
Internal Representation of Database Views

Stephen J. Hegner

(Ume̊a University, Department of Computing Science

SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se http://www.cs.umu.se/~hegner)

Abstract: Although a database view embodies partial information about the state
of the main schema, the state of the view schema is a quotient (and not a subset) of
the state of the main schema. It is the information content of the view state, the set
of sentences which are true for that state, and not the state itself which is a subset
of the information content of the state of the main schema. There are thus two dual
approaches to modelling this partiality, one based upon structures, with a consequent
quotient relationship, and another based upon logical theories, with a consequent sub-
set relationship. In this work, a representation for database views is developed which
combines these two approaches. The state-based representation is expanded so that
the information content embodied in a wide class of views, including those defined
by SPJ queries, is fully representable, thus permitting the view state to be modelled
internally as a subset of the main database state. The utility of this framework is
demonstrated with a simple solution to the uniqueness problem for view updates via
constant complement.

Key Words: information, database, modelling, view

Category: H.1.1, H.2.1

1 Introduction

Views are ubiquitous in information systems. It is rare that a single user or

application has access to all of the information which is represented in the system.

Rather, partial information is provided through views. There are two, dual ways

of representing this partiality. In the state-based approach to representing a view

Γ = (V, γ) of a relational schema D, the defining entity is a surjective function

γLDB : LDB(D) → LDB(V) which maps the legal databases LDB(D) of the main

schema to the legal databases LDB(V) of the view schema V. The partiality is

embodied in the fact that γLDB is not in general injective; rather, many states

of D may map to the same view state. The formal representation of partiality

is consequently a quotient construction, defined specifically by the congruence

Congr(γ) on LDB(D) with (M1,M2) ∈ Congr(γ) iff γLDB(M1) = γLDB(M2).

Dual to the state-based approach is the information-based approach, in which

the “state” of a schema is represented not by a single model (i.e., a single member

of LDB(D)), but rather by a set of sentences which define constraints on what

the state may be. Formally, the mapping from view sentences to sentences on

the main schema is obtained by regarding the view mapping γ as a query in the

relational calculus. The fact that this query must return the tuples of the view

Journal of Universal Computer Science, vol. 16, no. 20 (2010), 2956-2985
submitted: 7/1/10, accepted: 13/9/10, appeared: 1/11/10 © J.UCS

defines logical constraints which must be true on the state of the main schema.

These constraints define a subset of all possible states of the main schema —

those which map to the given view state, and so provide a characterization of that

view state. More fundamentally, the information-based approach has its merits as

an approach to modelling; indeed, it forms the foundation of deductive databases

and logic programming [Minker, 1987]. On the other hand, it also carries a great

deal of overhead in that a potentially complex set of constraints on what the

state may be replaces the state itself in the representation. Nevertheless, even if

there is no need to model extensive incomplete information in the main schema

itself, it is often very useful and natural to be able to regard the view schema

as a subschema of the main schema, and such an information-based approach

seems essential to realize that end. The goal of this paper is to address that

desideratum by pursuing a rapprochement of the state-based approach and the

constraint-based approach, in which the essence of the state-based approach

is retained while admitting enough of the constraint-based approach to allow

the view schema to be regarded as a subschema of the main schema, A simple

example will help illustrate the main ideas.

Let E1 be the relational schema with the single ternary relation symbol

R[ABC], constrained by the join dependency � [AB,BC]. Let ΠE1

AB =

(W11, π
E1

AB) be the view whose schema W11 has the single relation symbol

RAB[AB], with πE1

AB the projection of R[ABC] onto RAB[AB]; thus

(∀xA)(∀xB)(RAB(xA, xB) ⇔ (∃z)(R(xA, xB , z))). Define the view ΠE1

BC =

(W12, π
E1

BC) similarly as the projection of R[ABC] onto RBC [BC]. Consider the

state N11 = {RAB(a1, b1), RAB(a2, b2)} of W11. Rather than represent it as the

equivalence class {M ∈ LDB(D) | (πE1

AB)LDB
(M) = N11}, as in the quotient ap-

proach, it is represented as the Boolean conjunctive query (∃x1)(R(a1, b1, x1))∧
(∃x2)(R(a2, b2, x2)). Thus, a generalized state of the main schema becomes

a Boolean conjunctive query. Conventional ground atoms are a special case

of such queries. Since all variables are quantified existentially, the quantifiers

may be dropped, as long as the convention is adopted that all quantified vari-

ables are distinct. Thus, this state may be represented as the atombase M12 =

{R(a1, b1, x1), R(a2, b2, x2)}. There is a natural correspondence between atom-

bases — finite sets of (not necessarily ground) atoms — and Boolean con-

junctive queries. It is a representation of view states based upon this corre-

spondence which is developed within this work. The internal representation

to E1 of the view mapping πE1

AB is
−−→
πE1

AB : E1 → E1 defined on tuples by

R(a, b, c) �→ R(a, b, x)), with a distinct variable x used for each tuple. In other

words, the C-attribute value of each R-tuple is replaced by a distinct variable.

The reader may feel that this approach is nothing more than a clever use of

null values, and, certainly, there are similarities. However, a Boolean query is

simply a statement about what is true in a database state. To illustrate the dif-

2957Hegner S.J.: Internal Representation of Database Views

ferences, observe that the atombases {R(a, b, x1), R(a, b, x2), R(x3, x4, x5)} and

{R(a, b, x6)} are completely equivalent; each embodies precisely the informa-

tion generated by (∃x)(R(a, b, x)). Several copies of a sentence equivalent to

(∃x)(R(a, b, x)) embodies no more information than a single copy. As a more

salient example, consider the state M11 = {R(a, b, x1), R(x2, b, c)} of E1. Since

the schema is governed by the join dependency � [AB,BC], M11 is equivalent

to M12 = {R(a, b, c)}; i.e., x1 must equal c and x2 must equal a. That x1 (resp.

x2) represents some value distinct from c (resp. a) is not representable in this

framework. Indeed, that E1 decomposes losslessly into ΠE1

AB and ΠE1

BC with the

join as the reconstruction mapping recaptured within this framework by the fact

that the state M12 of E1 is equivalent to the combined information of its image

{R(a, b, x1)} under
−−→
πE1

AB and its image {R(x2, b, c)} under
−−→
πE1

BC .

The main result of this paper is a systematic development of these ideas.

The context imposes two main requirements. First, the view must be defined

by Boolean conjunctive queries (i.e., SPJ-queries in the traditional relational

terminology). Second, the main schema must admit a chase procedure which

always terminates, so that the information reflected from the view state can be

completed to a least atombase (representing a Boolean conjunctive query) of the

main schema which satisfies its constraints. Under these conditions, it is shown

that every such view has an internal representation within the main schema,

in the precise sense that every view state has a canonical representation as an

atombase of the main schema.

The paper is organized as follows. In Section 2, the relational and logical

background upon which the work is founded is presented. In Section 3, the

ideas surrounding atombases — compact representations of databases defined

by Boolean conjunctive queries — are developed. Section 4 contains the main

results of the paper, the characterization of embeddable views. In Section 5,

it is shown that the set of canonical atombases for a given schema admit a

natural lattice structure. In Section 6, these ideas are applied to the uniqueness

problem for view updates via constant complement. Finally, in Section 7, some

conclusions and further directions are provided. An index of terminology and

notation may also be found just before the list of references.

2 Background

The framework developed in this paper is based upon the classical relational

model, and familiarity with its fundamental ideas, as presented in monographs

such as [Paredaens et al., 1989] and [Abiteboul et al., 1995], is assumed. The pur-

pose of this section is to lay out some special notions and terminology, within that

framework, which will be useful in this work. Familiarity with the fundamentals

of first-order logic, as presented in, for example [Monk, 1976], is also assumed.

2958 Hegner S.J.: Internal Representation of Database Views

The notions presented below have a common base with that of earlier papers of

the author, including particularly [Hegner, 2008a], but the requirements of the

particular problem studied here have mandated numerous changes.

Definition 1 (Relational contexts). A relational context contains the logical

information which is shared amongst the schemata and database mappings. For-

mally, a relational context consists of a finite nonempty set Attr of attribute

names, a countable set Vars of variables, and a countable set Const of constant

symbols. The variables in Vars are further partitioned into two disjoint sets; a

countable set GVars = {x0, x1, x2, . . .} of general variables, and a special Attr-

indexed set AttrVars = {xA | A ∈ Attr} of attribute variables. The latter is used

only in the definition of interpretation mappings; see Definition 8 for details.

Lowercase letters at the end of the alphabet, such as v, w, x, y, and z, as well as

subscripted instances using these names, will also be used as general variables.

The constants are the usual domain values; thus, Const is the set of values

which a term for an attribute A may assume. There is no partitioning of the

constants on an attribute-by-attribute basis; any constant may be the value for

any attribute. This choice is made in support of the theory which is developed

while keeping the complexity of the framework within bounds. Distinct constants

are never equal to one another. This is made explicit by the unique naming

constraint (UNA) [Genesereth and Nilsson, 1987, p. 120], which always holds

and which is formalized as (¬(a = b)) for distinct a, b ∈ Const.

A relational context D is fixed throughout this paper.

Definition 2 (Tuples and databases). An unconstrained relational schema

is a pair D = (Rels(D),ArD) in which Rels(D) is a finite set of relational symbols

and ArD : Rels(D) → 2Attr a function which assigns a set of distinct attributes

from Attr, to each R ∈ Rels(D).

An R-tuple is any tuple indexed by the attributes of R. More formally, it is

a function with domain ArD(R). An R-atom is an R-tuple whose terms lie in

Const ∪Vars; more precisely, it is a function t : ArD(R) → Const ∪Vars with the

property that for each A ∈ ArD(R), t[A] ∈ Const ∪GVars ∪ {xA}; A D-atom (or

just an atom if D is clear from the context) is an R-atom for some R ∈ Rels(D).

A ground atom has the property that it contains no variables. The set of all

atoms (resp. ground atoms) is denoted Atoms(D) (resp. GndAtoms(D)).

Databases are modelled as finite sets of ground atoms. A finite set of complete

ground D-atoms is called a database for D. The set of all databases for D

is denoted DB(D). Although not databases in the strict sense, finite sets of

atoms whose terms may include variables will also arise in this work, as already

suggested by the examples of Section 1. A finite subset of Atoms(D) is called an

atombase for D. The set of all atombases is denoted AB(D).

To keep a handle on the notation for various finite sets of atoms, names of

the form xxxDB(D) always identify databases ; that is, sets of atoms which do

2959Hegner S.J.: Internal Representation of Database Views

not contain any variables, while names of the form xxxAB(D) always identify

atombases ; that is, sets of atoms which may contain variables.

Definition 3 (Equality atoms). There is a third type of atom which will be

of use in defining constraints, the equality atom. Formally, an equality atom

is of one of the forms (xi = xj), (xi = aj), or (ai = aj), for xi, xj ∈ GVars

and ai, aj ∈ Const. The set of all equality atoms is denoted EqAtoms. Equality

atoms which equate two constants; e.g., (ai = aj) are called ground equality

atoms ; note that the truth value of such atoms is predetermined by the unique

naming assumption. All other equality atoms; e.g., those of the forms (xi = xj)

or (xi = aj), are called variable equality atoms. The set of all variable equality

atoms is denoted VarEqAtoms. The definition of equality atom depends only

upon the relational context D, and not upon the specific schema D.

Definition 4 (Formulas and constraint classes). The first-order language

associated with the relational schema D is defined in the natural way; how-

ever, it is useful to introduce some notation which identifies particular sets of

formulas. Define WFF(D) to be the set of all well-formed first-order formulas

with equality in the language whose set of relational symbols is Rels(D), whose

variables are those of Vars, whose set of constant symbols is Const, and which

contains no non-nullary function symbols. The formulas are typed only to the

extent that for A ∈ Attr, a term for A must lie in Vars ∪ {xA} ∪ Const.

WFF(D, ∃∧+) is the subset of WFF(D) in which only existential quantifi-

cation is allowed, and the only logical connective which is allowed is conjunc-

tion (∧); in particular, negation is disallowed, defining the conjunctive queries

[Chandra and Merlin, 1977]. These classes may be limited to sentences; i.e.,

formulas without free variables; notationally WFS replaces WFF. For example,

WFS(D, ∃∧+) is the set of sentences in WFF(D, ∃∧+).

The subscript
= will be used to denote that equality atoms are not allowed.

Thus, for example, WFS �=(D, ∃∧+) denotes the subset of WFS(D, ∃∧+) whose

formulas do not contain equality atoms. The set WFS �=(D, ∃∧+) occurs so fre-

quently in this paper that it is useful to introduce an abbreviated notation for

it; ΥD will be used as an abbreviation for WFS �=(D, ∃∧+). It will further be

assumed that the elements of ΥD are in prefix-matrix form with no nesting.

Thus, every element of ΥD is of the form (∃x1)(∃x2) . . . (∃xk)(A1∧A2∧ . . .∧An)

with each Ai ∈ Atoms(D).

Every sentence in WFS(D, ∃∧+,Const) is equivalent to one in ΥD . Indeed, if

ϕ ∈ WFS(D, ∃∧+,Const) contains a conjunct of the form (xi = xj), just replace

xj with xi everywhere and drop the quantifier (∃xj). Similarly, if it contains a

conjunct of the form (a = x) replace each occurrence of x with a and drop the

quantifier (∃x). If it contains a conjunct of the form (a1 = a2), then in view of

the unique naming assumption, the formulas must be false unless a1 and a2 are

2960 Hegner S.J.: Internal Representation of Database Views

the same symbol, in which case that conjunct may simply be dropped. Thus,

there is no loss of generality in excluding equality atoms from ΥD .

The symbol ⊥ denotes the sentence which is always false.

Definition 5 (Complete atomic models). In this work, databases are sets

of ground atoms, and not models of sentences in the usual sense. Nevertheless,

it is important to have a notion of model. To this end, in a manner analogous

to [Monk, 1976, Def. 19.8], for M ∈ DB(D), define the diagram of M to be

Diagram(M) = M ∪ {¬ψ | ψ ∈ GndAtoms(D) \M}. Say that M is a complete

information model of ϕ ∈ WFS(D) if Diagram(M) ∪ {ϕ} ∪ UNA is a consistent

set of sentences in WFS(D).

DBModD(ϕ) denotes the set of all complete information models of ϕ, with

DBModD(Φ) =
⋂{DBModD(ϕ) | ϕ ∈ Φ} for Φ ⊆ WFS(D). For Φ1, Φ2 ⊆

WFS(D), the notation Φ1 |= Φ2 means that DBModD(Φ2) ⊆ DBModD(Φ1), with

Φ1 |=| Φ2 denoting that both Φ1 |= Φ2 and Φ2 |= Φ1 hold; i.e., that DBModD(Φ2) =

DBModD(Φ1). For a single ϕ ∈ WFS(D), set brackets will often be omitted.

Thus, DBModD(ϕ) denotes DBModD({ϕ}), and notations such as Φ |= ϕ and

Φ |=| ϕ have the obvious meanings of Φ |= {ϕ} and Φ |=| {ϕ}.

Notation 6 (Extracting constants and variables). For any Φ ⊆ WFS(D),

ConstOf(Φ) (resp. VarsOf(Φ)) denotes the set of all constants (resp. variables)

which occur in Φ. For ϕ ∈ WFS(D), ConstOf(ϕ) = ConstOf({ϕ}) and VarsOf(ϕ)

= VarsOf({ϕ}). Finally, continuing with the notation above, TermsOf(Φ) =

VarsOf(Φ) ∪ ConstOf(Φ) with TermsOf(ϕ) = TermsOf({ϕ}).

Definition 7 (Schemata with constraints and constrained databases).

To obtain full relational schemata, constraints are added to the unconstrained

schemata of Definition 2. Formally, a relational schema is a triple D = (Rels(D),

ArD ,Constr(D)) in which (Rels(D),ArD) is an unconstrained relational schema

and Constr(D) ⊆ WFS(D,Const) is a set of dependencies or constraints of D.

It will further be assumed that ConstOf(Constr(D)) is finite; that is, the num-

ber of constant symbols which occur in Constr(D) is finite. This condition will

automatically be satisfied whenever Constr(D) is a finite set. The reason for al-

lowing Constr(D) to be an infinite set is related to the issue of characterizing

the constraints on view schemata; see Definition 8 for a further discussion.

M ∈ DB(D) is called a legal database for D if M ∈ DBModD(Constr(D)).

The set of all legal databases of D is denoted LDB(D). Constraint satisfaction

for atombases is elaborated in Definition 23.

Definition 8 (External LDB-Views). There are two complementary ways in

which a relational view may be presented. Consider again the schema E1 and the

view ΠE1

AB of Section 1. The view mapping may be expressed, on the one hand,

as a function from LDB(E1) to LDB(W11), expressed in the relational algebra

2961Hegner S.J.: Internal Representation of Database Views

as the function which maps each tuple in M ∈ LDB(E1) to its projection on

AB. On the other hand, it may also be described in the relational calculus as

the query (∃z)(R(xA, xB, z)) on E1. In this work, both representations are of

central importance, although it is the representation via the relational calculus

which requires a careful presentation. It rests more formally upon the notion of

logical interpretation [Jacobs et al., 1982].

A view of D is a pair Γ = (V, γ) in which V is a database schema and

γ : D → V is a database morphism which is surjective in a sense to be made

precise shortly. Given R ∈ Rels(V), an interpretation for R into D is a formula

ϕ ∈ WFF(D,Const) in which precisely the variables {xA | A ∈ ArD(R)} are

free, with xA bound to attribute A. The set of all interpretations of R into D

is denoted Interp(R,D). An interpretation family for V into D is given by an

interpretation formula for each R ∈ Rels(V). More formally, think of a view

morphism γ : D → V as defined by the family {γR | R ∈ Rels(V) and γR ∈
Interp(R,D)}. In the above example, (πE1

AB)
RAB = (∃z)(R(xA, xB, z)).

Let R ∈ Rels(V) and let t ∈ Atoms(V) be an R-atom. The tuple substitu-

tion of t into γ, denoted Substf〈γ, t〉, is the formula in WFF(D) obtained by

substituting t[A] for xA in γR for each A ∈ ArD(R). If t ∈ GndAtoms(V), then

Substf〈γ, t〉 ∈ WFS(D); i.e., it is a sentence. For M ∈ AB(D), define

γAB(M) = {t ∈ Atoms(V) |M ∈ DBModD(Substf〈γ, t〉)}
If γAB(M) ∈ LDB(V) for each M ∈ LDB(D), call γ an LDB-morphism. In

this case, define γLDB : LDB(D) → LDB(V) to be the appropriate restriction of

γAB. Here γLDB is just the usual mapping which sends states of the main schema

to states of the view. Call γ LDB-surjective if γLDB is a surjective function. An

external LDB-view of D is a pair Γ = (V, γ) in which V is a database schema

and γ : D → V is an LDB-morphism which is LDB-surjective. Without further

qualification, the term view will always mean external view.

If γR ∈ WFF(D, ∃∧+) for each R ∈ Rels(D), then γ is called a morphism of

class ∃∧+. The external view Γ = (V, γ) is defined to be of class ∃∧+ precisely

in the case that γ has that property. The usual SPJ-queries (select, project, join)

are all of class ∃∧+, with the restriction that select queries must be on a single

value for each attribute involved in the select. Call Γ variable normalized if for

distinct R1, R2 ∈ Rels(D), γR1 and γR2 have no quantified variables in common.

A view may always be variable normalized by renaming variables.

It is well known that even for simple projective views of relational schemata

constrained only by a few functional dependencies, a basis for the implied con-

straints on the view schema may be infinite [Hull, 1984, Lem. 4.1] [Hegner, 2006,

App. A]. Thus, the set Constr(V) of constraints on the view schema V is allowed

to be infinite in general, although it will be required that ConstOf(Constr(D))

be finite. This is of little consequence in this work since the constraints on view

schemata are never considered explicitly.

2962 Hegner S.J.: Internal Representation of Database Views

Definition 9 (Closure and minimal covers). Let Φ ⊆ Ψ ⊆ WFS(D). The

closure of Φ in Ψ , denoted Closure〈Φ, Ψ〉, is {ϕ ∈ Ψ | Φ |= ϕ}. A cover for Φ

relative to Ψ is a subset Φ′ ⊆ Ψ with Closure〈Φ′, Ψ〉 = Closure〈Φ, Ψ〉. A minimal

cover Ψ ′ has the property that none of its proper subsets is itself a cover. Φ is

said to be finitely generated in Ψ it admits a finite minimal cover. Note that if

Ψ is closed under conjunction and Φ is finitely generated, there must be a single

ϕ ∈ Ψ which is a (necessarily minimal) cover for Φ.

3 Information Content and Canonical Models

Notation 10. Throughout this section, unless stated explicitly to the contrary,

take D to be an unconstrained database schema.

Definition 11 (Information content). The information content of M ∈
DB(D) is defined to be InfoD〈M〉 = {ϕ ∈ ΥD | M ∈ DBModD(ϕ)}. View-
ing each element of ΥD to be a Boolean-valued query, InfoD〈M〉 is exactly the

set of such queries which are true on M .

For a single database, this definition is rather trivial, since InfoD〈M〉 is just
Closure〈M,ΥD〉. It is of greater use when the information common to a set of

databases is considered. A key example is the following. Let Γ = (V, γ) be a view

of D. For each N ∈ LDB(V), define define ReflInfo〈N,Γ 〉 = ⋂{InfoD〈M〉 |M ∈
LDB(D) and γ(M) = N}. Thus, ReflInfo〈N,Γ 〉 is the information common to

every M ∈ LDB(D) which maps to N under γ. It is crucial to observe that, in

general, ReflInfo〈N,Γ 〉 is strictly larger than InfoD〈⋂{M ∈ LDB(D) | γ(M) =

N}〉. Although there are many details which must be addressed, the main focus

of this paper is to study the conditions under which ReflInfo〈N,Γ 〉 is a suitable

representation for N .

Information content is monotone in the sense that for anyM1,M2 ∈ DB(D),

M1 ⊆M2 iff InfoD〈M1〉 ⊆ InfoD〈M2〉.

Definition 12 (Atomic representation of sentences in ΥD). Define the

atomic representation of ϕ ∈ ΥD , denoted AtRep(ϕ), to be the set of all atoms

which occur in ϕ as conjuncts. For example, if

ξ1 = (∃x1)(∃x2)(∃x3)(R(a1, a2)∧R(a2, a3)∧R(x1, x2)∧R(x2, a3)∧R(a3, x3))

then AtRep(ξ1) = {R(a1, a2), R(a2, a3), R(x1, x2), R(x2, a3), R(a3, x3)}. Just by

construction, AtRep(ϕ) ∈ AB(D).

In the opposite direction, givenM ∈ AB(D), define its logical representation

wfs(M) to be the sentence in ΥD obtained by conjoining the atoms ofM together

and then prepending a sequence of existential quantifiers, one for each variable

occurring inM , to this conjunction. Thus, the logical representation of AtRep(ξ1)

is ξ1. Strictly speaking, wfs(M) is defined by this construction only up to a

2963Hegner S.J.: Internal Representation of Database Views

reordering of the quantifiers and conjuncts, but since such an ordering has no

semantic significance, it will not be represented explicitly. Modulo this trivial

reordering, it is clear that AtRep(−) and wfs(−) are inverse to one another, and

so there is a natural bijective correspondence between ΥD and AB(D). The leads

to a natural extension of the notion of information to an M ∈ AB(D); namely,

define InfoD〈M〉 = Closure〈wfs(ϕ), ΥD〉.
Satisfaction of sentences in ΥD with respect to a given M ∈ DB(D) is

very easy to test, because no universal quantifiers or negations are involved.

Specifically, a sentence ϕ ∈ ΥD is in DBModD(M) iff there is a substitution

s of constants in Const for the variables of ϕ such that s(ϕ) ⊆ M . For ex-

ample, if ψ = (∃x1)(∃x2)(∃x3)(R(a, b, x3)∧R(x1, b, c)∧S(x1, x2, x3)) and M =

{R(a, b, c), R(a, a, d), R(d, b, c), S(a, b, c), S(a, b, d)}, then using the standard no-

tation of [Chang and Lee, 1973], {a/x1, b/x2, c/x3} is a substitution which yields

a subset of M , whence ϕ is true in M . This idea is more elegantly expressed

using the notion of homomorphism, elaborated as follows.

Definition 13 (Homomorphisms). The idea of a homomorphism between

database states was first developed and used in [Chandra and Merlin, 1977]. The

definition given here follows that of [Fagin et al., 2005, Def. 2.3]. Let M1,M2 ∈
AB(D), and let h : TermsOf(M1) → TermsOf(M2). For t = R(τ1, τ2, . . . , τk) ∈
M1, write h̄(t) for R(h(τ1), h(τ2), . . . , h(τk)). The function h is called a

homomorphism from M1 to M2 if the following three conditions are satisfied.

(i) For all a ∈ ConstOf(M1), h(a) = a.

(ii) For all x ∈ VarsOf(M1), h(x) ∈ TermsOf(M2).

(iii) For all t ∈M1, h̄(t) ∈M2.

The notation h : M1 � M2 (with the triangular arrowhead) will be used to

denote that h is a homomorphism from M1 to M2. In that case, h̄ will be

regarded as a function with domain M1 and codomain M2 (for the purposes

of saying that it is injective, surjective, etc.). Thus, h̄ : M1 → M2 and h :

TermsOf(M1) → TermsOf(M2) are both functions, while h : M1 � M2 is a

convenient notation which mandates that these two functions exist and are well

defined. Write M1 �M2 just in case there is a homomorphism h :M1 � M2.

It is easy to see that if the homomorphism h is injective, so too is h̄. However,

h̄ need not be surjective even if h is. For example, with M1 = {R(a)} and

M2 = {R(a), S(a)}, the identity function 1 : a �→ a is bijective, but 1̄ is clearly

not surjective. Call h tuple surjective if h̄ is surjective. It is trivial, on the other

hand, that the surjectivity of h̄ requires the surjectivity of h. In particular, if h

is injective and h̄ is surjective, then both h and h̄ must be bijective. Call such

a homomorphism fully bijective. There is a stronger notion of equivalence which

is needed, however. Call h rigid if for each x ∈ VarsOf(M1), h(x) ∈ Vars. Thus,

2964 Hegner S.J.: Internal Representation of Database Views

a rigid homomorphism maps variables to variables and constants to themselves.

If h is both rigid and fully bijective, it is called an isomorphism.

Combining the discussion at the end of Definition 12 with the homomorphism

formalism immediately gives the following result.

Observation 14. Let ϕ ∈ ΥD and let M ∈ DB(D). Then M ∈ DBModD(ϕ) iff

AtRep(ϕ) �M . �

The extension of this result to the case in which the image is a general

atombase is only slightly more complex.

Proposition15. Let ϕ1, ϕ2 ∈ ΥD . Then ϕ1 |= ϕ2 iff AtRep(ϕ2) � AtRep(ϕ1).

Proof. First of all, assume that h : AtRep(ϕ1) � AtRep(ϕ2) is a homomorphism,

and let M ∈ DBModD(ϕ2). Then in view of Observation 14 above, there is a

homomorphism h2 : AtRep(ϕ2) � M , whence h2 ◦ h : AtRep(ϕ1) → M is a

homomorphism as well, and so invoking Observation 14 once again, it follows

that ϕ1 |= ϕ2.

Conversely, assume that ϕ1 |= ϕ2. Let s be a substitution on VarsOf(ϕ1) which

assigns to each such variable x a distinct constant ax ∈ Const \ConstOf(ϕ1). Let

M = s(AtRep(ϕ1)). Then the function h : TermsOf(ϕ1) → TermsOf(M) given on

elements as the identity on ConstOf(ϕ1) and by x �→ s(x) on VarsOf(ϕ1) defines

a bijective homomorphism h1 : AtRep(ϕ1) � M , and so in particular M ∈
DBModD(ϕ1). Furthermore, since ϕ1 |= ϕ2, M ∈ DBModD(ϕ2) as well, and so

by Observation 14 there is a homomorphism h2 : AtRep(ϕ2) � M . Now consider

the composition h−1

1 ◦ h2 : TermsOf(ϕ2) → TermsOf(ϕ1). To establish that it

defines a homomorphism, it is key to observe that ConstOf(ϕ2) ⊆ ConstOf(ϕ1).

Indeed, were there a constant a ∈ ConstOf(ϕ2) \ ConstOf(ϕ1), then no M ∈
DBModD(ϕ1) with a
∈ M could possibly be in DBModD(ϕ2), yet it is easy to

construct such a model. Armed with this observation, it is immediate that h−1

1 ◦h2
maps constants to themselves, whence it defines a homomorphism h−1

1 ◦ h2 :

AtRep(ϕ2) � AtRep(ϕ1), giving the desired result. �

Definition 16 (Structural identity and information equivalence). Let

M1,M2 ∈ AB(D). Call M1 and M2 structurally identical , written M1 � M2,

if there is an isomorphism h : M1 � M2. Thus, M1 and M2 are structurally

identical if they differ only in a renaming of variables. It is immediate that

� defines an equivalence relation on AB(D). AB�(D) denotes the set of all

equivalence classes of AB(D) under �. The notation [M] will be used to denote

the equivalence class of M ∈ AB(D). Similarly, call ϕ1, ϕ2 ∈ ΥD structurally

identical, and write ϕ1 � ϕ2, precisely in the case that AtRep(ϕ1) � AtRep(ϕ2).

The relation � extends to equivalence classes in a natural way; [M1] � [M2] iff

M1 �M2.

2965Hegner S.J.: Internal Representation of Database Views

Call M1 and M2 information equivalent , written M1
∼= M2, if wfs(M1) |=|

wfs(M2); that is, if they define the same set of sentences in ΥD . It is trivial

that information equivalence implies structural identity, but the converse does

not hold in general. To obtain a sort of converse, it is necessary to work with

reduced sentences, as elaborated next.

Definition 17 (Minimal models and reduced sentences). Let ϕ ∈ ΥD .

Call ϕ conjunct reduced if for no proper subsetM of AtRep(ϕ) is it the case that

wfs(M) is logically equivalent to ϕ. As a simple example, ξ21 =

(∃x1)(∃x2)(R(x1)∧R(x2)) is not conjunct reduced since wfs(AtRep(ϕ)\{R(x1)})
= (∃x2)(R(x2)) is equivalent to ξ21. Call M ∈ AB(D) tuple minimal if it is of

the form AtRep(ϕ) for some conjunct reduced ϕ ∈ ΥD .

Proposition18 (Characterization of tuple-minimal atombases). Let

ϕ1, ϕ2 ∈ ΥD be conjunct reduced with ϕ1 |=| ϕ2; i.e., with ϕ1 and ϕ2 logically

equivalent. Then ϕ1 � ϕ2.

Proof. In view of Proposition 15, there are homomorphisms h1 : AtRep(ϕ1) �

AtRep(ϕ2) and h2 : AtRep(ϕ2) � AtRep(ϕ1). Furthermore, since ϕ1 and ϕ2

are conjunct reduced, these homomorphisms must be surjective, otherwise tu-

ples could be removed while retaining logical equivalence. Thus both h2 ◦ h1 :

AtRep(ϕ1) � AtRep(ϕ2) and h1 ◦ h2 : AtRep(ϕ2) � AtRep(ϕ1) are surjective

homomorphisms. Since the sets involved are finite, this means that they must

also be injective. Since the domain and codomain of each composition contains

exactly the same constants, it follows that these compositions must be isomor-

phisms, whence AtRep(ϕ1) � AtRep(ϕ2), and so ϕ1 � ϕ2, as required. �

Definition 19 (Canonical atombases). M ∈ AB(D) is called a canonical

atombase if wfs(M) is conjunct reduced. The set of all canonical atombases

for D is denoted CanAB(D).

Define CanAB�(D) to be the set of all equivalence classes of CanAB(D) under

�. In view of Proposition 18, two canonical atombases M1,M2 ∈ CanAB(D) are

in the same equivalence class of CanAB�(D) iff wfs(M1) |=| wfs(M2). Thus, for

M1,M2 ∈ CanAB(D), M1
∼=M2 iff M1 �M2.

Definition 20 (Constraint satisfaction for canonical atombases). Since

an M ∈ AB(D) is effectively a sentence in ΥD (represented as wfs(M)), the

characterization of what it means for such an M to satisfy a ϕ ∈ ΥD is trivial.

However, database constraints are of a more general form, and so a broader

characterization is required. While a direct definition in terms of sentences is

possible, it is more natural to provide a definition in terms of databases.

Let M ∈ AB(D) and let K be a finite subset of Const. A free completion of

M which excludes K is a pair 〈M ′, h〉 in which M ′ ∈ DB(D) and h : M � M ′

2966 Hegner S.J.: Internal Representation of Database Views

is a bijective homomorphism with the property that for every a ∈ Const(M),

h(a)
∈ K. In other words, in a free completion, every variable is replaced with a

distinct constant which does not occur in K.

For M ∈ AB(D) and ϕ ∈ WFS(D), say that M satisfies ϕ if M ′ ∈ LDB(D)

for every free completion 〈M ′, h〉 of M which excludes ConstOf(M) ∪
ConstOf(Constr(D)). The phrase “every free completion” may be replaced with

“some free completion” in the above definition, since the actual identities of

the new constants are of no consequence. This fact will be often used in that

which follows. In the case that M ∈ DB(D), this reduces to the usual notion of

satisfaction, since M itself is its only free completion. Define LAB(D), the legal

atombases of D, to be the subset of AB(D) consisting of those M which satisfy

every ϕ ∈ Constr(D).

Care must be taken with respect to the context in which this definition

is applied. For example, if Constr(D) = {(∃x)(∃y)(R(x)∧R(y)∧(x
= y))}, then
{R(x1), R(x2)} satisfies the constraint while the canonical, information-

equivalent reduction {R(x1)} does not. On the other hand, ifD consists ofR[AB]

governed by functional dependency B → A, then {R(x1, b), R(x2, b)} does not

satisfy the constraint while its information-identical reduction {R(x1, b)} does.

The solution is to disallow the first type of constraint and to repair the sec-

ond problem by restricting models to canonical atombases. Furthermore, since

constructions will sometimes yield non-canonical atombases which must be re-

duced, it is essential that such reductions preserve constraints which are al-

ready in place. Formally, say that ϕ ∈ WFS(D) is preserved under minimiza-

tion if for every M ∈ AB(D) which satisfies ϕ, every M ′ ∈ CanAB(D) with

wfs(M) |=| wfs(M ′) satisfies ϕ as well. The schema D is closed under mini-

mization if every ϕ ∈ Constr(D) is preserved under minimization. The view

Γ = (V, γ) is said to be closed under minimization precisely in the case that its

schema V has that property.

Database schemata whose constraints are defined by Horn clauses are closed

under minimization, as established in Proposition 22 below.

Definition 21 (Generalized Horn dependencies). The Generalized Horn

Dependencies, or GHDs [Hegner, 2008a, 3.15], include virtually all traditional

data dependencies which have been considered.. They are essentially the source-

to-target dependencies of [Fagin et al., 2005, Def. 2.1] with the source and target

schemata the same. They do not include the constrained dependencies of [Maher

and Srivastava, 1996], which involve predicates, such as inequality, on variables.

Each GHD is a member of WFS(D) of the following form, in which the Ai’s

and Bi’s are atoms.

(∀x1) . . . (∀xm)((A1∧ . . . ∧An) ⇒ ((∃y1) . . . (∃yr)(B1∧ . . . ∧Bs)))

Each xi occurs in some Aj ; no universally quantified variable occurs only in a Bj .

2967Hegner S.J.: Internal Representation of Database Views

As in traditional dependency theory, there are two subclasses. In a

tuple-generating dependency, or TGHD, each Ai and each Bj is in Atoms(D).

In an equality-generating dependency, or EGHD, each Ai ∈ Atoms(D), but

r = 0 (i.e., there are no existentially quantified variables), s = 1, and B1 ∈
VarEqAtoms ∪ {⊥}. The set of all TGHDs (resp. EGHDs, resp. GHDs) on D is

denoted TGHD(D) (resp. EGHD(D), resp. GHD(D)).

The GHDs are more liberal than classical database dependencies in sev-

eral useful ways. First of all, there is no requirement that n be greater than

zero. If n = 0, the antecedent set is always true; thus, a sentence in ΥD is ob-

tained; i.e., ΥD ⊆ GHD(D). As a specific example of such a constraint, consider

(∃y1)(∃y2)(R(y1, y2)), which states that the relation instance for R is always

nonempty. Second, if B1 = {⊥}, then ϕ ∈ EGHD(D) is called a mutual-exclusion

constraint. Such sentences are seldom considered as database dependencies, but

they do have uses in modelling. An example is the antisymmetry constraint

(∀x1)(∀x2)((R(x1, x2)∧R(x2, x1)) ⇒ ⊥). Finally, constant symbols are allowed

in a GHD. For example, (∀x1)(∀x2)(R(x1, x2) ⇒ S(x1, x2, ν)) might assert that

for every R-tuple, a corresponding S-tuple, padded with the constant ν in the

third position (representing a null value, for example), is required.

The problems of satisfaction and inference on Horn-sentence constraints has

been studied extensively, particularly in the context of an inference procedure

known as the chase. Originally developed over thirty years ago for the study of

basic database dependencies [Maier et al., 1979], it has recently seen renewed

interest in many areas of database theory, including in particular data exchange

[Fagin et al., 2005]. Because comprehensive and up-to-date presentations already

exist [Meier et al., 2009], the details will not be repeated here.

Given a GHD ϕ of the above form, {A1, . . . , An} is called the antecedent

set, denoted Antc(ϕ), while {B1, . . . , Bm} is called the consequent set, denoted

Cnsq(ϕ). There is a convenient way to represent satisfaction of a GHD in terms

of homomorphisms [Meier et al., 2009]. For ϕ a TGHD, M ∈ AB(D) satisfies

ϕ iff every homomorphism h : Antc(ϕ) � M extends to a homomorphism h′ :
Antc(ϕ) ∪ Cnsq(ϕ) � M which agrees with h̄ on Antc(ϕ). For ϕ an EGHD,

M ∈ AB(D) satisfies ϕ iff every homomorphism h : Antc(ϕ) � M respects the

equality embodied in Cnsq(ϕ); i.e., if Cnsq(ϕ) = {τ = τ ′}, then h(τ) = h(τ ′).
(Special case: the “equality”⊥ can never be satisfied, so an exclusion dependency

fails on ϕ if there is a homomorphism h : Antc(ϕ) � M .)

Proposition22 (Minimization preserves GHDs). If ϕ ∈ GHD(D), then ϕ

is preserved under minimization. Thus, if Constr(D) ⊆ GHD(D), then D is

closed under minimization.

Proof. Let M ∈ LAB(D), and let M ′ ∈ CanAB(D) with wfs(M) |=| wfs(M ′).
Without loss of generality, assume that M ′ ⊆ M ; i.e., that M ′ is obtained

2968 Hegner S.J.: Internal Representation of Database Views

from M by removing tuples, and let g : M ′
� M be the natural inclusion

homomorphism. Since InfoD〈M〉 = InfoD〈M ′〉, there is also a homomorphism

h : M � M ′. Furthermore, h ◦ g : M ′
� M ′ must be an isomorphism, since

M ′ is reduced. Without loss of generality, h may be chosen so that h ◦ g is

the identity. Now, let ϕ ∈ TGHD(D), and assume that M satisfies ϕ. Let hA :

Antc(ϕ) � M ′; then g ◦hA : Antc(ϕ) � M , and so extends to a homomorphism

hAC : Antc(ϕ) ∪ Cnsq(ϕ) � M . Then h ◦ g ◦ hA = hA : Antc(ϕ) � M ′ extends
to h ◦ hAC : Antc(ϕ) ∪ Cnsq(ϕ) � M ′, thus establishing that M ′ satisfies ϕ.

For ϕ ∈ EGHD(D), the proof is trivial, since if M satisfies ϕ, then any

M ′ ⊆M also satisfies ϕ. �

Definition 23 (Canonical databases with constraints). Let CanLAB(D)

denote the set of all M ∈ CanAB(D) which satisfy every ϕ ∈ Constr(D). Thus,

CanLAB(D) = CanAB(D) ∩ LAB(D). Define CanLAB�(D) to be the subset of

CanAB�(D) consisting of just those equivalence classes containing members of

CanLAB(D). IfD is closed under minimization, then by Proposition 22, for every

M ∈ LAB(D), there is a block [M ′] ∈ CanLAB�(D) with M |=| M ′.
A given M ∈ DB(D) is equivalent only to itself under �, so each complete

databaseM defines an equivalence class of CanAB�(D) containing only itself. As

a slight abuse of notation, eachM ∈ DB(D) will also be regarded as a member of

AB�(D) and CanAB�(D), and eachM ∈ LDB(D) will be regarded as a member

of CanLAB�(D) as well.

Definition 24 (Extended information). In the constructions for embed-

dable views of the next section, it will be crucial to regard a given G ∈ AB(D)

as a “skeleton” for a G′ ∈ CanLAB(D) in the sense that G′ is the least extension
of G to CanLAB(D). To this end, define the extended information of G with re-

spect to D [Hegner, 2008a, 3.11(b)] to be XInfoD〈G〉 = {ϕ ∈ ΥD | Constr(D) ∪
InfoD〈G〉 |= ϕ} if Constr(D)∪ InfoD〈G〉 is satisfiable, and {⊥} if it is not satisfi-

able. Thus, the extended information of G identifies the information which must

hold in every G′ ∈ LAB(D) with InfoD〈G〉 ⊆ InfoD〈G′〉. If G is to have such a

least extension, it is clear that it must be given by an M ∈ CanLAB(D) with

wfs(M) |=| XInfoD〈G〉.
Even if it is not {⊥}, there is no guarantee that XInfoD〈G〉 represents the

information of some G′ ∈ AB(D), because there is no guarantee that XInfoD〈G〉
is finitely generated. If it is not finitely generated, then a database which would

recapture its information would necessarily be infinite. Call G ∈ AB(D) finitary

in D if XInfoD〈G〉
= {⊥} and is finitely generated in ΥD . Say that D has the

finite-generation property if everyG ∈ AB(D) for which XInfoD〈G〉
= {⊥} is fini-
tary. If G is finitary, XInfoD〈G〉 must have a basis consisting of a single element

ψG ∈ ΥD (just conjoin the elements of the finite cover). In this case, a semantic

extension in D of G is any G′ ∈ CanLAB(D) with InfoD〈G′〉 |=| ψ. All such ex-

2969Hegner S.J.: Internal Representation of Database Views

tensions are structurally identical, and so it is natural to view the collection as a

member of CanAB�(D). In the case that it exists, let SemExtD〈G〉 ∈ CanAB�(D)

denote the semantic extension of G in D.

SemExtD〈G〉 need not be a member of CanLAB�(D). For example, the se-

mantic completion of the state M53 = {R(a0)} ∈ DB(E5) of the schema E5 of

Examples 37 is its own semantic extension but is not in LDB(E5). Say that D

has the semantic extension property if it has the finite-generation property, and

for each G ∈ AB(D), SemExtD〈G〉 ∈ CanLAB�(D). Fortunately, a schema con-

strained by GHDs has the semantic extension property, provided it has the finite-

generation property. Indeed, if the chase procedure terminates on a G ∈ AB(D),

then it provides a G ∈ LAB(D) whose reduction is a semantic extension.1 In

[Meier et al., 2009], this problem of termination is studied extensively, and many

conditions which guarantee termination are identified. An information-oriented

presentation of the same ideas is given in [Hegner, 2008a, Thm. 3.20]. In any

case, the following holds.

Proposition25. If Constr(D) is a finite set of GHDs which has the finite-

generation property, then D has the semantic-extension property as well. �

4 Embeddable Views

Using the tools developed in the previous section, the central idea of embedding

a view into the main schema is developed in this section. The overall roadmap of

the strategy is depicted in Fig. 1. Although the concrete examples all lie within

the domain of schemata constrained by GHDs and views defined by conjunctive

queries, it nevertheless seems appropriate to present the definitions indepen-

dently of these concrete contexts. The two main steps of this general approach

are shown on the top line. In the first step, the usual notion of database mapping

is extended to canonical atombases. In the second step, the information embod-

ied in the view state is lifted back to the main schema, in a manner analogous

to the semantic morphisms of [Hegner, 2008c]. The steps shown in dashed lines

represent the constructions for the concrete case of views defined by conjunctive

queries and schemata constrained by GHDs. In the first step, the definition of

the view in the relational calculus, as a query, is used to define the informa-

tion in the main schema necessary to represent the state of the view. In the

second step. this information is extended semantically, to satisfy the GHDs of

the main schema. For reasons of compactness of presentation, all examples have

been placed at the end of the section in Examples 37. Nevertheless, to tie the

1 The chase procedure, as presented in [Fagin et al., 2005] and [Meier et al., 2009],
does not include all of the extensions incorporated in GHDs, such as information
sentences and mutual-exclusion constraints. However, the modifications necessary to
incorporate them into the algorithms of those papers are very straightforward, and
will not be elaborated here.

2970 Hegner S.J.: Internal Representation of Database Views

CanLAB�(D) CanLAB�(V)

AB�(D)

CanLAB�(D)

View morphism
γCanLAB�

Semantic
embedding
γSmEmb

Syntactic
representation

SynRep〈−, Γ 〉

Semantic
extension

SemExtD〈−〉

Main state
[M]

View state
[N]

Representation

of [N] in D:

SemRep〈[N], Γ 〉

Figure 1: Internal representation for the view Γ = (V, γ)

abstract definitions to concrete examples, the reader may wish to look ahead to

these examples as this section is studied.

Notation 26. Throughout this section, unless explicitly stated to the contrary,

take D to be a constrained database schema which is closed under minimization.

Also, Γ = (V, γ) will be taken to be an LDB-view of D; further conditions will

be introduced in Notation 30.

Lemma27. If Γ is an external LDB-view of D, then for every M ∈
CanLAB(D), γAB(M) ∈ LAB(V). Furthermore, if M ′ ∈ CanLAB(D) with M �
M ′, then γAB(M) � γAB(M

′) as well.

Proof. Let K = ConstOf(M) ∪ ConstOf(Constr(D)) ∪ ConstOf(γ) ∪
ConstOf(Constr(V)), and let 〈M ′, h〉 be a free completion of M which excludes

K. Then γAB(M
′) ∈ LDB(V), just by the definition of LDB-view. Let K ′ =

{h(x) | x ∈ VarsOf(M)}, and let N ∈ AB(V) be obtained by replacing each

a ∈ K ′ with h−1(a) in γAB(M
′). Thus, the new constants introduced by h are

replaced by the corresponding variables. It is easy to see that 〈γAB(M
′), h′〉 is a

free completion of N , where h′ is the identity on ConstOf(N) and h′(x) = h(x)

for x ∈ VarsOf(N). Hence N ∈ LAB(D). That γAB(M) = N is immediate from

the construction.

The structural equivalence of γAB(M) and γAB(M
′), given that property for

M and M ′, follows directly from the above argument. �

Definition 28 (External CanLAB-views). In the context of Lemma 27, there

is no guarantee that γAB(M) will be in CanLAB(V), as the example surrounding

N22 of Examples 37 illustrates. However, provided that Γ is closed under min-

imization, γAB(M) can be reduced to such a state. More formally, if Γ is closed

under minimization and γAB(M) ∈ LAB(V) for each M ∈ CanLAB(D), call γ a

CanLAB-morphism and Γ a CanLAB-view . γAB(M) need not be in CanLAB(V),

2971Hegner S.J.: Internal Representation of Database Views

but it may always be reduced to such a database, since V is closed under mini-

mization. In that case, let γCanLAB�
: CanLAB�(D) → CanLAB�(V) denote the

function which sends [M] ∈ CanLAB�(D) to the the equivalence class of all

N ∈ CanLAB(V) which are information equivalent to γAB(M).

Definition 29 (Information-monotonic views). The view Γ is information

monotonic if for any M1,M2 ∈ AB(D) with InfoD〈M1〉 ⊆ InfoD〈M2〉,
InfoV〈γAB(M1)〉 ⊆ InfoV〈γAB(M2)〉. As long as none of the defining formulas of the

from γR involves any negation, then Γ is information monotonic. In particular,

all views of class ∃∧+ are information monotonic.

Notation 30. For the rest of this section, unless specifically stated to the con-

trary, let Γ = (V, γ) be a variable normalized and information monotonic ex-

ternal view of D which is closed under minimization. In light of Lemma 27, this

implies that Γ must be a CanLAB-view.

Definition 31 (Internal representation of an external view). A repre-

sentation of a view state [N] ∈ CanLAB�(V) is a state [G] ∈ CanLAB�(D)

of the main schema which embodies the information ReflInfo〈N,Γ 〉 common to

all states of D which map to [N]. This may be recaptured succinctly by requiring

that it be initial amongst all states which map to [N]. Formally, a semantic repre-

sentation of [N] ∈ CanLAB�(V) is a [G] ∈ CanLAB�(D) with the property that

γCanLAB�
([G]) = [N], and for any [M] ∈ CanLAB�(D) with γCanLAB�

([M]) = [N],

[G] � [M]. If every [N] ∈ CanLAB�(V) admits a semantic representation, then

Γ is called semantically embeddable (in D). It is immediate that any two se-

mantic representations of [N] are structurally identical, since they must contain

the same information. If [N] ∈ CanLAB�(V) is semantically embeddable, define

the semantic representation set of N along Γ , denoted SemRep〈[N], Γ 〉, as the

equivalence class in CanLAB�(D) containing all semantic representations of [N].

If Γ is semantically embeddable, the function which sends each [N] ∈
CanLAB�(V) to SemRep〈[N], Γ 〉 is called the semantic embedding function for

Γ , and is denoted γSmEmb : CanLAB�(V) → CanLAB�(D). The composition

γSmEmb ◦ γCanLAB�
is called the internal representation function for Γ , and is

denoted −→γ : CanLAB�(D) → CanLAB�(D). It represents the top line of Fig. 1.

The definition of −→γ provides the desired representation of Γ entirely within

the schema D. The definition is, however, completely abstract. The next step is

to develop an explicit representation for −→γ based upon the view interpretation

formulas and the constraints of D, as sketched by the dashed lines of Fig. 1.

Definition 32 (Syntactic representation and lift). [G] ∈ AB�(D) is a

syntactic representation of [N] ∈ CanLAB�(V) if for every [M] ∈ CanLAB�(D),

[N] � γCanLAB�
([M]) iff [G] � [M]. If every [N] ∈ CanLAB�(V) admits a syn-

tactic representation, then Γ is called syntactically embeddable (in D). Since

2972 Hegner S.J.: Internal Representation of Database Views

Γ is required to be information monotonic, every semantic representation is a

syntactic representation, although the converse fails to hold, as will be seen in

Examples 37 below.

For a view of class ∃∧+, it is possible to construct explicitly a syntactic repre-

sentation for [N] ∈ CanLAB�(V). Choose any representativeN ∈ [N], and define

the syntactic lift of N along Γ to be SynLift〈N,Γ 〉 = ⋃{AtRep(Substf〈γ, t〉) | t ∈
N}. Thus SynLift〈N,Γ 〉 ∈ AB(D). Define the canonical syntactic representation

of N in Γ , denoted SynRep〈N,Γ 〉, to be the equivalence class of SynLift〈N,Γ 〉
in AB�(D). This construction is independent of the particular choice of N from

in [N] and so the notation SynRep〈[N], Γ 〉 will be employed.

The following observation is immediate from the construction.

Observation 33. If Γ is of class ∃∧+, then for every [N] ∈ CanLAB�(V),

SynRep〈[N], Γ 〉 is a syntactic representation of [N] along Γ . In particular, Γ is

syntactically embeddable. �

The construction which formalizes the dotted lower path of Fig. 1 is developed

explicitly in the next three items.

Lemma34. If D has the semantic extension property, then for any G ∈
AB(D) and G′ ∈ CanLAB(D), G � G′ iff SemExtD〈G〉 � [G′].

Proof. Suppose that G � G′. Then it must be the case that InfoD〈G〉 ⊆
InfoD〈G′〉. Since XInfoD〈G〉 is the least information which any G′′ ∈ LAB(D)

with InfoD〈G〉 ⊆ InfoD〈G′′〉 may have, it follows that XInfoD〈G〉 ⊆ InfoD〈G′〉,
whence SemExtD〈G〉 � [G′].

An invocation of Proposition 15 establishes the converse. �

Proposition35. If D has the semantic extension property and Γ is of class

∃∧+, then Γ is semantically embeddable.

Proof. By Observation 33, Γ is syntactically representable, with SynRep〈[N], Γ 〉
a syntactic representation for a given [N] ∈ CanLAB�(D). The result now follows

from Lemma 34. �

Theorem 36 (Explicit semantic representation). If Constr(D) is a set of

GHDs with the finite-generation property and Γ is of class ∃∧+, then Γ is

semantically embeddable, and for any [M] ∈ CanLAB�(D), SemRep〈[M], Γ 〉 =
SemExtD〈SynRep〈γCanLAB�

([M]), Γ 〉〉.
Proof. The proof follows from Proposition 35 and Proposition 25. �

Examples 37. In order to clarify the ideas of the syntactic and semantic repre-

sentation, some examples are in order. First, let E2 be the relational schema with

the single relation symbol R[AB] and no constraints. Let ΠE2

A = (W21, π
E2

A)

2973Hegner S.J.: Internal Representation of Database Views

be the view whose schema W21 has the single relational symbol RA[A] and

whose view morphism πE2

A is the projection of R[AB] onto RA[A]. Let N21 =

{RA(a0), RA(a1)} ∈ LDB(W21). Then a member of SynRep〈[N21], Π
E2

A 〉 has the
form {R(a0, x0), R(a1, x1)}, and all such members differ only in renaming of x0
and x1. In this example, SynRep〈[N], ΠE2

A 〉 and SemRep〈[N], ΠE2

A 〉 are identical

for all [N] ∈ CanLAB(W21). The internal representation function
−−→
πE2

A sends, for

example, [{R(a0, b0), R(a1, b1)}] to [{R(a0, x0), R(a1, x1)}]; that is, it replaces

the constants b0 and b1 with distinct variables.

Next, consider a setting which is identical to the above example, save that

the main schema now has an additional relation symbol S[AB] whose instance is

forced to be identical to that of R. More precisely, let E3 have two relation sym-

bols R[AB] and S[AB], constrained by (∀x)(∀y)(R(x, y) ⇔ S(x, y)). The view

ΠE3

A = (W31, π
E3

R[A]) has W31 = W21, with π
E3

R[A] the projection of R[AB] onto

RA[A]. Syntactic representations are not unique in this context. Indeed, an alter-

native syntactic representation replaces R with S. Thus, [{S(a0, x0), S(a1, x1)}]
is also a syntactic representation of [N21], as is [{R(a0, x0), S(a1, x1)}]. On the

other hand, a minimal semantic representation must now include both R and

S, so such a representation for [N21] would be [M3s] = [{R(a0, x0), R(a1, x1),
S(a0, x0), S(a1, x1)}]. Note that [M3s] is a syntactic representation as well.

Now return to E2 above, but let ΠE2

A+B = (W32, π
E2

A+B) be the view whose

schema W32 contains two relation symbols RA[A] and RB[B], and whose view

morphism πE2

A+B includes the projections of R[AB] onto RA[A] and onto RB [B].

Thus (πE2

A+B)LDB
: {R(a, b)} �→ {RA(a), RB(b)}, with the obvious extension to

larger sets. Let [N22] = [{RA(a), RB(b)}]; then SemRep〈[N22], Γ 〉 = [{R(a, x),
R(x, b)}]. Let M22 = {R(a, x), R(x, b)}; then (πE2

A+B)AB(M22) = {RA(a),

RB(b), RA(x), RB(x)} and not just N22. In the terminology of [Hegner, 2008a,

4.8], orphan tuples have arisen. Orphan tuples may be avoided by requiring that

the view reflect deletions [Hegner, 2008a, 4.9-4.11]; that is, by requiring that

each deletion update to the view be representable as a deletion update in the

main schema. However, in the current context, there is no need to enforce such

a condition. Orphan tuples add no information and so are harmless in terms of

semantics; they are simply removed in the process of minimization. This exam-

ple does nevertheless illustrate that it cannot be expected that the image of a

canonical legal database be itself canonical.

The examples considered so far do not involve any nontrivial constraints.

However, constraints play an important role. To illustrate, let E4 be the schema

with two relational symbols R[AB] and S[BC], subject to the inclusion de-

pendency R[B] ⊆ S[B]. Let ΠE4

A = (W41, π
E4

A) be a view which is similar

to ΠE2

A . W41 has the single relation symbol RA[A], and πE4

A projects R[AB]

onto RA[A] and ignores S[BC]. Let N41 = {RA(a0)} ∈ LDB(W41). Then

SemRep〈N41, Π
E4

A 〉 is the equivalence class containing states of the form M41 =

2974 Hegner S.J.: Internal Representation of Database Views

{R(a0, x0), S(x0, y0)}. In particular, the presence of the tuple S(x0, y0) is man-

dated by the inclusion dependency. On the other hand, a state of the form

M42 = {R(a0, x0)} is a syntactic representation of N41 but not a semantic one.

Not all constraints are suitable for a theory of representations. For example,

let E5 have three unary relation symbols R[A], S[A], and T [A], with the con-

straint (∀x)(R(x) ⇒ (S(x)∨T (x)). Let ΠE5

R = (W51, π
E5

R) be the view whose

schema W51 contains the single relation symbol R′[A] and whose view mor-

phism πE5

R preserves R[A] (as R′[A]) but ignores S[A] and T [A] completely. The

view state N51 = {R′(a0)} has the syntactic representation M51 = {R(a0)} in

E5. However, SemRep〈N51, Π
E5

R 〉 does not exist, since SemExtD〈M51〉 = M51
∈
CanLAB�(D). This illustrates the importance of the semantic extension property

and the consequent importance of GHDs.

Finally, it is important to note that it is not only the constraints on the

main schema but also the nature of the view morphism which is important in

determining whether or not the view is canonically embeddable. Let E6 have

the two unary relation symbols R[A] and S[A] with no additional constraints,

and define the view ΠE6

R∨S = (W61, ω
R∨S
61) to have the schema W61 with the

single unary relation symbol T [A], and (ωR∨S
61)

T
= R(xA)∨S(xA). Arguing as

above, it is easy to see that even for a simple view state such as N61 = {T (a0)},
SemRep〈N61, ω

R∨S
61 〉 cannot exist. In this case, no syntactic representation exists

either. This illustrates the importance of views of class ∃∧+.

5 The Partial Lattice Structure of CanLAB�(D)

The set CanLAB�(D) of canonical legal databases of D admits a natural partial

lattice structure, in the sense of in the sense of [Grätzer, 1978, p. 41], with join

and meet corresponding to union and intersection of information, respectively.

The meet is always defined, and the join is defined whenever the two states have

an upper bound. The utility of this natural structure will be demonstrated in

the next section, in an application to the view-update problem. In this section,

these basic lattice-theoretic properties are developed.

Notation 38. Throughout this section, unless stated specifically to the contrary,

take D to be a database schema with the semantic extension property.

Definition 39 (The join structure of CanLAB�(D)). Let [M1], [M2] ∈
CanLAB�(D). Without loss of generality, assume that the set {M1,M2} of rep-

resentatives is variable normalized ; i.e., that M1 and M2 have no variables in

common. Define [M1] � [M2] = SemExtD〈M1 ∪M2〉 whenever the latter exists.

As a natural example, consider again the schema E1 introduced in Sec-

tion 1 with the single ternary relation symbol R[ABC], constrained by the

join dependency � [AB,BC], and the two projections ΠE1

AB = (W11, π
E1

AB) and

2975Hegner S.J.: Internal Representation of Database Views

ΠE1

BC = (W12, π
E1

BC). Then the classical reconstruction constraint, that any state

M ∈ LDB(E1) may be recovered from the join of its internalized AB projec-

tion
−−→
πE1

AB (M) and its internalized BC projection
−−→
πE1

BC (M), is recaptured by the

lattice join equality: M =
−−→
πE1

AB (M) �
−−→
πE1

BC (M). Thus, in this special but very

important case, the lattice join is the same as the database join.

Observation 40. For any [M1], [M2] ∈ CanLAB�(D), whenever it exists, [M1]�
[M2] is the least upper bound of [M1] and [M2] in CanLAB�(D) with respect to

the ordering �, and so defines a partial join operation on that set. �

Definition 41 (Database product). To define the meet operation, the fol-

lowing product construction is central. Let t1, t2 ∈ GndAtoms(D). If t1 and

t2 are both R-atoms for the same R ∈ Rels(D), define the product t1 × t2
to be the attribute-by-attribute product of t1 and t2; i.e., the R-tuple with

t[A] = 〈t1[A], t2[A]〉 for each A ∈ ArD(R). Here 〈t1[A], t2[A]〉 is just an ordered

pair of values. If t1 and t2 are atoms associated with distinct relations R1 and

R2; i.e., t1 is an R1-atom and t2 is an R2 atom with R1
= R2, then t1 × t2 is

undefined. Now, for M1,M2 ∈ CanAB(D), define M1 ×M2 to be the product of

all tuples inM1 with tuples inM2; i.e.,M1×M2 = {t1×t2 | (t1 ∈M1) and (t2 ∈
M2) and t1 × t2 defined}.

A pair-renaming function δ : Const×Const → Const sends each pair 〈b, b〉 ∈
Const × Const containing two instances of the same constant to itself., and

every other pair of constants to a distinct constant. Since Const is a count-

able set, such a function always exists. The function δ extends naturally to

products of tuples and of databases in a homomorphism-like fashion. Specif-

ically, for t1, t2 ∈ GndAtoms(D) for the same R, define δ̄(t1 × t2) to be the

R-tuple with δ̄(t1 × t2)[A] = δ(〈t1[A], t2[A]〉) for each A ∈ ArD(R). Then, for

M1,M2 ∈ AB�(D), define δ̄(M1 × M2) = {δ̄(t) | t ∈ M1 × M2}, and define

M1 �δ M2 = δ̄(M1 ×M2).

Lemma42. Let M1,M2 ∈ AB�(D), and let δ be any pair-renaming function.

Then InfoD〈M1 �δ M2〉 = InfoD〈M1〉 ∩ InfoD〈M2〉.
Proof. Let M ∈ AB�(D) with M � M1 and M � M2, so that there are ho-

momorphisms hi : M � Mi for i ∈ {1, 2}. It is easy to see that δ ◦ 〈h1, h2〉 :

x �→ δ(〈h1(x), h2(x)〉) defines a homomorphism δ ◦ 〈h1, h2〉 : M � M1 �δ M2,

whenceM �M1�δM2. In particular, choosing ϕ ∈ InfoD〈M1〉∩ InfoD〈M2〉, and
fixing M ∈ DBModD(ϕ)∩CanAB(D), it follows that ϕ ∈ InfoD〈M1 �δ M2〉; i.e.,
InfoD〈M1〉 ∩ InfoD〈M2〉 ⊆ InfoD〈M1 �δ M2〉. On the other hand, for i ∈ {1, 2},
there is a natural homomorphism gi :M1�δM2 →Mi given by x �→ πi(δ

−1(x)),

with πi the projection of the ith element of an ordered pair. ThusM1�δM2 �Mi,

so InfoD〈M1 �δ M2〉 ⊆ InfoD〈Mi〉, completing the proof. �

2976 Hegner S.J.: Internal Representation of Database Views

Proposition43 (Closure of LAB(D) under meet). If M1,M2 ∈ LAB(D),

then M1 �δ M2 ∈ LAB(D) for any pair-renaming function δ.

Proof. Using Lemma 42 and the monotonicity of information (Definition 11),

InfoD〈SemExtD〈M1 �δ M2〉〉 ⊆ InfoD〈SemExtD〈Mi〉〉 = InfoD〈Mi〉 for i ∈ {1, 2}.
Thus, applying Lemma 42 again, InfoD〈SemExtD〈M1 �δ M2〉〉 ⊆ InfoD〈M1〉 ∩
InfoD〈M2〉 = InfoD〈M1�δM2〉. Since InfoD〈M1�δM2〉 ⊆ InfoD〈SemExtD〈M1�δ

M2〉〉, these two must be equal, and so M1 �δ M2 ∈ LAB(D), as required. �

Definition 44 (The meet structure of CanLAB�(D)). It is immediate from

Lemma 42 that for any M1,M2 ∈ AB�(D) and any pair renaming functions

δ and δ′, M1 �δ M2 � M1 �δ′ M2. Thus, for [M1], [M2],∈ CanLAB(D), the

meet of [M1] and [M2], denoted [M1]� [M2], may be (and is) defined unambigu-

ously as the equivalence class of CanAB�(D) containing a tuple-minimization of

M1�δM2 for any pair-renaming function δ. By Proposition 43, this meet is also in

CanLAB�(D), completing the definition of the meet structure for CanLAB�(D).

The information-preservation property of the meet structure is closely related

to the fact that Horn sentences (and in particular Boolean conjunctive queries)

are closed under product [Horn, 1951], [Fagin, 1982]. Indeed, it is not difficult to

see that the product construction of Definition 41 is essentially a model-theoretic

product in disguise.

6 An Application to the View-Update Problem

The problem of how best to reflect an update on a view back to the main schema

has long been a subject of importance in database systems. One of the major

approaches is the constant-complement strategy, introduced in [Bancilhon and

Spyratos, 1981]. The idea is to decompose the main schema D into the view

Γ1 to be updated and a complementary view Γ2, with the property that the

state of D may be recovered from the combined states of Γ1 and Γ2. Given

an update to the view Γ1, there is at most one update to D which holds Γ2

constant. The intuition behind this approach is that Γ2 represents the part of

D which is not part of Γ1, and so should be fixed for the update to Γ1. A major

complication is that the reflection of the view update to the main schema, in the

most general case, depends upon the choice of complement Γ2. Despite this, it is

almost always the case in practice that there is one “natural” complement, with

all others appearing “contrived”. In [Hegner, 2004], it is shown that by requiring

the view mappings to respect the natural order structure on the databases, the

reflection of a view update to the main schema is independent of the choice

of complement, provided that the view update itself is decomposable into a

sequence of insertions and deletions. Unfortunately, such decompositions are

often not possible when working with complete databases. In this section, it is

2977Hegner S.J.: Internal Representation of Database Views

shown that by allowing atombases as intermediate results, the uniqueness result

for view-update reflections may be extended beyond sequences of insertions and

deletions.

Notation 45. Throughout this section, unless stated specifically to the contrary,

D will be taken to be a database schema with the semantic-extension property,

with Γ = (V, γ), Γ1 = (V1, γ1), Γ2 = (V2, γ2), and Γ3 = (V3, γ3) semantically

representable external views of D of class ∃∧+.

Definition 46 (Updates and reflections). The definitions given here are

adapted from those of [Hegner, 2008a, 4.2]. An update on D is a pair ([M1], [M2])

∈ CanLAB�(D)×CanLAB�(D). [M1] is the current state, and [M2] the new state.

It is an insertion if [M1] � [M2], and a deletion if [M2] � [M1]. It is called com-

plete if [Mi] ∈ LDB(D) for i ∈ {1, 2}. To describe the situation surrounding an

update request on Γ , it is sufficient to specify the current state [M] of the main

schema and the desired new state [N] of the view schema V. The current state

of the view can be computed as γCanLAB�
([M]); it is only the new state [M ′]

of the main schema (subject to [N] = γCanLAB�
([M ′])) which must be obtained

from an update strategy. Formally, an update request from Γ to D is a pair

([M], [N]) in which [M] ∈ CanLAB�(D) (the old state of the main schema) and

[N] ∈ CanLAB�(V) (the new state of the view schema). If γCanLAB�
([M]) � [N],

it is called an insertion request, and if [N] � γCanLAB�
([M]), it is called a dele-

tion request. Collectively, insertion requests and deletion requests are termed

unidirectional update requests. If (M,N) ∈ LDB(D) × LDB(V), then (M,N)

is called a complete update request. A realization of ([M], [N]) along Γ is an

update ([M], [M ′]) on D with the property that γCanLAB�
([M ′]) = [N]. The

update ([M], [M ′]) is called a reflection (or translation) of the view update

(γCanLAB�
([M]), [N]) with base state [M]. In this work, attention will be focused

upon the support of complete update requests, although updates which are not

complete will be employed in a supporting rôle.

Definition 47 (Set-based complementary pairs). According to the

classical definition [Bancilhon and Spyratos, 1981, Def. 4.4] , the set {Γ1, Γ2}
forms a set-based complementary pair if the decomposition mapping (γ1)LDB

×
(γ2)LDB

: LDB(D) → LDB(V1) × LDB(V2) which is defined on elements by

M �→ ((γ1)LDB
(M), (γ2)LDB

(M)) is injective. In this case, Γi is said to be a set-

based complement of Γ3−i for i ∈ {1, 2}. Let (M,N) ∈ LDB(D)× LDB(V1) be a

complete update request from Γ1 to D. There is at most one translation of this

update request which keeps the state (γ2)LDB
(M) constant; indeed, if a transla-

tion exists, the new state M ′ of D must be the inverse image of (N, (γ2)LDB
(M))

under (γ1)LDB
× (γ2)LDB

, and the latter is injective just by definition of comple-

mentary pair. If it exists, it is called the translation of (M,N) with constant

complement Γ2, and is denoted CCTransl〈(M,N), Γ1;Γ2〉.

2978 Hegner S.J.: Internal Representation of Database Views

As noted in the introduction to this section, complements are not unique and

the reflection of an update request may depend upon the choice of complement;

see [Hegner, 2004, Sec. 1.3] for examples. As also noted in the introduction, in

[Hegner, 2004] it is shown that if order structure is imposed upon the views and

the decomposition mapping is required to respect that structure, then for an

order-based view update, that is, one which is realizable as a sequence of inser-

tions and deletions, the translation is independent of the choice of complement.

Unfortunately, many updates are not order based. For example, let E7 con-

tain the single relation symbol R[ABC], constrained by the functional depen-

dency B → A. The pair of views consisting of the AB-projection ΠE7

AB =

(W71, π
E7

AB) and the BC projection ΠE7

BC = (W72, π
E7

BC) forms a set-based com-

plementary pair, and is indeed a prototypical lossless decomposition in tra-

ditional database theory. Note that B → A embeds into W71. Let M71 =

{R(a1, b1, c1)} ∈ LDB(E7), and consider the update on ΠE7

AB which replaces

(πE7

AB)LDB
(M) = {RAB(a1, b1)} with {RAB(a2, b1)}. The translation of this up-

date with constant complement ΠE7

BC is (M71,M72) with M72 = {R(a2, b1, c1)},
which is not realizable as a sequence of insertions and deletions which lie in

LDB(D). Thus, the theory of [Hegner, 2004] cannot address this case. However,

it is realizable as the deletion (M71, [M73]) followed by the insertion ([M73],M72),

with M73 = {R(x, b1, c1)} ∈ CanLAB(D). It will now be shown how to accom-

modate this idea formally.

Definition 48 (Information-based complements). Call {Γ1, Γ2} an info-

based complementary pair if for all M ∈ LDB(D), SemExtD〈−→γ1 (M) ∪−→γ2 (M)〉 =
M . Thus, in an info-based complementary pair, the information of the state of

the main schema is the extended information defined by the states of the two

views. It is easy to see that every info-based complementary pair is also a set-

based complementary pair. This is a very reasonable condition which is satisfied

by common decompositions, including in particular those whose reconstruction

mapping (the inverse of the decomposition mapping (γ1)LDB
× (γ2)LDB

) is the join.

Unfortunately, this property does not extend uniformly to CanLAB(D). To

see this, continue with the example of Definition 47 and consider the state

M74 = {R(a0, x0, c0), R(a1, x1, c1)} ∈ CanLAB(D). The two projections of this

state are M75 = (πE7

AB)AB = {RAB(a0, x0), RAB(a1, x1)} and M76 = (πE7

BC)AB =

{RBC(x0, c0), RBC(x1, c1)}. As each of these states is unique only up to essen-

tial identity, the variables may be renamed, so that M76 may be replaced with

M76′ = {RBC(x2, c0), RBC(x3, c1)}, for example. However, M74 cannot be re-

covered from M75 and M76′ , and thus the decomposition is not lossless. The

problem in the above example is that the variables x1 and x2 from M74 appear

in both view states, where they may be independently renamed, thus deleting

essential information for the reconstruction. It is for this reason that the formula-

tion of complements and updates given above is entirely within the LDB-context;

2979Hegner S.J.: Internal Representation of Database Views

i.e., using complete databases. Nevertheless, it is possible to use variables in a

critical way in order to extend the uniqueness results to view updates which are

not order based, as shown in the following theorem.

Theorem 49. Let D have the semantic extension property, let {Γ1, Γ2} and

{Γ1, Γ3} be info-based complementary pairs, and let (M,N) ∈
LDB(D)×LDB(V1) be an update request from Γ1 to D with the property that both

CCTransl〈(M,N), Γ1;Γ2〉 and CCTransl〈(M,N), Γ1;Γ3〉 exist. Then these two

translations are the same; i.e., CCTransl〈(M,N), Γ1;Γ2〉 =

CCTransl〈(M,N), Γ1;Γ3〉.
Proof. The core idea of the proof is to show that if (M,N) is realizable with

constant complement Γ2 as well as with constant complement Γ3, then it is

realizable with both Γ2 and Γ3 constant. This is accomplished by decomposing

the realization of (M,N) into a deletion followed by an insertion — something

which is in general impossible when working only with complete states but which

is possible when atombases are allowed.

Formally, let Mi denote CCTransl〈(M,N), Γ1;Γi〉 and then define [M ′
i] =

M�Mi for i ∈ {2, 3}. Think of [M ′
i] as the state obtained fromM by deleting the

information in the state of Γ1 which is not common to both M and Mi. Thus, it

represents a deletion of information fromM with constant complement Γi. Since

(M, [M ′
i]) defines a deletion of information, it can only reduce the information

in the state of Γ4−i; it cannot add information to it. More precisely, −→γ3 ([M ′
2]) �−→γ3 (M) and −→γ2 ([M ′

3]) � −→γ2 (M). Next, observe that −→γi ([M ′
i]) = −→γi (M) for i ∈

{2, 3}; that is, the update (M, [M ′
i]) leaves the state of Γi constant. Since [M

′
i] �

M for i ∈ {2, 3}, [M ′
2] � [M ′

3] � M is well defined and in LAB(D). Letting [M]

denote [M ′
2] � [M ′

3], it follows that −→γi ([M ′]) = −→γi (M) for i ∈ {2, 3}; i.e., [M ′]
keeps the states of both Γ2 and Γ3 constant.

The claim is that ((γ1)SmEmb(N)) � [M ′] exists and is equal to both

CCTransl〈(M,N), Γ1;Γ2〉 and CCTransl〈(M,N), Γ1;Γ3〉. The key is to establish

that −→γ1 ([M ′
i]) � −→γi ([M ′

i]) = [M ′
i] for i ∈ {2, 3}. Even though {Γ1, Γi} is a com-

plementary pair, this is not quite immediate, since [M ′
i] is not necessarily in

LDB(D). However, the elements of VarsOf([M ′
i]) occur only in −→γ1([M ′

i]) and not

in −→γi ([M ′
i]), since the latter equals −→γi (M). Thus, the problems noted in the ex-

ample of Definition 47 cannot occur. More formally, −→γ1 ([M ′
i])�−→γi ([M ′

i]) = [M ′
i]

can be established by replacing [M ′
i] with any free completion which excludes

ConstOf([M ′
i]) ∪ ConstOf(Constr(D)), and noting that the new constants occur

only in −→γ1 ([M ′
i]). Furthermore, −→γ1 ([M ′

2]) = −→γ1([M ′
3]) = −→γ1 ([M ′]), since they

all define the same deletion on Γ1. Then, since [M ′
i] and [M ′] agree on both

Γ1 and Γi, and given that {Γ1, Γi} is a complementary pair for i ∈ {2, 3},
[M ′

2] = [M ′
3] = [M ′]. Since (γ1)SmEmb(N) � [M ′

i] = CCTransl〈(M,N), Γ1;Γi〉,
it follows that (γ1)SmEmb(N) � [M ′] = CCTransl〈(M,N), Γ1;Γi〉 as well; in par-

ticular CCTransl〈(M,N), Γ1;Γ2〉 = CCTransl〈(M,N), Γ1;Γ3〉. �

2980 Hegner S.J.: Internal Representation of Database Views

Remarks 50. The example of Definition 48 provides a simple situation in which

the above theorem applies to yield a reflection of the view update which is

independent of the choice of complement, but which is not order based. Thus,

the above result provides a meaningful extension to [Hegner, 2004, Thm. 4.3].

This problem was also approached from an information perspective in [Heg-

ner, 2008c], in which the core idea was that a constant-complement update mini-

mizes information change. However, it was subsequently shown in [Hegner, 2009,

Disc. 4.7] that while the basic idea is sound, more elaborate constructions are

required to avoid so-called collateral changes. The approach given here is sub-

stantially less complex than that of those two papers.

A natural question to ask is whether there are interesting examples of com-

plementary pairs which are not info-based pairs, and so the theory of this sec-

tion does not apply. The answer appears to be a qualified yes; the examples of

[Hegner, 2004, Example 4.8], which involve afunctional dependencies [Paredaens

et al., 1989, Def, 5.4] are not of type ∃∧+, although further work is necessary to

determine whether they can be incorporated into an extension of this theory.

In order to support constant-complement view update in a systematic fash-

ion, it is necessary to require a stronger form of complement, known as a meet

complement. Formally, Γ1 and Γ2 are meet complements if their congruences

commute (Congr(Γ) = {(M,M ′) ∈ LDB(D) × LDB(D) | γLDB(M) = γLDB(M
′)}).

This condition is equivalent to the existence of a third view, called the meet of Γ1

and Γ2, which defines their intersection. A pair (N1, N2) ∈ LDB(V1)×LDB(V2)

is the image of some M ∈ LDB(D) under (γ1)LDB
× (γ2)LDB

iff N1 and N2 agree

on the meet. This condition ensures that a constant-complement update to Γ1

is independent of the state of Γ2. See [Hegner, 2004] for details. It is important

to extend this work to meet complements because it is within that context that

the update results of this section may be applied in a systematic manner to

databases containing variables — it is precisely the meet which must be free of

variables.

Theorem 49 provides conditions under which a constant-complement trans-

lation of a view update is independent of the choice of complement. However, it

leaves open the question of whether a single complement can support all view

updates which are possible via constant complement. The answer is negative in

the general case, with the conditions under which it is possible a property of the

underlying schema. This question is investigated further in [Hegner, 2010].

7 Conclusions and Further Directions

A framework which retains the essential flavor of the state-based approach to

database modelling, while at the same time allowing for enough representation of

partial information to recapture the state of a view within the main schema has

2981Hegner S.J.: Internal Representation of Database Views

been presented. The context includes virtually all database dependencies, and

all views defined by existential conjunctive queries. The utility of this approach

has been demonstrated by the solution of an important uniqueness problem for

constant-complement update. There are nevertheless many directions in which

these basic ideas should be extended.

Generalized selection and attribute types The framework of this paper supports

views defined by simple selections such as σA=a(R), but it does not include

range selections such as σA≤10(R) or disjunctions such as σA=a1∨A=a2(R). The

atombase approach is simply not powerful enough to represent ranges or dis-

junction, and attempts to “tag” such constants with ranges introduce difficul-

ties, particularly with respect to the essential tool of free completion. For the

range query, one possible approach would be to introduce ≤ as a relation within

the schema. This relation will be infinite, but since it is fixed, that problem can

be overcome. For a disjunctive query, an approach would be to allow unary

“type” relations, and then put the desired values into that relation. Thus, for

the above query, the user would first fill the type relation τ with {τ(a1), τ(a2)},
and then use a view definition of the form R(. . . xA . . .)∧τ(xA). There are of

course many details to be worked out.

Extension to other first-order data models In recent years, data models which

allow for nested relations, yet which are representable within first-order logic,

such as the HERM model [Thalheim, 2000], have found increasing use in

database modelling. It is therefore important to explore the possibility of ex-

tending this framework to such models.

The lattice of views The lattice operations for database states introduced in Sec-

tion 5, in combination with the internalization of views which is the focus of

this paper may be combined naturally to define a lattice of views. Such a

lattice would have many uses, including the characterization of optimal decom-

positions and the appropriate architecture of database components [Thalheim,

2005], [Hegner, 2008b], and thus is worthy of further investigation.

Acknowledgments

Anonymous referees provided suggestions which simplified and improved the

presentation substantially.

References

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases;
Addison-Wesley (1995).

[Bancilhon and Spyratos, 1981] Bancilhon, F., Spyratos, N.: “Update semantics of re-
lational views”; ACM Trans. Database Systems; 6 (1981), 557–575.

2982 Hegner S.J.: Internal Representation of Database Views

[Chandra and Merlin, 1977] Chandra, A. K., Merlin, P. M.: “Optimal implementation
of conjunctive queries in relational data bases”; “Proceedings of the Ninth Annual
ACM Symposium on Theory of Computing, 2-4 May 1977, Boulder, Colorado”,
(1977); 77–90.

[Chang and Lee, 1973] Chang, C.-L., Lee, R. C.-T.: Symbolic Logic and Mechanical
Theorem Proving; Academic Press (1973).

[Fagin, 1982] Fagin, R.: “Horn clauses and database dependencies”; J. Assoc. Comp.
Mach.; 29, 4 (1982), 952–985.

[Fagin et al., 2005] Fagin, R., Kolaitis, P. G., Miller, R. J., Popa, L.: “Data exchange:
Semantics and query answering”; Theoret. Comput. Sci.; 336 (2005), 89–124.

[Genesereth and Nilsson, 1987] Genesereth, M. R., Nilsson, N. J.: Logical Foundations
of Artificial Intelligence; Morgan-Kaufmann (1987).

[Grätzer, 1978] Grätzer, G.: General Lattice Theory; Academic Press (1978).
[Hegner, 2004] Hegner, S. J.: “An order-based theory of updates for closed database

views”; Ann. Math. Art. Intell.; 40 (2004), 63–125.
[Hegner, 2006] Hegner, S. J.: “The complexity of embedded axiomatization for a class

of closed database views”; Ann. Math. Art. Intell.; 46 (2006), 38–97.
[Hegner, 2008a] Hegner, S. J.: Information-Based Distance Measures and the Canon-

ical Reflection of View Updates; Technical Report 0805; Institut für Informatik,
Christian-Albrechts-Universität zu Kiel (2008); an updated and corrected version
is available on the Web site of the author.

[Hegner, 2008b] Hegner, S. J.: “A model of database components and their intercon-
nection based upon communicating views”; Jakkola, H., Kiyoki, Y., Tokuda, T.,
editors, “Information Modelling and Knowledge Systems XIX”, Frontiers in Arti-
ficial Intelligence and Applications; IOS Press (2008); 79–100.

[Hegner, 2008c] Hegner, S. J.: “Semantic bijectivity and the uniqueness of constant-
complement updates in the relatiional context”; Schewe, K.-D., Thalheim, B., edi-
tors, “International Workshop on Semantics in Data and Knowledge Bases, SDKB
2008, Nantes, France, March 29, 2008, Proceedings”, Springer-Verlag (2008); Lec-
ture Notes in Computer Science, volume 4925; 172–191.

[Hegner, 2009] Hegner, S. J.: “Optimal reflection of bidirectional view updates using
information-based distance measures”; Bertossi, L., Christiansen, H., editors, “Pro-
ceedings of the International Workshop on Logic in Databases (LID 2009), Roskilde
University, Denmark, October 29, 2009”, (2009); 55–70.

[Hegner, 2010] Hegner, S. J.: “Algebraic characterization of optimal complements of
database views”; Schewe, K.-D., Thalheim, B., editors, “Fourth International
Workshop on Semantics in Data and Knowledge Bases, SDKB 2010, Bordeaux,
France, July 5, 2010, Proceedings”, Springer-Verlag (2010); Lecture Notes in Com-
puter Science, volume TBA.

[Horn, 1951] Horn, A.: “On sentences which are true of direct unions of algebras”; J.
Symbolic Logic; 16 (1951), 14–21.

[Hull, 1984] Hull, R.: “Finitely specifiable implicational dependency families”; J. As-
soc. Comp. Mach.; 31, 2 (1984), 210–226.

[Jacobs et al., 1982] Jacobs, B. E., Aronson, A. R., Klug, A. C.: “On interpretations
of relational languages and solutions to the implied constraint problem”; ACM
Trans. Database Systems; 7, 2 (1982), 291–315.

[Maher and Srivastava, 1996] Maher, M. J., Srivastava, D.: “Chasing constrained
tuple-generating dependencies”; “Proceedings of the Fifteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, 1996,
Montreal, Canada”, ACM Press (1996); 128–138.

[Maier et al., 1979] Maier, D., Mendelzon, A. O., Sagiv, Y.: “Testing implications of
data dependencies”; ACM Trans. Database Systems; 4, 4 (1979), 455–469.

[Meier et al., 2009] Meier, M., Schmidt, M., Lausen, G.: “On chase termination beyond
stratification”; Proc. VLDB Endow.; 2, 1 (2009), 970–981; extended technical re-
port: CoRR, abs/0906.4228.

2983Hegner S.J.: Internal Representation of Database Views

[Minker, 1987] Minker, J., editor: Foundations of Deductive Databases and Logic Pro-
gramming; Morgan Kaufmann (1987).

[Monk, 1976] Monk, J. D.: Mathematical Logic; Springer-Verlag (1976).
[Paredaens et al., 1989] Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The

Structure of the Relational Database Model; Springer-Verlag (1989).
[Thalheim, 2000] Thalheim, B.: Entity-Relationship Modeling; Springer-Verlag (2000).
[Thalheim, 2005] Thalheim, B.: “Component development and construction for

database design”; Data Knowl. Eng.; 54, 1 (2005), 77–95.

Brief Index of Notation and Terminology

The indices are paragraph numbers, not page numbers. Thus, ⊥ is found in

Definition 4, which is not necessarily on page 4.

⊥, 4
−→γ , 31

�, 39
�, 44
�δ, 41
∼=, 16

γR, 8

�, 13

δ̄, 41

�, 13, 16

h̄(t), 13

|= , 5

|=| , 5
�, 16

×, 41

∃∧+, 4

[M], 16

γAB, 8

AB(D), 2

Antc(ϕ), 21

ArD , 2

atom, 2

atombase, 2

atomic

representation, 12

Atoms(D), 2

AtRep(ϕ), 12

Attr, 1

AttrVars, 1

γCanLAB�
, 28

CanAB(D), 19

CanAB�(D), 19

CanLAB-morphism,

28

CanLAB-view, 28

CanLAB(D), 23

CanLAB�(D), 23

canonical atombase,

19

CCTransl〈(M,N), Γ1;Γ2〉,
47

class ∃∧+, 8

closed under

minimization, 20

Closure〈Φ, Ψ〉, 9
complement, 47

complementary pair,

47

complete, 46

conjunct reduced, 17

Cnsq(ϕ), 21

Const, 1

ConstOf(−), 6

Constr(D), 7

cover, 9

database, 2

DB(D), 2

DBModD(ϕ), 5

Diagram(M), 5

EGHD(D), 21

equality atom, 3

extended

information, 24

external LDB-view, 8

finitary, 24

finite-generation

property, 24

finitely generated, 9

free completion, 20

fully bijective, 13

GHD(D), 21

GndAtoms(D), 2

ground atom, 2

GVars, 1

homomorphism, 13

InfoD〈M〉, 11, 12
information content,

11

information

equivalent, 16

information

monotonic, 29

2984 Hegner S.J.: Internal Representation of Database Views

internal

representation

function, 31

Interp(R,D), 8

interpretation

family, 8

isomorphism, 13

LAB(D), 20

γLDB, 8

LDB(D), 7

LDB-morphism, 8

LDB-surjective, 8

legal atombase, 20

legal database, 7

logical

representation, 12

minimal cover, 9

pair-renaming

function, 41

preserved under

minimization, 20

realization, 46

reflection, 46

ReflInfo〈N,Γ 〉, 11
relational context, 1

Rels(D), 2

rigid, 13

semantic embedding

function, 31

semantic extension

property, 24

semantic

representation set,

31

semantically

embeddable, 31

SemExtD〈G〉, 24
SemRep〈[N], Γ 〉, 31
γSmEmb, 31

structurally

identical, 16

Substf〈γ, t〉, 8
substitution, 12

SynLift〈N,Γ 〉, 32
SynRep〈N,Γ 〉, 32
syntactic lift, 32

syntactic

representation, 32

syntactically

embeddable, 32

TermsOf(−), 6

TGHD(D), 21

R-tuple, 2

tuple minimal, 17

tuple substitution, 8

tuple surjective, 13

UNA, 1

update, 46

update request, 46

ΥD , 4

variable normalized,

8, 39

Vars, 1

VarsOf(−), 6

WFF, 4

WFS, 4

wfs(M), 12

2985Hegner S.J.: Internal Representation of Database Views

