
Extending the Methods for Computing

the Importance of Entity Types

in Large Conceptual Schemas

Antonio Villegas
(Universitat Politècnica de Catalunya – Barcelona, Spain

antonio.villegas@upc.edu)

Antoni Olivé
(Universitat Politècnica de Catalunya – Barcelona, Spain

antoni.olive@upc.edu)

Abstract: Visualizing and understanding large conceptual schemas requires the use of
specific methods. These methods generate clustered, summarized, or focused schemas
that are easier to visualize and understand. All of these methods require computing
the importance of each entity type in the schema. In principle, the totality of knowl-
edge defined in the schema could be relevant for the computation of that importance
but, up to now, only a small part of that knowledge has been taken into account. In
this paper, we extend seven existing methods for computing the importance of entity
types by taking into account more relevant knowledge defined in the structural and be-
havioural parts of the schema. We experimentally evaluate the original and extended
versions of these methods with three large real-world schemas. We present the two
main conclusions we have drawn from the experiments.

Key Words: Conceptual Modeling, Large Schemas, Visualization

Category: H.0, H.1, H.3.3, H.5

1 Introduction

Real information systems often have extremely complex conceptual schemas. Vi-
sualizing and understanding these schemas requires the use of specific methods,
which are not needed in small schemas [Olivé and Cabot (2007)]. These methods
generate indexed, clustered, summarized, or focused schemas that are easier to
visualize and understand [Lindland et al. (1994)].

Many of the above methods require computing the importance (also called
relevance or score) of each type in the schema. Each method has its own def-
inition of entity-type importance. In each method, the computed importance
induces an ordering of the entity types, which plays a key role in the steps
and result (output) of the method. For example, Castano, de Antonellis, Fug-
ini and Pernici [Castano et al. (1998)] propose a three-step indexing method,
in which the first step computes the importance of each entity type, based on
the number and kind of relationships it has in the schema. Moody and Flitman
[Moody and Flitman (1999)] propose a clustering method in which the most

Journal of Universal Computer Science, vol. 16, no. 20 (2010), 3138-3162
submitted: 7/1/10, accepted: 13/9/10, appeared: 1/11/10 © J.UCS

important entity types are hypothesized to be those that have higher connec-
tivity, defined as the number of relationships in which they participate. Tz-
itzikas and Hainaut propose methods for scoring each entity type in a schema
[Tzitzikas and Hainaut (2005), Tzitzikas et al. (2007)], aiming at facilitating its
understanability. As a last example, we mention the work of Yu and Jagadish
[Yu and Jagadish (2006)], who propose a metric of the importance of each entity
type, which is used in order to automatically produce a good schema summary.

As far as we know, existing metrics for entity type importance are mainly
based on the amount of knowledge defined in a schema, but only take into
account the number of attributes, associations, and generalization/specialization
relationships. Surprisingly, none of the methods we found in the literature take
into account additional knowledge about entity types defined in a schema that,
intuitively, could have an effect on importance. A complete schema [Olivé (2007)]
also includes cardinalities, taxonomic constraints, general constraints, derivation
rules, and the specification of events, all of which contribute to knowledge about
entity types.

In this paper we focus on objective metrics, which are independent from sub-
jective evaluations of users and modelers. Intuitively, it seems that an objective
metric of the importance of an entity type in a given schema should be related
to the amount of knowledge that the schema defines about it. The more (less)
knowledge a schema defines about an entity type, the more (less) important that
entity type should be in the schema. Adding more knowledge about an entity
type should increase (or at least not decrease) the relative importance of that
entity type with respect to others. This assumption is also found in other fields
like text information retrieval, document sorting, and web search engines where
the frequency of word occurrences and the number of links between documents
are indicators of their importance [Salton (1989)].

The main objective here is to analyze the influence of that additional knowl-
edge on a representative set of existing methods for measuring the importance
of entity types. To this end, we have selected seven methods from the liter-
ature and have developed extended versions of all of them1. We do not es-
sentially change the way they define importance: we just add more elements
in their computation. We have experimentally evaluated both versions of each
method using the conceptual schema of osCommerce [Tort and Olivé (2007)],
the UML metaschema [OMG (2009)] and the conceptual schema of EU-Rent
[Business Rules Group (2000), Frias et al. (2003)].

OsCommerce is a popular industrial e-commerce system whose conceptual
schema consists of 346 entity types (of which 261 are event types). The official
UML 2.0 metaschema [Bauerdick et al. (2004), Bauerdick et al. (2004b)] we have
used includes 293 entity types. The EU-Rent (a car rental company) case study

1 This paper is an extended version of [Villegas and Olivé (2009)].

3139Villegas A., Olive A.: Extending the Methods ...

contains 185 entity types (of which 120 are event types).
In our implementation, the original and extended methods give exactly the

same results from the same input, but the extended versions can process addi-
tional knowledge defined in the schema and then, of course, they give different
results. We analyze the differences, and make conclusions on the effect of the
additional knowledge on the metrics.

The rest of the paper is organized as follows. [Section 2] introduces the con-
cepts and notations. [Section 3] briefly describes the seleted methods and explains
our extensions. [Section 4] describes the experimentation with the methods, the
results obtained and the conclusions we have drawn. Finally, [Section 5] summa-
rizes the paper and points out future work.

2 Basic Concepts and Notations

In this section we review the main concepts and notations we have used to define
the knowledge of conceptual schemas and the different measures that extract
information from them, to be used in the importance computation methods.

2.1 Basic Measures

The conceptual schema of an information system is the general knowledge that
the information system needs to know in order to perform its functions. A con-
ceptual schema comprises general knowledge about the domain and knowledge
about the functions to be performed [Olivé (2007)].

A conceptual schema consists of a structural (sub)schema and a behavioral
(sub)schema. The structural schema consists of a taxonomy of entity types (a
set of entity types with their generalization/specialization relationships and the
taxonomic constraints), a set of relationship types (either attributes or associ-
ations), the cardinality constraints of the relationship types, and a set of other
static constraints. In this paper, we deal with schemas written in the UML/OCL
[OMG (2009), OMG (2006)].

Furthermore, entity and relationship types may be base or derived. If they
are derived, there is a formal derivation rule in OCL that defines their population
in terms of the population of other types.

The behavioural schema of a conceptual schema consists of a set of event
types. We adopt the view that events can be modeled as a special kind of entity
type. Event types have characteristics, constraints and effects. The characteris-
tics of an event are its attributes and the associations in which it participates.
The constraints are the conditions that events must satisfy to occur.

Each event type has an operation called effect() that gives the effect of an
event occurence. The effect is declaratively defined by the postcondition of the
operation, which is specified in OCL [Olivé and Raventós (2006)].

3140 Villegas A., Olive A.: Extending the Methods ...

[Tab. 1] summarizes the notation of the basic metrics to extract knowledge
from the conceptual schema (inspired by [Tzitzikas et al. (2007), Baroni (2002)])
used in the rest of the paper.

We denote by E the set of entity types defined in the schema. For a given e ∈ E
we denote by par(e) and chi(e) the set of direct ascendants and descendants of e,
respectively, and by gen(e) the union of both sets. For example [see Fig. 1], if each
instance of the entity type Part is an instance of Item (there is a specialization
relationship from Item to Part), we have that Item ∈ par(Part) and Part ∈
chi(Item), and in this example par(Part) = {Item} and chi(Item) = {Part}.

The set of attributes defined in the schema is denoted by A. If a ∈ A then
entity(a) denotes the entity type where a is defined. The set of attributes of
an entity type e is denoted by attr(e). If Item has the attribute name, then
entity(name)=Item and attr(Item)={name}.

Notation Definition

par(e) = {e′ ∈ E | e IsA e′}
chi(e) = {e′ ∈ E | e′ IsA e}
gen(e) = par(e) ∪ chi(e)
attr(e) = {a ∈ A | entity(a) = e}
members(r) = {e ∈ E | e is a participant of r}
assoc(e) = {r ∈ R | e ∈ members(r)}
conn(e) = �r∈assoc(e){members(r)\{e}}2

parinh(e) = par(e) ∪ {parinh(e′) | e′ ∈ par(e)}
chiinh(e) = chi(e) ∪ {chiinh(e′) | e′ ∈ chi(e)}
attrinh(e) = attr(e) ∪ {attrinh(e′) | e′ ∈ par(e)}
associnh(e) = assoc(e) � {assoc(e′) | e′ ∈ parinh(e)}
conninh(e) = conn(e) � {conn(e′) | e′ ∈ parinh(e)}

Table 1: Definition of basic metrics.

The set of relationship types defined in the schema is denoted by R. If r ∈ R
then members(r) denotes the set of entity types that participate in the relation-
ship r, and assoc(e) the set of associations in which e participates. Note that an
entity type e may participate more than once in the same association, and there-
fore members(r) and assoc(e) are multisets (may contain duplicate elements).
Moreover, conn(e) denotes the multiset of entity types connected to e through
associations [see Fig. 1].

The last row section in [Tab. 1] defines the notation we use to take into
account the inherited properties from the ancestors of entity types. Conceptually,
2

Note that “\” denotes the difference operation of multisets as in {a, a, b}\{a} = {a, b} and “�”
denotes the multiset (or bag) union that produces a multiset as in {a, b} � {a} = {a, a, b}

3141Villegas A., Olive A.: Extending the Methods ...

each entity type e inherits the attributes and participations in relationships of
all its parents (those in parinh(e)). We denote by attrinh(e) and associnh(e)
the attributes and participations in associations inherited by the entity type e

from all its (direct and indirect) parents through generalization/specialization
relationships. In addition to it, conninh(e) is the multiset of the entity types
directly connected to e but also including those entity types connected to its
parents (parinh(e)), through associations. A special case, chiinh(e) is the set of
all the descendants of e.

Figure 1: Example of basic metrics.

2.2 Extended Knowledge

This section presents the additional knowledge we have included in the methods
to compute the importance of entity types.

2.2.1 Schema Rules

Most existing methods for computing the importance of entity types only take
into account the number of attributes, associations, and generalization/specializa-
tion relationships. However, there are other schema elements that involve entity
types and that could be taken into account when computing importance. These
elements are integrity constraints, derivation rules, event constraints, and event
postconditions. We call these four kinds of schema elements schema rules. In
this paper, we assume that the schema rules are written in OCL.

Each schema rule is defined in the context of an entity type, and its expression
involves entity types, attributes, and associations. For example, the schema rule
(constraint in this case):

������� Employee ��� minSalaryRule:

self.salary >= self.company.industry.minSalary

3142 Villegas A., Olive A.: Extending the Methods ...

is defined in the context of the entity type Employee (see [Fig. 2]) and its expres-
sion involves entity types Employee, Company, Industry, associations WorksFor,
OperatesIn, and attributes Employee::salary and Industry::minSalary.

We approach the problem of taking into account the schema rules in the
computation of the importance of entity types by considering that a schema rule
defines a set of binary links (that we call rule links) between entity types, which
can then be considered in a similar way to that of ordinary binary associations,
attributes, or generalization/specialization relationships.

There are two kinds of rule links: Context-Participant (CP) and Participant-
Participant (PP) links. There is a CP link in a schema rule between entity types
e and e′ if e is the context of that rule and e′ participates in the expression of
that rule. There is a PP link in a schema rule between entity types e and e′ if
in the expression of that rule there is a navigation through a binary association
(or attribute) whose participants are e and e′.

The example in [Fig. 2] illustrates our approach with a simple schema con-
taining three entity types and two relationships. The top of the figure describes
a schema rule that constraints the salary of employees. Concretely, the salary
of an employee must be greater than or equal to the minimum salary of the
industry of his or her company. Furthermore, [Fig. 2] shows a breakdown of the
different sections of the OCL expressions to show the referenced entity types.

It is possible to distinguish between the entity types that participate in the
body of this schema rule (indicated with dashed lines) and the context entity
type (indicated with a dotted line). Also, two arrows indicate the structural nav-
igations through relationship types in the schema rule (from self, i.e. Employee,
to Company, and from Company to Industry).

It is important to note that although an entity type may participate more
than once in the same body of a schema rule, to avoid repetitions only one CP
link is created between the context entity type and the participant entity type.
The bottom part of [Fig. 2] shows the three CP links in the example (dashed
lines (a), (b) and (c)).

We also create PP links between the participants that appear as source and
target in a navigation expression of the OCL. In the example of [Fig. 2], the
arrows of the top indicate two structural navigations. By structural navigations
we mean navigations through relationship types. In this case we have the OCL
expression self.company, which indicates a navigation through the relationship
between Employee and Company (self references the context of the schema rule,
in this case, Employee). Also we have company.industry that shows the navi-
gation through the relationship between Company and Industry. In the bottom
part of [Fig. 2] the PP links are shown (dotted lines (d) and (e)).

Finally, once we have extracted the CP and PP links from the schema rule,
the next step consists of removing repeated links. Therefore, the final set of rule

3143Villegas A., Olive A.: Extending the Methods ...

Figure 2: Example of rule links extracted from the OCL.

links from a schema rule is the union of both sets. This way, the repeated link
Employee-Company in the example will appear only once. [Fig. 2] shows the four
links extracted from the minSalaryRule rule.

2.2.2 Cardinality Constraints

It is well known that cardinality constraints are some of the most important
constraints in a schema, and that they are usually defined by means of a special
graphical notation (multiplicities in the UML). Surprisingly, as far as we know,
cardinality constraints have not been taken into account by existing methods for
computing the importance of entity types.

In this paper, we consider cardinality constraints to be general knowledge and
thus the presence of such knowledge in a schema should increase the importance
of the entity types involved in these constraints. In our approach, we do not give
special treatment to cardinality constraints. Instead, we transform them into
equivalent OCL expressions, and then we treat them like ordinary schema rules.
For example, assume the association between Industry and Company of [Fig. 2],
with the cardinality constraint that a company belongs to exactly one industry.

3144 Villegas A., Olive A.: Extending the Methods ...

Its equivalent is the OCL schema rule:
������� Company ���	 self.industry->size()=1

This rule generates CP links between Company and Industry and between
Company and itself. It also generates a PP link between Company and Industry
(because of the navigation through the association OperatesIn). Therefore, the
final links are Company-Company and Company-Industry.

On the other hand, the multiplicity “∗” in the company role of the association
OperatesIn ([Fig. 2]) means that the number of companies that operate in a
given industry is unconstrained, and therefore that multiplicity is ignored and
not transformed into any schema rule.

2.2.3 Taxonomic Constraints

As far as we know, existing methods for computing the importance of entity
types do not take into account the well-known taxonomic constraints (disjoint
and complete in UML).

In our approach we transform these constraints into their OCL equivalents,
and we treat them like ordinary schema rules. For example, if there is a disjoint-
ness constraint between Man and Woman, the OCL expressions are:

������� Man ���	 not self.oclIsTypeOf(Woman)

������� Woman ���	 not self.oclIsTypeOf(Man)

The first rule generates the CP links Man-Man and Man-Woman. Similarly,
the second rule generates the CP links Woman-Woman and Woman-Man.

2.2.4 Association Classes

The association class is a well-known conceptual modeling construct that is also
part of UML. As we have done with cardinality and taxonomic constraints, we do
not provide a specific treatment for association classes but, instead, transform
them into other constructs. We follow the transformation approach described
in [Snoeck and Dedene (1998)]. It consists of removing the association A of the
association class and adding new binary associations between the entity type of
the association class and the participant entity types of the association A. The
cardinality constraints of the new binary relationships must maintain the same
semantics as before the transformation.

In the case of a binary association class (left side of [Fig. 3]), the cardinal-
ity constraints after the transformation (right side of [Fig. 3]) are interchanged
between the participants of the relationship and the association class. The car-
dinality constraints of a participant (e.g. amin...amax of A in left side of [Fig. 3])
go to the new binary relationship between the other participant (B) and the

3145Villegas A., Olive A.: Extending the Methods ...

new entity (C) representing the previous association class, placed on the side
of the new entity type. On the side of the previous participants (A and B) the
cardinality equals 1.

Furthermore, to maintain the semantics we also need a new uniqueness con-
straint. An example of a uniqueness constraint is shown in [Fig. 3] for the trans-
formation of the association class C. Note that the constraint is specified in
OCL.

Figure 3: Transformation of a binary relationship with association class.

Figure 4: Transformation of a ternary relationship with association class.

For the case of an n-ary association class the transformation is similar (see
[Fig. 4]). However, the multiplicities in the new binary relationships between the
participants and the entity type representing the association class are always
“1” on the participant side and “∗” on the entity-type side.

3146 Villegas A., Olive A.: Extending the Methods ...

In this case a uniqueness constraint is also needed and follows the same idea
as with binary association classes. Furthermore, the cardinality constraints of
the initial association must be expressed as an OCL constraint to maintain the
semantics. For example, the multiplicity “0..2” in the Table participant of [Fig. 4]
is transformed into the OCL constraint shown at the bottom of this figure.

2.3 Extended Measures

Next, we will introduce new metrics that will take into account the extracted rule
links from each one of the schema rules of the conceptual schema [see Tab. 2].

We denote by SR (Schema Rules) the set of constraints, derivation rules, and
pre- and postconditions. Each rule sr ∈ SR is defined in the context of an entity
type, denoted by context(sr). In OCL, each rule sr consists of a set of OCL
expressions (see [OMG (2006)]) which we denote by expr(sr). An expression
exp may refer to several entity types which are denoted by members(exp). The
set of entity types that are referenced in one or more expressions of a rule sr is
denoted by ref(sr).

A special kind of OCL expression is the navigation expression that defines
a navigation in the schema from one entity type to another through an associ-
ation (see NavigationCallExp of OCL in [OMG (2006)]). We use exprnav(sr) to
indicate the navigation expressions inside a rule sr ∈ SR. Such expressions only
contain two entity types as its participants, i.e. the source entity type and the
target one [see the example in Fig. 5].

Notation Definition

members(exp) = {e ∈ E | e is a participant of exp}
expr(sr) = {expr | expr is contained in sr}
ref(sr) = ∪exp∈expr(sr){members(exp)}
exprnav(sr) = {expr ∈ expr(sr) | expr is a navigation expression}
navexpr(sr) = ∪exp∈exprnav(sr){{e, e′} ⊂ E | {e, e′} = members(exp)}
navcontext(sr) = {{e, e′} ⊂ E | e = context(sr) ∧ e′ ∈ ref(sr)}
nav(sr) = navcontext(sr) ∪ navexpr(sr)
rconn(e) = �sr∈SR{e′ ∈ E | {e, e′} ⊂ nav(sr)}3

rconninh(e) = rconn(e) � {rconninh(e′) | e′ ∈ par(e)}

Table 2: Definition of extended metrics.

3
We require rconn(e) = ∅ (empty set) if conninh(e) = ∅.

3147Villegas A., Olive A.: Extending the Methods ...

We denote by navexpr(sr) the set of pairs that participate in the navigation
expressions of sr. We also denote by navcontext(sr) the sets of pairs of entity
types composed by the context of the rule sr and every one of the participant
entity types of the rule (e ∈ ref(sr)). Finally, we define nav(sr) as the union
of navcontext(sr) with navexpr(sr), and rconn(e) as the multiset of entity types
that compose a pair with e in nav(sr). Note that since we use �, rconn(e) may
contain duplicates because it takes into account that each rule sr and an entity
type e can be related to another one e′ in two or more different rules. Intuitively,
rconn(e) is the multiset of entity types to which an entity type e is connected
through schema rules.

context(minSalaryRule) = Employee

exprnav(minSalaryRule) = {self.company, company.industry}
ref(minSalaryRule) = {Employee, Company, Industry}

navcontext(minSalaryRule) = {{Employee, Employee}, {Employee, Company},
{Employee, Industry}}

navexpr(minSalaryRule) = {{Employee, Company}, {Company, Industry}}
nav(minSalaryRule) = {{Employee, Employee}, {Employee, Company},

{Employee, Industry}, {Company, Industry}}
if we only take into account the invariant minSalaryRule:

rconn(Industry) = {Company, Employee}
rconn(Company) = {Employee, Industry}
rconn(Employee) = {Employee, Company, Industry}

Figure 5: Example of navigations of the schema rule minSalaryRule.

Dashed lines (a), (b) and (c) in [Fig. 5] represent the Context-Participant
links in navcontext(minSalaryRule) while (b) and (d) are the Participant-Partici-
pant connections through navigation expressions (see navexpr(minSalaryRule)).

3 Methods and their Extensions

In this section we briefly review the definition of seven existing methods for
computing the importance of entity types in a schema. Each method is followed
by a brief description and formal definition of our extension to it. An extended
review of these methods is presented in [Villegas (2009)].

3148 Villegas A., Olive A.: Extending the Methods ...

The original version of the methods only takes into account the indicated
elements of the structural schema while in the extended version we also take
into account the rules and the complete behavioural schema.

[Fig. 6] shows an example of conceptual schema that will be used to illustrate
the methods.

Figure 6: Example of conceptual schema with some OCL invariants.

3.1 The Connectivity Counter

The first method we present was introduced in [Moody and Flitman (1999)].
They suggest that central entities should be chosen as the entities of highest
business importance —the core business concepts in the model.

Although business importance is quite a subjective concept, and therefore it
would require human judgment, Moody and Flitman provide a useful heuristic
for identifying central entities in an objective manner. It consists in identifying
entities with the most relationships. The authors state that the most highly
connected entities are also the most important entities from a business viewpoint.

Following these indications we define the Connectivity Counter (CC) method
as the method that computes the importance (ICC) of each entity type as the
number of relationships it participates in. Formally:

ICC(e) = |assoc(e)|4

Our extension to this method (CC+) follows the same idea as the original version
but also including the number of participations of each entity type in the rule
links extracted from the schema rules specification. On the other hand, we now
4 |A| indicates the total number of elements (cardinality) of a set A. When A is a mul-

tiset then |A| takes into account repeated elements. For example, if A = {e1, e1, e2}
then, |A| = 3.

3149Villegas A., Olive A.: Extending the Methods ...

take into account (in |assoc(e)|) the associations of each entity type e with the
event types of the behavioural schema (in case of such events were defined).
Formally:

I+
CC(e) = |assoc(e)| + |rconn(e)|

[Tab. 3] presents the results of these methods for the example in [Fig 6]. Note
that CC+ gives more importance to Product than to Customer, as opposed to
CC, because it has more connections in rules.

e |assoc(e)| |rconn(e)| ICC (e) I+
CC (e)

CreditCard 1 6 1 7
Customer 2 10 2 12

GoldCustomer 0 4 0 4
Person 0 0 0 0
Product 2 14 2 16
Supplier 1 4 1 5

Table 3: Results for CC and CC+ applied to example of [Fig 6].

3.2 The Simple Method

The Simple Method was introduced in [Tzitzikas et al. (2007)] and takes into
account only the number of directly connected elements of each entity type to
compute its importantce. Formally, the importance ISM (e) of an entity type e

is defined as:

ISM (e) = |par(e)| + |chi(e)| + |attr(e)| + |assoc(e)|

As in the extended version of the Connectivity Counter, the Simple Method
has been extended including the number of participations of each entity type
in rule links extracted from the schema rules. We also take into account (in
|assoc(e)|) the associations of each entity type e with the event types of the
behavioural schema (in case of such events were defined). Formally:

I+
SM (e) = |par(e)| + |chi(e)| + |attr(e)| + |assoc(e)| + |rconn(e)|

For example, in the schema shown in [Fig. 5] we would have ISM (Company)
= 2 and for the extended version I+

SM (Company)=8, because |par(Company)|
= |chi(Company)| = |attr(Company)| = 0, |assoc (Company)|=2, and the new
component |rconn(Company)| = 7, of which two come for the invariant (minSa-
laryRule) and the other five from the OCL equivalent to the cardinality con-
straints in its relationships with Industry and Employee.

3150 Villegas A., Olive A.: Extending the Methods ...

e |par(e)| |chi(e)| |attr(e)| |assoc(e)| |rconn(e)| ISM (e) I+
SM (e)

CreditCard 0 0 1 1 6 2 8
Customer 1 1 2 2 10 6 16

GoldCustomer 1 0 1 0 4 2 6
Person 0 2 1 0 0 3 3
Product 0 0 3 2 14 5 19
Supplier 1 0 1 1 4 3 7

Table 4: Results for SM and SM+ applied to example of [Fig 6].

The values obtained after the application of the simple method (and its
extended version) to the previous schema shown at [Fig 6] are indicated in [Ta-
ble 4]. There, it is shown that the most important entity types are Customer and
Product. Also note that CreditCard increases its importance in the extended ver-
sion with respect to the original one due to its presence in rules.

3.3 The Weighted Simple Method

The Weighted Simple Methos is a variation to the Simple Method that assigns
a relevance coefficient to each kind of component of knowledge in the equation,
such that the higher the relevance, the greater the importance of such component
[Castano et al. (1998)]. The definition of importance here is:

IWSM (e) = qinh(|par(e)| + |chi(e)|) + qattr|attr(e)| + qassoc|assoc(e)|

where qattr is the coefficient for attributes, qinh is the coefficient for general-
ization/specialization relationships, and qassoc is the coefficient for associations.
Each of them with values in the interval [0,1].

Our extension to this method (WSM+) consists in adding the rule links
component to the importance computation. In the same way as the other com-
ponents, we selected a coefficient (qrule) to specify the relevance of rule links of
the schema rules. The definition is now:

I+
WSM (e) = qinh(|par(e)| + |chi(e)|)

+qattr|attr(e)| + qassoc|assoc(e)| + qrule|rconn(e)|

The results of the application of the weighted simple method and its extended
version (with the same coefficients as in [Castano et al. (1998)] and qrule =
qassoc) to the example in [Fig 6] are shown in [Tab. 5].

3.4 The Transitive Inheritance Method

The Transitive Inheritance Method [Tzitzikas et al. (2007)] is a variation of the
Simple Method taking into account both directly defined features and inherited

3151Villegas A., Olive A.: Extending the Methods ...

e qinh(|par(e)| qattr qassoc qrule IW SM (e) I+
W SM (e)+|chi(e)|) |attr(e)| |assoc(e)| |rconn(e)|

CreditCard 0.6x0 1x1 0.4x1 0.4x6 1.4 3.8
Customer 0.6x2 1x2 0.4x2 0.4x10 4 8

GoldCustomer 0.6x1 1x1 0.4x0 0.4x4 1.6 3.2
Person 0.6x2 1x1 0.4x0 0.4x0 2.2 2.2
Product 0.6x0 1x3 0.4x2 0.4x14 3.8 9.4
Supplier 0.6x1 1x1 0.4x1 0.4x4 2 3.6

Table 5: Results for WSM and WSM+ applied to example of [Fig 6].

ones . For each entity type the method computes the number of ascendants and
descendants and all specified attributes and accessible associations from it or
any of its ascendants. Formally:

ITIM (e) = |parinh(e)| + |chiinh(e)| + |attrinh(e)| + |associnh(e)|
In the same way as before, we extend it with the rule links component. This
time the computation of such component also takes into account the rconn of
the ancestors:

I+
TIM (e) = |parinh(e)| + |chiinh(e)| + |attrinh(e)| + |associnh(e)| + |rconninh(e)|

The results of the application of the TIM+ method to the example in [Fig 6]
are shown in [Table 6]. Note that GoldCustomer is the most important entity
type due to the definition of the method, which allows inheritance of a fragment
of the importance of Customer.

e |parinh |chiinh |attrinh |associnh |rconninh IT IM (e) I+
T IM (e)(e)| (e)| (e)| (e)| (e)|

CreditCard 0 0 1 1 6 2 8
Customer 1 1 3 2 10 7 17

GoldCustomer 2 0 4 2 14 8 22
Person 0 3 1 0 0 4 4
Product 0 0 3 2 14 5 19
Supplier 1 0 2 1 4 4 8

Table 6: Results for TIM and TIM+ applied to example of [Fig. 6].

3.5 EntityRank

The EntityRank method [Tzitzikas and Hainaut (2005), Tzitzikas et al. (2007)]
is based on link analysis following the same approach as Google’s PageRank
[Brin and Page (1998)]. Roughly, each entity type is viewed as a state and each
association between entity types as a bidirectional transition between them.

3152 Villegas A., Olive A.: Extending the Methods ...

The importance of an entity type is the probability that a random surfer is
at that entity type with random jumps (q component) or by navigation through
relationships (1−q component). Therefore, the resulting importance of the entity
types correspond to the stationary probabilities of the Markov chain, given by:

IER(e) =
q

|E| + (1 − q)
∑

e′∈conn(e)

IER(e′)
|conn(e′)|

Such formulation produces a system of equations. Concretely, for the example
of [Fig. 6] such system would be as follows:

IER(CreditCard) = q
6 + (1 − q)

(
IER(Customer)

2

)

IER(Customer) = q
6 + (1 − q)

(
IER(CreditCard) + IER(Product)

2)
)

IER(GoldCustomer) = q
6

IER(Person) = q
6

IER(Product) = q
6 + (1 − q)

(
IER(Customer)

2 + IER(Supplier)
)

IER(Supplier) = q
6 + (1 − q)

(
IER(Product)

2

)

It is important to note that in these methods the importance of an entity
comes from the importance of the entities connected to it. The importance flows
through associations. For the case of Customer, its importance according to the
EntityRank comes from CreditCard and from Product. As Product is connected
with two entity types, a fragment of its importance (a half) goes to each of its
connected entities (Customer and Supplier).

In our extension to EntityRank we add a new component to the formula in
order to jump not only to the connected entity types but also to connected ones
through the rule links. The definition is now:

I+
ER(e) =

q

|E| + (1 − q)

⎛
⎝ ∑

e′∈conn(e)

I+
ER(e′)

|conn(e′)| +
∑

e′′∈rconn(e)

I+
ER(e′′)

|rconn(e′′)|

⎞
⎠

To compute the importance of the entity types we need to solve the equa-
tion system. If we fix that

∑
e∈E IER(e) = 1 and

∑
e∈E I+

ER(e) = 1 the results
obtained are shown in [Tab. 7]. We have chosen q = 0.15, which is a common
value in the literature [Tzitzikas and Hainaut (2005)].

The results for the entity type GoldCustomer indicate that for the extended
version of EntityRank (ER+) the importance of such entity type has increased
(IER = 0.04, whereas I+

ER = 0.11). This is because the extended version takes
into account the links extracted from the schema rules. Here, GoldCustomer has
an OCL invariant defined in its context with a participation of the entity type

3153Villegas A., Olive A.: Extending the Methods ...

e IER(e) I+
ER(e)

CreditCard 0.16 0.15
Customer 0.30 0.25

GoldCustomer 0.04 0.11
Person 0.04 0.03
Product 0.30 0.34
Supplier 0.16 0.12

Table 7: Results for ER and ER+ applied to example of [Fig. 6].

Product [see Fig. 6] that produces a rule link between GoldCustomer and Prod-
uct. Therefore, a portion of the importance of Product flows to GoldCustomer
in ER+ but not in ER.

3.6 BEntityRank

The BEntityRank [Tzitzikas and Hainaut (2005), Tzitzikas et al. (2007)] is a va-
riation of the previous method specifying that the probability of randomly jum-
ping to each entity type is not the same for each entity type, but it depends on
the number of its attributes. The higher the number of attributes, the higher
the probability to randomly jump to that entity type. That is:

IBER(e) = q
attr(e)
|A| + (1 − q)

∑
e′∈conn(e)

IBER(e′)
|conn(e′)|

Similarly than for EntityRank, the formulation produces a system of equa-
tions. In this case the system would be as follows:

IBER(CreditCard) = q 1
9 + (1 − q)

(
IBER(Customer)

2

)

IBER(Customer) = q 2
9 + (1 − q)

(
IBER(CreditCard) + IBER(Product)

2)
)

IBER(GoldCustomer) = q 1
9

IBER(Person) = q 1
9

IBER(Product) = q 3
9 + (1 − q)

(
IBER(Customer)

2 + IBER(Supplier)
)

IBER(Supplier) = q 1
9 + (1 − q)

(
IBER(Product)

2

)

Note that if an entity type is not connected to others through associations,
its importance only consists of its percentage of attributes multiplied by the
coefficient of random jump (q).

Our extension is in the same way as in EntityRank but taking into account
the definition of the attributes component of BEntityRank. The definition is:

I+
BER(e) = q

attr(e)
|A| + (1 − q)

⎛
⎝ ∑

e′∈conn(e)

I+
BER(e′)

|conn(e′)| +
∑

e′′∈rconn(e)

I+
BER(e′′)

|rconn(e′′)|

⎞
⎠

3154 Villegas A., Olive A.: Extending the Methods ...

To compute the importance of the entity types we need to solve the equation
system. We fix that

∑
e∈E IBER(e) = 1 and

∑
e∈E I+

BER(e) = 1 then the results
obtained are shown in [Tab. 8]. We choose q = 0.15, which is a common value in
the literature.

e IBER(e) I+
BER(e)

CreditCard 0.15 0.15
Customer 0.31 0.26

GoldCustomer 0.02 0.1
Person 0.02 0.02
Product 0.33 0.36
Supplier 0.16 0.11

Table 8: Results for BER and BER+ applied to example of [Fig. 6.]

3.7 CEntityRank

Finally, the method that we call CEntityRank (m4 in [Tzitzikas et al. (2007)])
follows the same idea as EntityRank and BEntityRank, but including the gener-
alization relationships. Each generalization between ascendants and descendants
is viewed as a bidirectional transition, as in the case of associations. Formally:

ICER(e) = q1
attr(e)
|A| + q2

∑
e′∈gen(e)

ICER(e′)
|gen(e′)| + (1− q1 − q2)

∑
e′′∈conn(e)

ICER(e′′)
|conn(e′′)|

The formulation produces a system of equations as follows:

ICER(CreditCard) = q1
1
9

+ (1 − q1 − q2)
(

ICER(Customer)
2

)

ICER(Customer) = q1
2
9

+ q2

(
ICER(Person)

2
+ ICER(GoldCustomer)

)

+(1 − q1 − q2)
(
ICER(CreditCard) + ICER(Product)

2
)
)

ICER(GoldCustomer) = q1
1
9

+ q2

(
ICER(Customer)

2

)

ICER(Person) = q1
1
9

+ q2

(
ICER(Customer)

2
+ ICER(Supplier)

)

ICER(Product) = q1
3
9

+ (1 − q1 − q2)
(

ICER(Customer)
2

+ ICER(Supplier)
)

ICER(Supplier) = q1
1
9

+ q2

(
ICER(Person)

2

)
+ (1 − q1 − q2)

(
ICER(Product)

2

)

Our extension includes the rule links as bidirectional transitions for the ran-
dom surfer. The new definition is:

I+
CER(e) = q1

attr(e)
|A| + q2

∑
e′∈gen(e)

I+
CER(e′)
|gen(e′)|

+ (1 − q1 − q2)

⎛
⎝ ∑

e′′∈conn(e)

I+
CER(e′′)

|conn(e′′)| +
∑

e′′′∈rconn(e)

I+
CER(e′′′)

|rconn(e′′′)|

⎞
⎠

3155Villegas A., Olive A.: Extending the Methods ...

Similarly than with EntityRank and BEntityRank, we need to solve this
equation system. We fix that

∑
e∈E ICER(e) = 1 and

∑
e∈E I+

CER(e) = 1 then
the results obtained are shown in [Tab. 9]. We choose q1 = 0.1 and q2 = 0.2,
which are good values as indicated in [Tzitzikas et al. (2007)].

e ICER(e) I+
CER(e)

CreditCard 0.13 0.12
Customer 0.32 0.27

GoldCustomer 0.05 0.12
Person 0.08 0.06
Product 0.27 0.31
Supplier 0.16 0.12

Table 9: Results for CER and CER+ applied to example of [Fig. 6.]

4 Experimental Evaluation

We have implemented the seven methods described in the previous section,
both the original and the extended versions. We have then evaluated the meth-
ods using three distinct case studies: osCommerce [Tort and Olivé (2007)], the
UML metaschema [Bauerdick et al. (2004), Bauerdick et al. (2004b)], and EU-
Rent [Business Rules Group (2000), Frias et al. (2003)]. The original methods
have been evaluated with the input knowledge they are able to process: entity
types, attributes, associations, and generalization/specialization relationships of
the structural schemas.

osCommerce UML Metaschema EU-Rent schema
Entity Types 346 293 185
Event Types 261 - 120
Attributes 458 93 85
Associations 183 377 152
General Constraints

204 170 302
and Derivation Rules
Pre- and

220 - 166
Post conditions

Table 10: Schema contents of the case studies.

For osCommerce and EU-Rent, the extended methods have been evaluated
with the complete structural schema and the complete behavioural schema (in-
cluding event types and their pre/post conditions). The schema of osCommerce
comprises 346 entity types (of which 261 are event types), 458 attributes, 183
associations, 204 general constraints and derivation rules, and 220 pre- and post
conditions. The schema of EU-Rent contains 185 entity types (of which 120 are

3156 Villegas A., Olive A.: Extending the Methods ...

event types), 85 attributes, 152 associations, 302 general constraints and deriva-
tion rules, and 166 pre- and post conditions.

For the UML metaschema there is no behavioral schema and therefore we
have only used the complete structural schema. The version of the UML meta-
schema we have used comprises 293 entity types, 93 attributes, 377 associations,
54 derivation rules, and 116 general constraints. [Tab. 10] summarizes the char-
acteristics of the three case studies. The OCL constraints corresponding to the
cardinalities, taxonomies, and association classes are not included in the infor-
mation of [Tab. 10].

In case of two or more entity types get the same importance, our implemen-
tation is non-deterministic: it might rank first any of those. Some enhancements
can be done to try to avoid ranking equally-important entity types in a random
manner, like prioritizing those with a higher amount of attributes or relation-
ships (or any other measure) in case of ties. However, this does not have an
impact to our experimentation.

In the following, we summarize the two main conclusions we have drawn from
the study of the result data.

4.1 Correlation Between the Original and the Extended Versions

We study the correlation between the original and the extended version for the
previously described methods. Our research aims to know which methods give
similar results in both versions.

[Fig. 7] shows, for each method, the results obtained in the original and the
extended versions for the osCommerce. The horizontal axis has a point for each
of the 85 entity types of the structural schema, ordered descendently by their
importance in the original version. The vertical axis shows the importance com-
puted in both versions. The importance has been normalized such that the sum
of the importances of all entity types in each method is 100.

As shown in [Fig. 7(g)] the highest correlation between the results of both
versions is for the CEntityRank (r=0.931), closely followed by the BEntityRank
(r=0.929). The lowest correlation is for the Weighted Simple Method (r=0.61).
Similar results are obtained for the UML metamodel. In this case the correlation
between the two versions of the Weighted Simple Method is 0.84 and that of the
CEntityRank is 0.96. [Tab. 11] summarizes the correlation results for the three
case studies.

Our conclusion from this result is that the methods that produce more similar
results in both versions are the BEntityRank and the CEntityRank. If this con-
clusion were confirmed by further experiments, the practical implication would
be that, if we only have the fragment of the structural schema comprising the en-
tity and relationship types, their attributes, and the specialization/generalization
relationships, then CEntityRank and BEntityRank are the methods of choice.

3157Villegas A., Olive A.: Extending the Methods ...

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7: Comparison between base and extended methods applied to the osCommerce.

The reason is that using only those elements, the BEntityRank and CEntityRank
methods give results more similar to those that would be obtained taking into
account the more of the schema. That is, the more knowledge we take into ac-
count the better, but if we only have that fragment of the structural schema
then the methods of choice are the CEntityRank and BEntityRank.

On the other hand, the methods based on link analysis (ER, BER and CER)
are more constant than those based on occurrence counting (CC, SM, WSM and

3158 Villegas A., Olive A.: Extending the Methods ...

Methods osCommerce UML Metaschema EU-Rent

CC - CC+ 0.92 0.87 0.93
SM - SM+ 0.71 0.85 0.89

WSM - WSM+ 0.61 0.84 0.77
TIM - TIM+ 0.64 0.94 0.71
ER - ER+ 0.9 0.94 0.91

BER - BER+ 0.93 0.95 0.94
CER - CER+ 0.93 0.96 0.93

Table 11: Correlation coefficients between original and extended methods.

TIM). The main reason for this behavior is the recursive definition of its formulas.
The link analysis methods need the importance of other entity types in order to
compute the importance of an entity type. This dependency implies an iterative
computation to achieve the convergence to a state where the importance flows
are in equilibrium. In the case of occurrence counting methods, the computation
of the relevance for an entity is totally independent from the other entity types.

This conclusion contrasts with the results reported in the previous work of
[Tzitzikas et al. (2007)], which, based on subjective evaluations given by evalua-
tors, concludes that the method that gives the best results is the Simple Method.
However, [Fig. 7(b)] shows that the result given by that method considerably
changes when more schema knowledge is taken into account.

4.2 Variability of the Original and the Extended Versions

The second experimentation consists of the study of the correlation between
original and extended versions separately. Our aim is to know whether it is
possible to compare the results of the importance methods and to search for a
common behaviour according to if the methods take into account the complete
conceptual schema (extended version of methods) or only (a fragment of) the
structural schema (original methods).

[Tab. 12], [Tab. 13] and [Tab. 14] show the correlation between each pair of
methods (separately, originals and extended versions), in all case studies. It can
be seen that, if we exclude the Transitive Inheritance Method (TIM) because it
gives the worst results, the correlation in the original versions of the methods
ranges from 0.59 to 0.99, while in the extended versions the range is from 0.81
to 0.99.

The conclusion from this result is that the extended versions of the methods,
excluding TIM, produce remarkably similar results, which does not happen in
the original version. That is, the results obtained by extended versions have a
lower degree of variance.

This conclusion is also significant because it assures that the use of the Simple
Method (extended version) whose computational cost is very low, and on the

3159Villegas A., Olive A.: Extending the Methods ...

ISM IWSM ITIM IER IBER ICER

ICC 0.87 0.79 0.06 0.96 0.85 0.86

ISM 0.98 0.15 0.82 0.79 0.92

IWSM 0.16 0.73 0.77 0.90

ITIM 0.06 0.07 0.11

IER 0.82 0.83

IBER 0.91

I+
SM I+

WSM I+
TIM I+

ER I+
BER I+

CER

I+
CC 0.99 0.97 0.23 0.93 0.82 0.81

I+
SM 0.99 0.26 0.93 0.83 0.86

I+
WSM 0.27 0.91 0.85 0.89

I+
TIM 0.25 0.24 0.30

I+
ER 0.84 0.84

I+
BER 0.91

Table 12: Correlation coefficients between results of original and extended meth-
ods for the UML metaschema.

ISM IWSM ITIM IER IBER ICER

ICC 0.76 0.61 0.43 0.98 0.94 0.94

ISM 0.97 0.79 0.74 0.87 0.88

IWSM 0.79 0.59 0.78 0.76

ITIM 0.40 0.54 0.61

IER 0.94 0.94

IBER 0.97

I+
SM I+

WSM I+
TIM I+

ER I+
BER I+

CER

I+
CC 0.99 0.99 0.78 0.98 0.92 0.92

I+
SM 0.99 0.79 0.98 0.93 0.93

I+
WSM 0.79 0.98 0.94 0.94

I+
TIM 0.78 0.73 0.83

I+
ER 0.94 0.93

I+
BER 0.97

Table 13: Correlation coefficients between results of original and extended meth-
ods for the osCommerce.

ISM IWSM ITIM IER IBER ICER

ICC 0.88 0.71 0.06 0.99 0.97 0.97

ISM 0.95 0.24 0.87 0.92 0.95

IWSM 0.24 0.71 0.81 0.84

ITIM 0.05 0.06 0.13

IER 0.97 0.97

IBER 0.99

I+
SM I+

WSM I+
TIM I+

ER I+
BER I+

CER

I+
CC 0.99 0.98 0.65 0.99 0.97 0.95

I+
SM 0.99 0.66 0.99 0.97 0.98

I+
WSM 0.66 0.97 0.96 0.98

I+
TIM 0.66 0.61 0.69

I+
ER 0.98 0.96

I+
BER 0.96

Table 14: Correlation coefficients between results of original and extended meth-
ods for the EU-Rent.

other hand it allows the incremental recalculation of the importance of entity
types when the schema changes, produces “good-enough” results.

5 Conclusions and Further Work

The visualization and the understanding of large conceptual schemas require
the use of specific methods. These methods generate indexed, clustered, summa-
rized or focused schemas that are easier to visualize and understand. Almost all
of these methods require computing the importance of each entity type in the
schema. We have argued that the objective importance of an entity type in a

3160 Villegas A., Olive A.: Extending the Methods ...

schema should be related to the amount of knowledge that the schema defines
about it. There are several proposals of metrics for entity type importance. All of
them are mainly based on the amount of knowledge defined in the schema, but
-surprisingly- they only take into account the fragment of that knowledge consist-
ing on the number of attributes, associations and specialization/generalization
relationships. A complete conceptual schema also includes cardinalities, general
constraints, derivation rules and the specification of events, all of which con-
tribute to the knowledge of entity types.

We have analyzed the influence of that additional knowledge on a representa-
tive set of seven existing metrics. We have developed extended versions of each
of those metrics. We have evaluated both versions of those methods in three
large real-world schemas. The two main conclusions are: (1) Among the original
versions of the methods, the methods of choice are those based on the link anal-
ysis following the same approach as Google’s PageRank; and (2) The extended
versions of most methods produce remarkably similar results, which does not
happen in the original version.

We plan to continue this work in two main directions. The first, is the ex-
perimentation with other large industrial schemas to check whether the above
conclusions have a larger experimental basis. The second, is the extension of the
work to other existing metrics.

Acknowledgements

Thanks to the people of the GMC group for their useful comments to previous drafts of

this paper. We sincerely thank the anonymous referees for their valuable suggestions,

which have improved the paper. This work has been partly supported by the Minis-

terio de Ciencia y Tecnologia and FEDER under project TIN2008-00444/TIN, Grupo

Consolidado, and by Universitat Politècnica de Catalunya under FPI-UPC program.

References

[Baroni (2002)] A. L. Baroni.: “Formal definition of object-oriented design metrics”.
Master’s thesis, Vrije Universiteit Brussel, 2002.

[Bauerdick et al. (2004)] H. Bauerdick, M. Gogolla, and F. Gutsche.: “UML 2.0 Vali-
dation Results in Form of an EXCEL, PDF, and USE File. University of Bremen”.
2004. URL ftp://ftp.informatik.uni-bremen.de/local/db/papers/uml2004/
ocl_uml2.[xls|pdf|use].

[Bauerdick et al. (2004b)] H. Bauerdick, M. Gogolla, and F. Gutsche.: “Detecting
OCL Traps in the UML 2.0 Superstructure: An Experience Report”. In T. Baar,
A. Strohmeier, A. M. D. Moreira, and S. J. Mellor, editors, UML, volume 3273 of
LNCS, pages 188–196. Springer, 2004. ISBN 3-540-23307-5.

[Brin and Page (1998)] S. Brin and L. Page.: “The anatomy of a large-scale hypertex-
tual web search engine”. In Computer Networks and ISDN Systems, pages 107–117.
Elsevier Science Publishers B. V., 1998.

[Business Rules Group (2000)] Business Rules Group.: “Defining Business Rules–
What Are They Really?”. Final Report, July 2000. URL http://www.
businessrulesgroup.org/first_paper/br01c0.htm

3161Villegas A., Olive A.: Extending the Methods ...

[Castano et al. (1998)] S. Castano, V. D. Antonellis, M. G. Fugini, and B. Pernici.:
“Conceptual schema analysis: Techniques and applications”. ACM Trans. Database
Syst., 23(3):286–332, 1998.

[Frias et al. (2003)] Frias L., Queralt A. and Olivé A.: “EU-Rent Car Rentals Specifi-
cation”. LSI-03-59-R Research Report. 2003. URL http://www.lsi.upc.edu/dept/
techrepts

[Lindland et al. (1994)] O. I. Lindland, G. Sindre, and A. Sølvberg.: “Understanding
quality in conceptual modeling”. IEEE Software, 11(2):42–49, 1994.

[Moody and Flitman (1999)] D. L. Moody and A. Flitman.: “A Methodology for Clus-
tering Entity Relationship Models – A Human Information Processing Approach”.
In J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E. Métais editors, ER 1999,
volume 1728 of LNCS, pages 114–130. Springer, 1999. ISBN 3-540-66686-9.

[OMG (2006)] “Object Constraint Language (OCL), version 2.0”. Object Manage-
ment Group (OMG), May 2006. URL http://www.omg.org/spec/OCL/2.0/.

[OMG (2009)] “Unified Modeling Language (UML) Superstructure Specification, ver-
sion 2.2”. Object Management Group (OMG), February 2009. URL http://www.
omg.org/spec/UML/2.2/.

[Olivé and Raventós (2006)] A. Olivé and R. Raventós.: “Modeling events as entities
in object-oriented conceptual modeling languages”. In Data & Knowledge Engi-
neering, volume 58, number 3, pages 243–262. Elsevier, 2006.

[Olivé (2007)] A. Olivé.: “Conceptual Modeling of Information Systems”. Springer-
Verlag, 2007. ISBN 3540393897.

[Olivé and Cabot (2007)] A. Olivé and J. Cabot.: “A research agenda for conceptual
schema-centric development”. In S. B. John Krogstie, Andreas Lothe Opdahl, ed-
itor, Conceptual Modelling in Information Systems Engineering, pages 319–334.
Springer Verlag, 2007.

[Salton (1989)] G. Salton.: “Automatic text processing: the transformation, analysis,
and retrieval of information by computer”. Addison-Wesley Longman Publishing
Co., 1989. ISBN 0201122278.

[Snoeck and Dedene (1998)] M. Snoeck and G. Dedene.: “Existence Dependency: The
key to semantic integrity between structural and behavioral aspects of object types”.
IEEE Transactions on Software Engineering, volume 24, number 4, pages 233–251,
1998.

[Tort and Olivé (2007)] A. Tort and A. Olivé.: “The osCommerce Conceptual Sche-
ma”. Universitat Politècnica de Catalunya. URL http://guifre.lsi.upc.edu/
OSCommerce.pdf, 2007.

[Tzitzikas and Hainaut (2005)] Y. Tzitzikas and J.-L. Hainaut.: “How to tame a very
large ER diagram (using link analysis and force-directed drawing algorithms)”. In
L. M. L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, and O. Pastor, editors, ER
2005, volume 3716 of LNCS, pages 144–159. Springer, 2005. ISBN 3-540-29389-2.
URL http://dx.doi.org/10.1007/11568322_10.

[Tzitzikas et al. (2007)] Y. Tzitzikas, D. Kotzinos, and Y. Theoharis.: “On ranking rdf
schema elements (and its application in visualization)”. J. UCS, 13(12):1854–1880,
2007.

[Villegas (2009)] A. Villegas.: “Computing the Importance of Entity Types Taking into
Account the Whole Schema”. Master’s thesis, Universitat Politècnica de Catalunya,
2009. URL http://www.essi.upc.edu/~avillegas/MasterThesis-AVillegas.pdf

[Villegas and Olivé (2009)] A. Villegas and A. Olivé.: “On Computing the Importance
of Entity Types in Large Conceptual Schemas”. In C. A. Heuser and G. Pernul,
editors, ER Workshops, volume 5833 of LNCS, pages 22–32. Springer, 2009.

[Yu and Jagadish (2006)] C. Yu and H. V. Jagadish.: “Schema summarization”. In
U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten,
S. K. Cha, and Y.-K. Kim, editors, VLDB, pages 319–330. ACM, 2006. ISBN 1-
59593-385-9.

3162 Villegas A., Olive A.: Extending the Methods ...

