of the stream.

There are several replacement rules that describe how to commute items in

an accented stream:

Commute accent with tuple not matching the accent’s description:

([[d, e]], t) ≡ (t, [[d, e]]) for any tuple t that does not match description d.

Commute accents with non-overlapping descriptions:

([[d, e]], [[d′, e′]]) ≡ ([[d′, e′]], [[d, e]]) if d ∧ d′ = false.

Commute accents with non-overlapping primitive attributes:

([[d, e]], [[d′, e′]]) ≡ ([[d′, e′]], [[d, e]]) if e and e′ do not refer to the same

attribute and neither e nor e′ are Alter Data primitives.

Commute Add Attribute with tuple not defined on attribute:

([[d,+(X)]], t) ≡ (t, [[d,+(X)]]) for any tuple t that matches description d

and for which t(X) is undefined.

3088 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

Commute Drop Attribute with tuple not defined on attribute:

([[d,−(X)]], t) ≡ (t, [[d,−(X)]]) for any tuple t that matches description d

and for which t(X) is undefined.

Commute Alter Data with tuple, data adjusted:

([[d, �(X,α, β)]], t) ≡ (t′, [[d, �(X,α, β)]]) for any tuple t that matches

description d and (∀B∈C,B �=X(t(B) = t′(B))) ∧ (β(t(X)) = t′(X)).

Commute Alter Data with accent:

([[d, �(X,α, β)]], [[d′, e]]) ≡ ([[d′′, e]], [[d, �(X,α, β)]]) if d′ → d, d′ is defined
on X , and d′′ = d except that if d(X) = (θ, c), d′′(X) = (θ, β(c)). (Note

that if d′ → d, then d′′ → d as well, so this equivalence can be applied in

either direction).

We note that each of these commutations is content preserving by definition.

For instance, the Commute Drop Attribute with tuple rule holds because moving

a tuple past a Drop Attribute accent does not affect the applicability of the

accent — it is still the case that all matching tuples following the accent hold

the appropriate property in that they lack the dropped attribute. We also define

replacement rules not pertaining to commutativity:

Divide/combine descriptions: ([[d, e]]) ≡ ([[d1, e]], . . . , [[dn, e]]) if

d =
∨

i∈{1...n} di, and, for any i �= j, di ∧ dj = false). This rule describes

how to break an accent into “smaller” accents. In particular,

([[d, e]] ≡ ([[d ∧ (cθv), e]], [[d ∧ (cθ′v), e]]) for an attribute c, value v, and

comparators θ and θ′ that are complements of one another (e.g., < and ≥).

Annihilation of opposing additions and deletions:

([[d,−(X)]], [[d,+(X)]]) ≡ ([[d,+(X)]], [[d,−(X)]]) ≡ ().

Annihilation of Alter Data accents with inverted functions:

([[d, �(X,α, β)]], [[d, �(X, β, α)]]) ≡ ().

Composition of Alter Data accents:

([[d, �(X,α, β)]], [[d, �(X, γ, δ)]]) ≡ ([[d, �(X, γ ◦ α, β ◦ δ)]]).

5.2 Canonization

The intuition behind content equivalence and canonization is similar to the con-

cepts of conflict equivalence and conflict serializability in transaction manage-

ment. In transaction management, given a sequence of database actions from

several transactions, one can construct a conflict-equivalent schedule by com-

muting two actions that do not cause a write conflict. The goal of such com-

muting is to attempt to construct a conflict-equivalent schedule that is grouped

3089Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

by transaction. Constructing a canonized stream is similar in principle in that

it uses replacements to group together stream elements by their type.

Unlike conflict serializability, any accented stream can be canonized. To prove

this property, we can take any two adjacent accents in a valid accented stream

that are not in canonical order — for instance, a tuple occurring before an

Add Attribute accent — and use replacements to construct a content equivalent

stream with the accents in question replaced with items in canonized order. A

full proof means showing that any arbitrary pair of out of order items — whose

cases we now enumerate — can be replaced to be in canonical order.

Proposition: Any accented stream can be canonized.

Case 1: Tuple before Add Column: Let (t, [[d,+(X)]]) be adjacent items in

a valid stream. We know that tuple t is not defined on attribute X if it satis-

fies description d, or the stream would not be valid (the tuple would have an

attribute not yet available to it). Therefore, (t, [[d,+(X)]]) ≡ ([[d,+(X)]], t)

by the “Commute accent with tuple not matching the accent’s description”

replacement if t does not satisfy d, and by the “Commute Add Attribute

with tuple not defined on attribute” replacement otherwise.

Case 2: Tuple after Alter Data: Let ([[d, �(X,α, β)]], t) be adjacent items in

a valid stream. If t does not satisfy description d or is not defined on at-

tribute X , then ([[d, �(X,α, β)]], t) ≡ (t, [[d, �(X,α, β)]]) by the same replace-

ment rules as Case 1. If t satisfies description d and is defined on X , then

([[d, �(X,α, β)]], t) ≡ (t′, [[d, �(X,α, β)]]) by the “Commute Alter Data with

tuple, adjusted for function” replacement, where t′ is the tuple that results

from replacing t(X) with β(t(X)) in accordance with the replacement rule

definition.

Case 3: Tuple after Drop Column: Let ([[d,−(X)]], t) be adjacent items in

a valid stream. We know that tuple t is not defined on attribute X if it

satisfies description d, or the stream would not be valid (the tuple would

have an attribute not available to it anymore). Therefore, ([[d,−(X)]], t]]) ≡
(t, [[d,−(X)]]) by the “Commute accent with tuple not matching the accent’s

description” replacement if t does not satisfy d, and by the “Commute Drop

Attribute with tuple not defined on attribute” replacement otherwise.

Case 4: Drop Attribute before Add Attribute: Let ([[d,−(X)]],

[[d′,+(Y)]]) be adjacent accents in a valid stream. If X = Y , then neither d

nor d′ is defined on X . So,

([[d,−(X)]], [[d′,+(X)]])

≡ ([[d ∧ ¬d′,−(X)]], [[d ∧ d′,−(X)]], [[d ∧ d′,+(X)]], [[d′ ∧ ¬d,+(X)]]) (by

divide description rule)

≡ ([[d ∧ ¬d′,−(X)]], [[d′ ∧ ¬d,+(X)]]) (by annihilation rule)

3090 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

≡ ([[d′ ∧ ¬d,+(X)]], [[d ∧ ¬d′,−(X)]]) (because descriptions no longer over-

lap).

If X �= Y , we know that d′ cannot be defined on X and have any overlap

with d — otherwise, the stream would be invalid because the description

d′ refers to an attribute that does not exist. Similarly, d cannot be defined

on Y and have any overlap with d′. Therefore, ([[d,−(X)]], [[d′,+(Y)]]) ≡
([[d′,+(Y)]], [[d,−(X)]]) by the commute accents with non-overlapping de-

scriptions rule. �

Case 5: Drop Attribute before Alter Data: Let ([[d,−(X)]],

[[d′, �(Y, α, β)]]) be adjacent accents in a valid stream. If X = Y , then d′ →
¬d, since otherwise we would be altering a column that does not exist. Thus,

the two accents commute by a single replacement rule.

If X �= Y , either d′ → ¬d or d′ is not defined on X , or the second accent

description is invalid.

If d′ → ¬d, then either d is defined on attribute Y or not.

If so, ([[d,−(X)]], [[d′, �(Y, α, β)]]) ≡ ([[d′, �(Y, α, β)]], [[d′′,−(X)]]) where d′′

is the description d whose Y component is altered by function α according

to the commute Alter Data with accent rule.

If not defined on Y , the commute holds without description transformation.

If d′ is not defined on X , translate ([[d,−(X)]], [[d′, �(Y, α, β)]])
≡ ([[d ∧ d′,−(X)]], [[d ∧ ¬d′,−(X)]], [[d′, �(Y, α, β)]]) (by the divide descrip-

tions rule)

≡ ([[d∧d′,−(X)]], [[d′, �(Y, α, β)]], [[d∧¬d′,−(X)]]) (by the commute accents

with non-overlapping descriptions rule)

≡ ([[d′, �(Y, α, β)]], [[d′′∧d′,−(X)]], [[d∧¬d′,−(X)]]) (commute accent through

Alter Data, altering description). �

Case 6: Alter Data before Add Column: Let ([[d, �(X,α, β)]], [[d′,+(Y)]])

be adjacent accents in a valid stream. This case follows the same logic as

Case 5. If X = Y , then d′ → ¬d, since otherwise we would be altering

a column that does not exist. Thus, the two accents commute by a single

replacement rule.

If X �= Y , either d′ → ¬d or d is not defined on Y , or the first accent

description is invalid.

If d′ → ¬d, then either d′ is defined on attribute X or not.

If so, ([[d, �(X,α, β)]], [[d′,+(Y)]]) ≡ ([[d′′,+(Y)]], [[d′, �(X,α, β)]]) where d′′

is the description d′ whose X component is altered by function β according

to the commute Alter Data with accent rule.

If not defined on X , the commute holds without description transformation.

3091Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

If d is not defined on Y , translate ([[d, �(X,α, β)]], [[d′,+(Y)]])

≡ ([[d, �(X,α, β)]], [[d∧¬d′,+(Y)]], [[d∧d′,+(Y)]]) (by the divide descriptions

rule)

≡ ([[d, �(X,α, β)]], [[d∧¬d′,+(Y)]], [[d∧d′,+(Y)]]) (by the commute accents

with non-overlapping descriptions rule)

≡ ([[d∧¬d′′,+(Y)]], [[d, �(X,α, β)]], [[d∧d′,+(Y)]]) (commute accent through

Alter Data, altering description). �

5.3 Example: Select

With canonization, we can reason about correctness in two ways. First, we can

reason about the correctness of data processing — an operator produces correct

data if, for a given canonical input, the correct tuples are in the canonical output.

Second, we can reason about accent propagation — an operator propagates

accents correctly if, for a given canonical input, the correct accents are in the

canonical output. Here, we provide a definition of a stream operator — Select

— on canonical input, and explain why its operational semantics as presented

in Section 4 are correct.

Select (σCθV Ŝ): Let Ŝ be the canonized finite substream at a given point

in time for the input of the Select operator. Let Ŝ = P + T + A + D, where

P , T ,A,D are the Add Attribute, tuple, Alter Data, and Drop Attribute items,

respectively, in the canonical stream, and + is substream concatenation in order.

Then:

σCθV Ŝ = if ∃ixi = [[d,−(C)]] then abort

else P + σCθV (T) +A+D
In short, the definition of Select fails whenever the C attribute is dropped (as

expected), and for all other input streams, produces output where all accents

are propagated and the tuple data payload is filtered based on the predicate

CθV as with the normal operator. This last point is crucial — for the unac-

cented tuple set, the operator only carries out its relational operation, just as

its stream-relational, unaccented counterpart would. Clearly, the operational de-

scription of Select from Section 4 will produce the result described above when

provided canonical input. The difference between the operational description and

the canonical definition lies in processing of Alter Data accents and adjusting the

selection predicate for different descriptions, and since all tuples arrive before

Alter Data accents on canonical input, the original predicate is the one applied

to all incoming tuples.

The only remaining question is whether the operational definition of Select

produces correct output. Since canonization occurs as a sequence of replacement

steps, first consider the “Commute Alter Data with tuple, adjusted for function”

replacement by itself. If [[d, �(X,α, β)]], t are two adjacent entries in the stream,

let t′, [[d, �(X,α, β)]] be the result of applying the replacement rule (replacing

3092 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

t(X) with β(t(X))). Furthermore, let p = XθV be the selection predicate for

tuples with description d before the Alter Data accent, and p′ = Xθ(α(V)) be

the predicate after the accent due to the operational semantics of Select. Note

that t → p′ ⇔ t′ → p. The tuple t survives the modified filter exactly when tuple

t′ survives the original filter.

Therefore, the Select operator satisfies the commutativity diagram of Figure

3 when considering the single replacement. Since this replacement is the only

one that has any effect on the Select operator’s operation, Select satisfies the

commutativity diagram for full canonization by induction on replacements.

6 Declarative Operator Handling of Accents

The similarities and overlap in the various operators in Section 4 is conspicuous.

Consider, for example, how similar the definitions of Union and Join are for

operating on � primitives in Section 4. There are patterns that we can abstract

from the operator definitions about operator behavior based on the columns on

which the description and the primitive in an accent are defined. This observation

suggests that operator functionality can be generalized beyond specific operator

internals. We claim that the accent handling and propagation characteristics of

an operator can be associated with input attributes, i.e., given an operator O,

one can encapsulate its behavior relative to accents via a declarative expression.

In many situations, accents propagate through a stream query operator with-

out alteration. An operator may have three non-trivial behaviors in response to

an accent: adjusting the description in an accent and forwarding it, coordinating

accents from multiple inputs, or aborting because an accent is unsupportable.

We call the set of all input attributes for a given query that share a particular

response profile to accents an attribute profile. We now present the details of

three attribute profiles. Each profile characterizes an operator’s behavior in re-

sponse to an accent referring to specific attributes in a stream, and also specifies

a propagation contract that must be fulfilled based on canonical streams: Given

an accent in an operator’s canonical input, an attribute profile describes which

accents, if any, must be present in the operator’s canonical output.

6.1 Attribute Profiles

Foundation attributes (F): A Foundation attribute is an attribute that is

necessary for a query operator. Foundation attributes must be present in the

initial schema of the operator’s input streams, and thus can never be added

(because they are already present) or dropped (because doing so would eliminate

data that is essential for the standing queries). We can describe the action of

any operator O on accents whose evolution primitive references a foundation

attribute as follows. If S̃ is the input stream to operator O:

3093Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

– If the operator O receives an accent [[d,−(X)]], regardless of description d,

if X ∈ F , the operator (and the query) abort execution.

– If the operator O receives an accent [[d,+(X)]], propagate (one need not

check X ∈ F since the attribute X must already exist).

Merge attributes (M):Merge attributesM for a query are input attributes

to n-ary operators that are used by the operator to perform a comparison or com-

putation. A Merge attribute requires the coordination of accents from multiple

input streams to produce output. To simplify discussion, we assume that the

operator with Merge attributes has two input streams S̃1 and S̃2. In terms of

operator behavior, we can abstract away the behavior seen in previous operators

— namely, Union and Join — that must coordinate data from multiple inputs.

For an operator with merge attributes M , we may describe its handling of

accents as follows:

– [[d,+(X)]]: W.l.o.g., assume the accent is seen on input S̃1. If an accent

adding attribute X ∈ M is not in input S̃2’s state, add [[d,+(X)]] to state

of input S̃1 and output [[d,+(X)]] to S̃O. If an accent [[f,+(X)]] is in input

S̃2’s state, retrieve its description f , and:

• Replace [[f,+(X)]] with [[f ∧¬d,+(X)]] in input S̃2’s state — or remove

it from state if f → d

• If d �→ f , add [[¬f ∧ d,+(X)]] to S̃1’s state and output [[¬f ∧ d,+(X)]]

to output stream S̃O.

– [[d,−(X)]]: Similarly to accents with the primitive +(X), X ∈ M , Union

maintains state, but does not propagate a drop attribute accent until it has

been seen on both inputs.

– [[d, �(X,α, β)]]: W.l.o.g., assume the accent is seen on input S̃1 and no ac-

cent describing an Alter Data on X ∈ M by α is in input S̃2’s state. Any

subsequent tuple t seen in input S̃1 will have its X value replaced with

β(t(X)) in S̃O, and [[d, �(X,α, β)]] is added to input S̃1’s state. If an accent

[[f, �(X,α, β)]] is in input S̃2’s state, retrieve its description f , and:

• Replace [[f, �(X,α, β)]] with [[f ∧¬d, �(X,α, β)]] in input S̃2’s state — or

remove it if f → d — and stop altering t for tuples matching description

f . This scenario is illustrated in Figure 2.

• If d �→ f , add [[¬f ∧ d, �(X,α, β)]] to input S̃1’s state and start altering

tuples.

• Output [[f ∧ d, �(X,α, β)]] to S̃O.

• Alter any tuples or partial computations currently in state if they satisfy

description f ∧ d by altering their X attribute by applying function α.

3094 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

One detail that we have overlooked up to this point is how operator state

interacts with incoming accents. For instance, consider the case when an accent

[[A < 10,−(X)]] arrives on input S̃1 of a Union operator. We know from Sec-

tion 4 that a Drop Attribute accent propagates through Union if its description

matches an accent from the other input with the same description. However, if

the operator had previously seen an accent [[d, �(A,α, β)]] on the same input, the

question becomes: What does it mean for descriptions to “match”? The answer

to this question is open and left to future work, though we anticipate this sce-

nario to be rare in practice in that the attributes used in descriptions are likely

to be invariants like unique identifiers or temporal attributes, both of whose

semantics are unlikely to change over time.

In addition to these behaviors, we can formalize the propagation through an

operator of an accent that refers to Merge attributes in terms of the canonical

versions of operator input and output. For an operator with Merge attributes

M , and with finite input streams S̃1 and S̃2 at some given time, with output

stream S̃O at that time:

– ∀[[d,+(X)]]∈Ŝ1
(X ∈ M → ∃[[r,+(X)]]∈Ŝo

(d → r)) (Add Attribute primitives are

propagated through the operator, though the accent description may become

less selective)

– ∀[[d,−(X)]]∈Ŝ1
(X ∈ M ∧�q([[q,−(X)]] ∈ Ŝ2)) → �r([[r,−(X)]] ∈ ŜO) (if Drop

Attribute primitives appear on merge attributes from one input but not the

other, do not propagate)

– ∀[[d,−(X)]]∈Ŝ1
(X ∈ M ∧ ∃q([[q,−(X)]] ∈ Ŝ2)) → [[d ∧ q,−(X)]] ∈ ŜO) (if

Drop Attribute primitives appear on both inputs, produce an accent with

that primitive on the output stream with a predicate at least as selective as

the predicates on the input accents’ descriptions)

– ∀e (e is an Alter Data primitive), ∀[[p,e]]∈Ŝ1
∀[[d,e]]∈Ŝ1

(X ∈ M) ∧ �q([[q, e]] ∈
Ŝ2) → �r([[r, e]] ∈ ŜO)

– ∀e (e is an Alter Data primitive), ∀[[p,e]]∈Ŝ1
∀[[d,e]]∈Ŝ1

(X ∈ M) ∧ ∃q([[q, e]] ∈
Ŝ2) → [[d∧q, e]] ∈ ŜO) (this property and the previous one state to propagate

Alter Data primitives similarly to Drop Attribute primitives)

In brief, if an operator has merge attributes, then the operator always prop-

agates Add Attribute primitives on Merge attributes but must receive the same

Drop Attribute or Alter Data primitive on all inputs before propagating.

Accumulator attributes (A): An Accumulator attribute is any attribute

that cannot participate in any accent description in an operator’s output stream.

An example is the project operator (πX); any attribute Y �∈ X does not appear

in the operator output. Accents with descriptions on an Accumulator attribute

thus accumulate in the operator until they can be grouped together into accents

3095Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

without such description. For example, the descriptions s = 1∧t < 5, s = 1∧t =

5, and s = 1∧ t > 5 can be accumulated into a single description s = 1 that does

not refer to attribute t. For an operator with Accumulator attributes A, input

stream S̃, and output stream S̃O:

– [[d,+(X)]]: Add [[d,+(X)]] to operator state. Further:

• Let d′ be the description where, for all attributes a �∈ A, d′(a) = d(a), and

for all attributes a ∈ A, d′(a) is undefined. Description d′ is the predicate
that is the most selective that also only refers only to non-accumulator

attributes and that d → d′.
• Let D be the set of descriptions that match an instance of primitive

+(X) already in state.

• Let d0 =
∨

x∈D x, which is the predicate that results from unifying all

of the descriptions for +(X) in state.

• If d → ¬d0, propagate [[d′,+(X)]] to output S̃O. In other words, propa-

gate the Add Attribute accent if it is the accent whose description over-

laps d′. This property allows the Add Attribute accent to occur before

all possible matching tuples for d′ in the output stream.

• If d′ → d0, remove from state any accent [[d′′,+(X)]] where d′′ → d′, as
the entirety of d′ has been covered, and thus we no longer need those

entries in state.

– [[d,−(X)]]: Add [[d,−(X)]] to operator state. Further:

• Let d′ and d0 be the same descriptions as in the Add Attribute case.

• If d0 ∨ d ≡ d′, propagate [[d′,−(X)]] to output S̃O. This property says

that an operator waits to propagate the Drop Attribute accent until

enough accents arrive to cover the entirety of d′, ensuring that the accent

appears after any tuple or accent that may refer to attribute X . Remove

from state any accent [[d′′,−(X)]] where d′′ → d′.
– [[d, �(X,α, β)]]: Add [[d, �(X,α, β)]] to operator state, and apply β to the X

component of all matching tuples. Further:

• Let d′ and d0 be the same descriptions as in the Add Attribute case.

• If d0 ∨ d ≡ d′, propagate [[d′, �(X,α, β)]] to output S̃O. This property

says that an operator waits to propagate the Alter Data accent until

enough accents arrive to cover the entirety of d′. Remove from state any

accent [[d′′, �(X,α, β)]] where d′′ → d′. Stop altering tuples for matching

tuples, and apply α to the X attribute of any matching tuples or partial

computations that may be in the operator’s state.

We also formalize the contract for propagating accents using canonical inputs

and outputs. For an operator with Accumulator attributes A, and with finite

input stream S̃ at some given time and output stream S̃O at that time:

3096 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

– ∀[[d,+(X)]]∈Ŝ((d refers to attributes in A) → ∃q[[q,+(X)]] ∈ ŜO ∧ (q does

not refer to attributes in A)∧ (d → q)) (Add Attribute primitives propagate

through the operator, and the description may become less selective to avoid

references to A).

– (∃X∃d1,d2,...,dn∀i∈{1...n}∃[[di,−(X)]]∈Ŝ(di refers to attributes in A)∧ (X ∈ M)

∧(d = (
∨

i∈{1...n} di) does not refer to A)) → ([[d,−(X)]] ∈ ŜO) (if the de-

scription attached to a Drop Attribute primitive refers to accumulator at-

tributes, propagate when input description for a given primitive can be rolled

up into a single predicate that does not refer to accumulator attributes).

– If e = �(X,α, β), (∃[[d,e]]∈Ŝ∃d1,...,dn∀i∈{1...n}∃[[di,e]]∈Ŝ(di refers to attributes

in A) ∧ (X ∈ M)(p = (
∨

i∈{1...n} di) does not refer to A)) → ([[p, e]] ∈ ŜO)

(propagate Alter Data accents like Drop Attribute accents).

6.2 Operator Signatures

The signature of an operator is a description of the attribute profiles to which

each input attribute belongs. One can specify the signature for an operator as a

triple (F,M,A), signifying an operator’s Foundation, Merge, and Accumulator

attributes. Using a signature, one can encapsulate most — if not all — of an op-

erator’s behavior with regards to processing accents. The following list describes

the six operators from Section 4 using signatures, followed by any behavior that

is required by the operator but not part of the signature:

Select (σCθV S̃) has signature ({C}, ∅, ∅), + adjust predicate as Alter Data

primitives are seen on attribute C

Project (ΠCS̃) has signature (∅, ∅, C −C), + drop all accents whose primitive

refers to attributes C −C (where C is the set of all possible attributes)

Union (S̃ ∪ T̃) has signature (∅, C, ∅)
Join (S̃ �J (CS̃,CT̃) T̃) has signature (CS̃ ∪ CT̃ , CS̃ ∪ CT̃ , ∅)
Window (Ww

C,widS̃) has signature (C, ∅, ∅), + descriptions that refer to win-

dow attributes C are transformed into descriptions that refer to wid

Aggregate (γf
G,ES) has signature (G, ∅, C−G), + drop all accents whose prim-

itive refers to attributes E

One immediate benefit of operator signatures is declarative behavior specifi-

cation. Note that the Union operator’s behavior when interacting with accents

is fully specified by signature (∅, C, ∅). We can define the behavior and propaga-

tion contract of some other operators just as easily. For instance, the Intersect

operator has signature (∅, C, ∅) as well.
Another benefit of operator signatures is that they enable the possibility of

global behavior settings. Note that the signature definitions of Project and Ag-

gregate have different behavior than their definitions in Section 4. For instance,

3097Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

the project operator was defined assuming that if any part of an accent de-

scription d refers to a property that is projected away, then the query aborts. As

defined using the signature (∅, ∅, C−C), the project operator has different behav-

ior, namely that such descriptions are accumulated until it can form a description

that can propagate without referring to dropped attributes. Both of these def-

initions have their merits. The original aborting definition has the benefit that

the project operator requires no state, with the drawback that fewer accents

are supportable. On the other hand, the accumulation definition supports far

more accents without bringing down the query, but requires the project opera-

tor to maintain state, where the operator did not require any state to operate on

non-accented streams. Using signatures, this decision between statelessness and

query resilience can be made once, globally, and all operators with a signature

that includes accumulator attributes will follow suit.

7 Related Work

To our knowledge, there is no existing work modeling or implementing evolu-

tion in DSMSs, although schema evolution has been amply addressed in DBMSs

[Rahm and Bernstein 2006]. Schema evolution research often focuses on mitigat-

ing the effect of evolutions on artifacts that rely on the schema, such as embedded

SQL [Maule et al. 2008] or adjusting schema mappings to address new schemas

[Yu and Popa 2005].

Extract-transform-load (ETL) workflows are similar to streaming queries;

they are a composition of atomic data transformations (called activities) that

determine data flow through a system. Unlike streaming queries, ETL work-

flows do not execute continuously and are typically not as resource-constrained

as DSMSs. Papastefanatos et al. addressed schema evolution on an ETL work-

flow by attaching policies to each activity. Policies semi-automatically adjust

the activity parameters based on schema evolution primitives that propagate

through the activities [Papastefanatos 2007, Papastefanatos et al. 2008]. Unlike

our approach, ETL research does not need to address how to maintain uptime

of queries or the intermingling of schema evolution with data in the presence of

accumulated state.

A final area of related work is schema mapping maintenance, where one

“heals” a mapping between schemas S and T when either schema evolves (say,

from T to T ′), thus creating a new mapping (say, from S to T ′) that re-

spects the semantics of the original mapping, or failing if impossible. Both-as-

View (BAV) describes a schema mapping as a sequence of incremental steps

[McBrien and Poulovassilis 2003]. Changes made to a schema become a sec-

ond sequence of steps that is then composed with the original mapping se-

quence [McBrien and Poulovassilis 2002]. A similar approach is possible if a

3098 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

mapping is specified using source-to-target tuple-generating dependencies (st-

tgds), both when the schema evolution can be reduced into discrete transforma-

tions [Velegrakis et al. 2003, Velegrakis et al. 2004] or itself specified as st-tgds

[Yu and Popa 2005]. The Guava framework is another approach to mapping evo-

lution [Terwilliger 2009]. A Guava mapping is expressed as a set of algebraic

transformations, through which schema evolution primitives expressed against

the source schema propagate to the target schema and update it as well.

8 Conclusions and Future Work

We have introduced semantics toward supporting schema evolution in stream

systems by introducing the notion of an accented stream. Our contributions

include adding markers to announce evolutions to operators in a standing query.

Our work on stream query operators suggests we can extend the capability of

conceptual models and the systems that implement them by expanding the scope

of ordinary query operators to handle evolution. We detailed an initial set of

evolutions and the effect they have on common stream operators. We provided

a framework that allows stream engines to support schema evolution without

bringing down standing queries whenever the evolutions do not render a query

meaningless. Our approach supports simultaneous input streams at different

stages in their respective evolutions.

Future work will characterize additional operators beyond the six introduced

in this paper, and provide more precise definitions of what it means for a stream

to have schema in the wake of evolution. Some operational considerations were

left out in this paper, such as the effect of Alter Data primitives on other accents

in state. Future work will address these issues in more detail, in particular in

out-of-order architectures [Li et al. 2008], as well as the impact of accents on

query performance and efficient operator implementation.

A key area of future work pertains to state management. We mentioned in

Section 4 how the Union operator may remove an accent a from one input’s

state when accents with the same primitive covering a’s description appear on

the other input. However, there is already a well-established means of state man-

agement employed by many DSMSs, and emerging work related to guarantees

regarding state [Fernández-Moctezuma et al. 2010]. In Section 1, we mentioned

that various DSMSs have been designed to operate on punctuated data streams

[Barga et al. 2007, Johnson et al. 2005, Li et al. 2008, Tucker 2005]. For exam-

ple, consider the following data stream for the schema s(a,b), where punctua-

tions are denoted as descriptions in square brackets (“[]”):

(<a:1, b:0>,<a:1, b:1>,[a:<=1],<a:2, b:0>)

Punctuated data streams follow an important property: no tuple described

by a punctuation will be seen in the stream once the punctuation has been seen

3099Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

in the stream. In the example above, no tuple with a value less than or equal

to 1 in a will be seen after that punctuation. This property is often exploited

in a DSMS to cope with operator state. Several operators maintain information

about tuples seen on input in case said information is needed for processing

tuples that arrive later. For instance, a Join operator will hold onto tuples from

an input indefinitely, just in case it might match a tuple from the other input at

some point in the future. Such an operator can exploit punctuation to free state

as it knows that no more tuples will arrive to match existing tuples in state.

Future work will extend our current model to operate on accented-punctuated

streams, which are streams in which both accents and punctuations appear

alongside tuples. This type of stream will use punctuations to track a canon-

ical notion of progress, and accents to anticipate evolution. We plan to exploit

punctuation to cleanse state associated with accents. The interaction between

punctuations and accents will also be characterized because punctuations may

refer to subsets of the stream for which an evolution has occurred.

Acknowledgements

This work is supported by CONACyT México (178258), OTREC, and NSF

(0534762, 0612311). We thank Jonathan Goldstein, Badrish Chandramouli, and

Kristin A. Tufte for their comments.

References

[Abiteboul et al. 1997] Abiteboul, S.; Quass, D.; McHugh, J.; Widom, J.; Wiener,
J. L.: The Lorel Query Language for Semistructured Data. Int. J. on Digital
Libraries, 1997, 1(1):68–88.

[Barga et al. 2007] Barga, R. S.; Goldstein, J.; Ali, M. H.; Hong, M.: Consistent
Streaming Through Time: A Vision for Event Stream Processing. CIDR 2007,
363–374.

[Fernández-Moctezuma et al. 2009] Fernández-Moctezuma, R. J.; Terwilliger, J. F.;
Delcambre, L. M. L.; Maier, D.: Towards Formal Semantics for Data and Schema
Evolution in Data Stream Management Systems. ETheCom 2009 (ER Workshops
2009), 85–94.

[Fernández-Moctezuma et al. 2010] Fernández-Moctezuma, R. J.; Maier, D.; Tufte, K.
A.: Towards Execution Guarantees for Stream Queries. Proceedings of the Third
International Workshop on Scalable Stream Processing Systems (SSPS), 2010.

[Johnson et al. 2005] Johnson, T.; Muthukrishnan, S.; Shkapenyuk, V.; Spatscheck,
O.: A Heartbeat Mechanism and its Application in Gigascope. VLDB 2005, 1079–
1088.

[Li et al. 2008] Li, J.; Tufte, K.; Shkapenyuk, V.; Papadimos, V.; Johnson, T.; Maier,
D.: Out-of-Order Processing: A New Architecture for High-Performance Stream
Systems. Proc. VLDB Endow., 2008, 1(1):274–288.

[Maule et al. 2008] Maule, A.; Emmerich, W.; Rosenblum, D. S.: Impact Analysis of
Database Schema Changes. ICSE 2008, 451–460.

[McBrien and Poulovassilis 2002] McBrien, P.; Poulovassilis, A.: Schema Evolution
in Heterogeneous Database Architectures, a Schema Transformation Approach.
CAiSE 2002, 484–499.

3100 Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

[McBrien and Poulovassilis 2003] McBrien, P.; Poulovassilis, A.: Data Integration by
Bi-Directional Schema Transformation rules. ICDE 2003, 227–238.

[Papastefanatos 2007] Papastefanatos, G.; Vassiliadis, P.; Simitsis, A.; Vassiliou, Y.:
What-if Analysis for Data Warehouse Evolution. DaWaK 2007, 23–33.

[Papastefanatos et al. 2008] Papastefanatos, G.; Vassiliadis, P.; Simitsis, A.; Vassiliou,
Y.: Design Metrics for Data Warehouse Evolution. ER 2008, 440–454.

[Rahm and Bernstein 2006] Rahm, E.; Bernstein, P. A.: An Online Bibliography on
Schema Evolution. SIGMOD Record, 2006, 35(4):30–31.

[RDF 2004] W3C: Resource Description Framework (RDF). http://www.w3.org/
RDF/. Publication date: February 10, 2004.

[Terwilliger 2009] Terwilliger, J. F.: Graphical User Interfaces as Updatable Views.
PhD thesis, Portland State University, Portland, Oregon, USA, 2009.

[Tucker 2005] Tucker, P. A.: Punctuated Data Streams. PhD thesis, OGI School of
Science & Technology at OHSU, Beaverton, Oregon, USA, 2005.

[Tucker et al. 2003] Tucker, P. A.; Maier, D.; Sheard, T.; Fegoras, L.: Exploiting Punc-
tuation Semantics in Continuous Data Streams. IEEE Transactions on Knowledge
and Data Engineering, 2003, 15(3):555–568.

[Velegrakis et al. 2003] Velegrakis, Y.; Miller, R. J.; Popa, L.: Mapping Adaptation
Under Evolving Schemas. VLDB 2003, 584–595.

[Velegrakis et al. 2004] Velegrakis, Y.; Miller, R. J.; Popa, L.: Preserving Mapping
Consistency Under Schema Changes. VLDB J., 2004, 13(3):274–293.

[Yu and Popa 2005] Yu, C., Popa, L.: Semantic Adaptation of Schema Mappings
When Schemas Evolve. VLDB 2005, 1006–1017.

3101Terwilliger J.F., Fernandez-Moctezuma R.J., Delcambre L.M.L., Maier D.: Support ...

