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Abstract: Motivated by our experiences with spatial modelling for the sustainable
land use initiative we present a geometrically enhanced ER model (GERM), which
preserves the key principles of entity-relationship modelling and at the same time
introduces bulk constructors and geometric features. The model distinguishes between
a syntactic level of types and an explicit internal level, in which types give rise to
polyhedra that are defined by algebraic varieties. It further emphasises the stability of
algebraic operations by means of a natural modelling algebra that extends the usual
Boolean operations on point sets.
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1 Introduction

The goal of our research is to provide a conceptual model supporting geometric
modelling. One motivation is the need for spatial data modelling in the context
of the sustainable land use initiative (SLUI) [Mackay, 2007], which addresses
erosion problems in the New Zealand hill country. At the core of SLUI whole
farm plans (WFPs) are produced, which capture farm boundaries, paddocks,
etc. and provide information about land use capability (LUC) such as rock, soil,
slope, erosion, vegetation, plants, poles, etc. Such plans can then be used to get
an overview of erosion and vegetation levels and water quality, and to exploit
this information for sustainable land use management.

A number of spatial data models have been proposed in the literature [Guting
and Schneider, 1995; Laurini and Thompson, 1992; Peano, 1890], for a brief
survey see Section 2. The existing models focus on how to store data and how to
efficiently realise storage and operations on such data. However, the purpose of
a conceptual model is to serve as communication tool between domain experts
and information analysts, that abstracts from implementation-level details of
data storage and data access. Based on our experiences with the modelling of
WFPs we are convinced that more research has to be done to obtain adequate
conceptual models supporting geometric modelling. Our objective is to go even
further than geographic information systems, and to support other kinds of
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geometric modelling in the same manner. For instance, technical constructions
such as rotary piston engines can be supported by trochoids, which are plane
algebraic curves already known by the Greeks [Brieskorn and Knörrer, 1981].
Bézier curves and patches [Salomon, 2005] are also commonly applied in these
applications. Together with hull operators [Hartwig, 1996] they can also be used
for 3-D models of hill shapes in WFPs.

In this paper we introduce the geometrically enhanced entity-relationship
model (called GERM for short) as our approach to deal with the problems dis-
cussed. As the name suggests, our intent is to preserve the aggregation-based
approach [Hull and King, 1987] of the original entity-relationship (ER) model by
means of higher-level relationship types [Thalheim, 2000], but we enhance roles
in relationship types by supporting choice and bulk constructors (sets, lists, mul-
tisets). However, different from [Hartmann and Link, 2007] the bulk constructors
are not used to create first-class objects, neither is the choice constructor (defin-
ing so-called clusters in [Thalheim, 2000]).

Furthermore, we keep the fundamental distinction between data types such
as points, polygons, Bézier curves, etc. and concepts. The former ones are used
to define the domains of (nested) attributes, while the latter ones are repre-
sented by entity and relationship types. That is, a concept such as a paddock is
distinguished from the curve defining its boundary. In this way we guarantee a
smooth integration with non-geometric data such as farm ownership, processing
and legal information that is also relevant for WFPs, but does not pose a novel
modelling challenge.

GERM has been developed to support modelling at multiple levels. On a
syntactic (or surface) level we provide an extendible collection of data types such
as line sequences, polygons, sequences of Bézier curves, or Bézier patches, that
have efficient surface representations. For example, a polygon can be represented
by a list of points, and a Bézier curve of order n can be represented by n + 1
points – the case n = 2 captures the most commonly known quadratic Bézier
curves that are also supported in LATEX.

On an explicit (or internal) level we use a representation by polyhedra
[Hartwig, 1996] that are defined by algebraic varieties, i.e., sets of zeros of poly-
nomials in n variables. All curves that have a rational parametric representation
such as Bézier curves [Salomon, 2005], can be brought into such an “implicit”
form, e.g. [Gao and Chou, 1992] describes a method for implicitisation based on
Gröbner bases, and many classical curves that have proven their values in land-
care for centuries can be represented in this way [Brieskorn and Knörrer, 1981].
This kind of explicit representation bears some similarities to the polynomial
model of spatial data introduced in [Paredaens and Kuijpers, 1998].

Adequate support for operations on geometric data, such as interiors, unions,
or intersections of point sets, defines a third, derived level. To guarantee the
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geometric stability of these operations we adopt the idea of natural modelling
[Hartwig, 1996] and extend it to the data types provided in GERM.

This paper is organised as follows. In Section 2 we give a brief review of
related work in the literature. Section 3 assembles some relevant information
on WFPs to set up the context of the study. In Section 4 we introduce the
constituents of GERM emphasising the syntactic level. Section 5 outlines an
SQL-based language for expressing queries against GERM conceptual schemas.
In Section 6 we discuss the internal representation of geometric data by means of
algebraic varieties. We illustrate our approach by examples from the modelling
of WFPs. Finally, in Section 7 we introduce a natural modelling algebra, and
discuss its merits with respect to expressiveness and accuracy.

2 Related Work

While there is a lot of sophisticated mathematics around to address geometric
modelling in landcare, and this has a very long tradition as shown in [Brieskorn
and Knörrer, 1981], spatial and geometric modelling within conceptual modelling
have mainly followed two lines of research – for an overview see [Shekhar and
Xiong, 2008]. The first one is based on modelling spatial relationships such as
disjointness, touching, overlap, inside, boundary overlap, etc. and functions such
as intersection, union, etc. that are used for spatial primitives such as points,
lines, polygons, or regions. Extensions have been proposed to the ER model and
to UML class diagrams to support spatial data modelling [Shekhar et al., 1997].
However, spatial data types are not considered at the conceptual level. Thanasis
et al. [Hadzilacos and Tryfona, 1997] propose the Geo-ER Model that intro-
duces special entity sets, relationships, and new constructs to handle properties
associated to objects relating to the objects’ position. In [Shekhar et al., 1999]
pictograms are added to the common ER model to highlight spatial objects and
relationships. Price et al. [Price et al., 2001] deal in particular with part-whole re-
lationships, Ishikawa et al. [Ishikawa and Kitagawa, 2001] apply constraint logic
programming to deal with these predicates, Gubiani et al. [Gubiani and Mon-
tanari, 2008] propose an approach to support the management of consistency
constraints on multiple representations of the same spatial entity, Malinowski
et al. [Malinowski and Zimányi, 2007] use spatial integrity constraints to ensure
the semantic equivalence of the conceptual and logical schemas. McKenny et
al. [McKenny and Schneider, 2007] handle problems with collections, and Chen
et al. [Chen and Zaniolo, 2000] use the predicates in an extension of SQL. In
[Shekhar et al., 1999], a set of rules are presented to generate spatial columns
and data types in SQL DDL from entity pictograms. However, the complexity
of rules are not discussed and can be very high.

The work in [Behr and Schneider, 2001; Chen and Zaniolo, 2000] links to the
second line of research expressing the spatial relationships by formulae defined on

2988 Ma H.: A Geometrically Enhanced Conceptual Model ...



point sets applying basic Euclidean geometry or standard linear algebra, respec-
tively. Likewise, point sets are used in [Stoffel et al., 2007] to express predicates
on mesh of polygons in order to capture motion, and Frank [Frank, 2005] classi-
fies spatial algebra operation into local, focal and zonal ones based on whether
only values of the same location, of a location and its immediate neighbourhood,
or of all locations in a zone, respectively, are combined. Christian et al. [Jensen
et al., 2004] extend existing algebraic query language to accommodate spatial
values that exhibit partial containment relationships.

Paredaens and Kuijpers [Paredaens, 1995; Paredaens and Kuijpers, 1998]
compare five spatial data models: the raster model [Guting and Schneider, 1995]
and the Peano model [Peano, 1890], which represent spatial data by finite point
sets that are either uniformly or non-uniformly distributed over the plane, re-
spectively, the Spaghetti model [Laurini and Thompson, 1992] based on contours
defined as polylines, the polynomial model [Kanellakis et al., 1990; Paredaens
et al., 1994] based on formulae that involve equality and inequality of polynomi-
als, and the PLA model [Corbett, 1979], which only uses some kind of topological
information without dealing with exact position and shape. While some models
lack theoretical foundations, those that are grounded in theory do not bother
about efficient implementations.

As we can see from above, spatial models discussed in the literature are not
suitable for conceptual modelling of geometric data to provide an abstract view
of the an application domain. Widely used conceptual models like the entity-
relationship model and UML do not capture some important semantics inherent
in spatial modelling [Shekhar et al., 1999]. Geometric data should be included
into conceptual models so that it can be conveniently accessed through the sur-
face level, while its internal structure is hidden from the user. In the mean time,
the conceptual model for geometric data should be closed under geometric set
operations [Schneider, 2009]. Further, the spatial relationships and functions dis-
cussed in the literature are in fact derived from underlying representations of
point sets, so we need representations on multiple levels as also proposed in [Bal-
ley et al., 2004]. Furthermore, when dealing with point sets it is not sufficient to
define spatial relationships and functions in a logical way. We also have to ensure
“good nature” in the numerical sense, i.e., the operations must be as accurate as
possible when realised using floating point arithmetics. For example, [Liu et al.,
2005] emphasised several spatial conflicts such as determining the accurate spa-
tial relationship for a winding road along a winding river as opposed to a road
crossing a river several times, leading to a classification of line-line relationships.
The accuracy problem has motivated a series of modifications to algebras on
point sets that enhance the standard Boolean operators [Hartwig, 1996] to make
them fit for practical applications of geometric modelling.
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3 Whole Farm Plans

As we mentioned this study is motivated by the need for spatial data modelling
in the context of the sustainable land use initiative (SLUI). Now let us look in
more detail at the information that should be kept for the SLUI program. To
manage land in the hill country sustainably, the aim of the SLUI and Whole
Farm Plans (WFPs) is to propagate land use change. For the long term the
SLUI program has an objective to have 75,000 ha of land improved in the next
10 years. To demonstrate the considerable funds being spent are achieving worth-
while outcomes, WFPs should be monitored to measure the progress towards the
objective. For example WFP data, including spatial and non-special data, need
to be kept to create WFPs and to analyse the effectiveness of the programme,
e.g., the upgraded land area.

During the environmental assessment of farms a series of artifacts is gen-
erated, including legal titles and parcels maps, paddock maps, land resource
inventories, Land Use Capability (LUC) maps, soil fertility and nutrient maps,
pasture production maps, summaries of resource issues, and recommendations
for the sustainable management of land resources. We are not aiming to illumi-
nate every detail of this process, but just want to exemplify the kinds of spatial
and non-spatial data that need to be captured in Whole Farm Plans. In doing
so we shed some light on the features a conceptual modelling language needs to
observe to be useful for WFP modelling, and for geometric modelling in general.

Paddock maps: Figure 1 contains an example of paddock maps which shows
the boundary of paddocks within a farm. To model the maps we need to consider
spatial data as well as non-special data, e.g. an area with paddock code = ‘P01’
is defined by its paddock boundary which is a polygon. That is, we need a
conceptual model to include Polygon and STRING as abstract data types for
paddock boundaries and paddock codes.

LUC maps: Land resources can be described and evaluated according to
LUC classification. The LUC classification has three basic components class,
subclass and capability unit. The area under study is divided into landcare units
by drawing boundaries around areas with similar soil characteristics. A landcare
unit polygon represents an area of similar soil characteristics. LUC groups sim-
ilar landcare units according to their capacity for sustainable production under
arable, pastoral, forestry or conservation uses. The LUC unit (e.g. 3w2) indicates
general capability (classes 1 to 8), the major limitations (4 subclass limitations
of wetness, erosion, soil and climate) and the capability unit (e.g. 2) to link with
regional classifications and known best management practices. Figure 2 shows
an example of LUC maps. Again to model the information on LUC maps, we
need to consider spatial data, e.g., landcare unit boundaries, and non-spatial
data, e.g. LUC units. For example, an area on the bottom of the map is defined
by a polygon and has a value of 3w2 for the LUC unit. For the same value of
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Figure 1: An Example of a Paddock Map [AgResearch, 2005]

LUC unit total area can be calculated, e.g. the total area of 3w2 is 20.4 hectares.
To demonstrate the improvement of land use capability, LUC maps produced at
different years can be compared.

WFP maps: Based on the assessment of land strengths and weaknesses
are given by LUC unit, a catalogue of environmental works is recommended.
Recommendations for either land use change or management change are based
primarily on the degree, severity, and location of the soil erosion and the resultant
effects. A set of maps are created to show the locations of planned work. For
example, as shown in Figure 3, the location of tree planting or fence to be built
are shown on the maps. To model the data on WFP maps, we need to model
the location information of the planned work, presented as polygons, points or
arcs, as well as additional information of the planned work which includes the
financial support information provided by the regional council.

As we can see from above, WFP data includes classic relational or non-spatial
data (attribute data) such as owner information, investment information, land
usability data and spatial data (location data) such as paddock boundaries, LUC
landcare unit boundaries, buildings, land and water resources, bridges, tracks,
track crossings, enhancement plantings, fences, stone pickings. There is a need to
integrate the spatial and non-spatial data in the SLUI application so that users
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Figure 2: An Example of a LUC Map [AgResearch, 2005]

can analyse the effectiveness of the SLUI programme, e.g. by calculating the
areas of landcare units that have some LUC unit values improved. Our goal is to
support conceptual modelling of WFPs for integration into the SLUI information
system by providing representations of the spatial relationships and functions on
multiple levels, by providing relationships and functions in a logical way when
dealing with point sets, and by providing suitable operations when realised using
floating point arithmetic.

4 Geometrically Enhanced ER Model (GERM)

In this section we start with the presentation of GERM focussing on the syntactic
(or surface) level, which is what will be needed first for modelling geometrically
enhanced applications. We will concentrate on the definition of data and object
types and their semantics, but we will dispense with discussing primary keys or
other constraints. For attributes we will permit structuring.

4.1 Data Types and Nested Attributes

Definition 1. A universe is a countable set U of simple attributes together with
a type assignment tp that assigns to each attribute A ∈ U a data type tp(A). ��

2992 Ma H.: A Geometrically Enhanced Conceptual Model ...



Figure 3: An Example of a WFP Map [AgResearch, 2005]

For most purposes, the data type tp(A) assigned to an attribute A ∈ U will
be a base type, but we do not enforce such a restriction. We do not further specify
the collection of base types. Common examples of base types are INT , FLOAT ,
STRING, DATE , or TIME . Each base type t is associated with a countable
set of values dom(t) called the domain of t. For the base types mentioned here
the domains are chosen as usual. For an attribute A ∈ U we let dom(A) =
dom(tp(A)), and also call dom(A) the domain of A.

We use constructors to build complex data types from base types. In partic-
ular, we use (·) for record types, {·}, [·] and 〈·〉 for finite set, list and multiset
types, respectively, ⊕ for (disjoint) union types, and → for map types. Further-
more, we make use of a trivial type 1l with domain dom(1l) = {⊥}. We obtain
complex data types t by the production rule

t = 1l | b | (a1 : t1, . . . , an : tn) | (a1 : t1) ⊕ · · · ⊕ (an : tn) | {t} | [t] | 〈t〉 | t1 → t2

where b stands for base types, and a1, . . . , an are pairwise distinct labels chosen
from a suitable alphabet. Moreover, we allow complex data types to be named
and used in type definitions in the same way as base types with the restriction
that cycles are forbidden. Domains associated with complex data types can be
obtained in a similar way from the values of the respective base types and ⊥.

Example 1. We may define named complex data types that can be used for
geometric modelling, such as Point = (x : FLOAT , y : FLOAT) for points in
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the two-dimensional plane, PolyLine = [Point ], Polygon = [Point ], Bezier =
[Point ], or PolyBezier = [Bezier ]. Note, that the examples PolyLine, Polygon,
and Bezier constitute types with identical surface representations, but different
geometric semantics (details will be discussed in Section 6). A polyline is defined
defined piecewise linearly, while a polygon is a region with a polyline border. A
Bézier curve is determined by a finite sequence of points in the plane, too. It
passes through the first and last control points and lies within the convex hull of
the control points. A polyBézier curve is defined piecewise by Bézier curves. We
will commonly refer to such data types as geometric data types, thus emphasising
that they will serve as surface representations for particular geometric features.

The trivial type 1l can be used in combination with the union constructor
to define enumerated types, i.e., types with finite domains, such as Bool = (T :
1l)⊕ (F : 1l), Gender = (male : 1l)⊕ (female : 1l), or INTn = (1 : 1l)⊕· · ·⊕ (n : 1l)
for any positive integer n, which gives a domain with values 1, . . . , n. The map
constructor can be used to define array types, such as Patch = (i : INTn, j :
INTm) → Point representing Bézier patches. Further examples used for spatial
modelling are vector field types of different dimensions, such as Vectorfield1 =
{Point} → FLOAT , which is useful for capturing sensor data (e.g., water levels),
and Vectorfield2 = {Point} → Point , which is useful for modelling other mea-
surements (e.g., wind force and direction) by two-dimensional vectors. Finally,
TimeSeries = (d : DATE , t : TIME ) → Vectorfield1 is useful for modelling a
series of observed data over time, thus capturing also temporal aspects of data.

Similar to base types, we may also consider attributes with complex
data types assigned to them. Such attributes are known as nested attributes,
cf. [Thalheim, 2000]. We extend this notion as follows:

Definition 2. The set A of (nested) attributes (over universe U) is the smallest
set with U ⊆ A satisfying X(A1, . . . , An), X{A}, X [A], X〈A〉, X1(A1) ⊕ · · · ⊕
Xn(An), X(A1 → A2) ∈ A with labels X, X1, . . . , Xn and A, A1, . . . , An ∈ A.

��

The type assignment tp extends naturally from U to A as follows:

– tp(X(A1, . . . , An) = (a1 : tp(A1), . . . , an : tp(An)) with labels a1, . . . , an,

– tp(X1(A1) ⊕ · · · ⊕ Xn(An)) = (X1 : tp(A1)) ⊕ · · · ⊕ (Xn : tp(An)),

– tp(X{A}) = {tp(A)}, tp(X [A]) = [tp(A)], tp(X〈A〉) = 〈tp(A)〉, and

– tp(X(A1 → A2)) = tp(A1) → tp(A2).
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4.2 Entity and Relationship Types

Following [Thalheim, 2000] the major difference between entity and relationship
types is the presence of components ρ : O (with a role name ρ and a name O

of an entity or relationship type) for the latter ones. We will therefore unify the
definition, and simply talk of object types as opposed to the data types in the
previous subsection. We will, however, permit object types to possess structured
components.

Definition 3. Let O be a countable set of object type names. The set C of
component expressions (over O) is the smallest set containing all object type
names O ∈ O, all list expressions [C], all set expressions {C0}, all multiset
expressions 〈C0〉, and all union expressions C1 ⊕ · · · ⊕ Cn, with C, Ci ∈ C, but
where the Ci are not union expressions. A structured component is a pair ρ : C

with a role name ρ and a component expression C ∈ C. ��

Note that this definition does neither permit record and map constructors in
component expressions, nor full orthogonality for set, multiset and union con-
structors. We excluded the record constructor as it corresponds to aggregation,
i.e. whenever a component of a relationship type has the structure of a record,
it can be regarded as a relationship type for its own sake. We decided to exclude
the map constructor since functions on entities and relationships that depend
on instances seemed to make very little sense to us. The reason the restricted
combinations of the other constructors are the intrinsic equivalences observed
in [Hartmann et al., 2004; Sali and Schewe, 2009]. If in {C} we had a union
component expression C = C1 ⊕ · · · ⊕ Cn, this would be semantically equiva-
lent to a record expression ({C1}, . . . , {Cn}), to which the argument regarding
records can be applied. The same holds for multiset expressions, while nested
union constructors can be flattened. In this way we guarantee to deal only with
normalised and thus simplified structured components that do not contain any
hidden aggregation.

Definition 4. An object type O of level k ≥ 0 consists of a finite set comp(O) =
{ρ1 : C1, . . . , ρn : Cn} of structured components with pairwise different role
names ρ1, . . . , ρn, and a finite set attr(O) = {A1, . . . , Am} ⊆ A of nested at-
tributes. Each object type that occurs in any of the component expressions Ci

is of level at most k − 1, and unless comp(O) = ∅ at least one of these object
types must have exactly the level k − 1.

Note that this definition enforces comp(O) = ∅ if and only if O is an object
type of level 0. Therefore, we call object types of level 0 entity types, and object
types of level k > 0 relationship types. For brevity, we use the notation O =
(comp(O), attr(O)) to define an object type O. ��
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Example 2. Recall that whole farm plans are developed on the basis of pad-
dock maps. Each paddock belongs to some farm, is identified by its pad-
dock code, is legally defined by a boundary, and has a particular usage.
We can use an object type Paddock with structured component farm :
Farm and with attributes paddock code, usage, and boundary to model pad-
docks. That is, comp(Paddock) = {farm : Farm} and attr(Paddock) =
{paddock code, usage, boundary}. Herein, Farm is an entity type and, thus, Pad-

dock is a relationship type of level 1. For simplicity, we agree to omit the role
name (e.g., farm) if it corresponds to the object type name (e.g., Farm) in the
component expression.

Note that while we discarded full orthogonality for component constructors,
we did not do this for the nested attributes, leaving a lot of latitude to modelers.
The rationale behind this flexibility is that the attributes should reflect pieces
of information that are meaningful within the application context. For instance,
using a simple attribute shape with tp(shape) = Polygon (thus, shape ∈ U)
indicates that the structure of polygons as lists of pairs of floating point num-
bers is not relevant for the conceptual model of the application, whereas the
alternative of having a nested attribute shape([point(x-coord, y-coord)]) with
tp(x-coord) = tp(y-coord) = FLOAT would indicate that points and their coor-
dinates are conceptually relevant beyond representing a data type. Notice that
the use of nested attributes in object types also gives rise to a generalised notion
of primary keys, which however, is beyond the scope of this paper.

Furthermore, the way we define structured components opens the way for
object types with alternative or collection-type components. For example, one
can define an object type Land Parcel with a set of paddocks as component.
However, we do not promote the use of disjoint unions nor sets, lists and multisets
for first-class concepts. For example, a set of paddocks will not appear as a
stand-alone object type. This differs from [Thalheim, 2000], where disjoint unions
(called clusters) are used independently from relationship types, and also from
[Hartmann and Link, 2007], where this has been extended to sets, lists and
multisets. The reason is that such stand-alone constructors are hardly needed in
the model, unless they appear within a component of a object type.

4.3 Schemata and Instances

Finally, we put the definitions of the previous subsections together to define
schemata and their instances in the usual way.

Definition 5. A GERM schema S is a finite set of object types, such that
whenever ρi : Ci ∈ comp(O) is a structured component of some object type
O ∈ S and the object type name Q appears in Oi, then also Q ∈ S holds. ��
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The definition of a GERM schema covers the syntactic level of our conceptual
model. For the semantics, we need to define instances of a GERM schema. We
will start with the definition of objects. An interpretation I(O) of an object
type O is just a finite set of objects of type O. Similar to the extension of dom

from base types to complex data types, we can also extend the interpretation
to structured components. This determines a unique set I(Ci) of values for any
component expression Ci, which is built from interpretations I(Q) for all Q

appearing in Ci.

Definition 6. An object o of type O is a mapping defined on comp(O)∪attr(O)
that assigns to each structured component ρi : Ci ∈ comp(O) a value ci ∈ I(Ci),
and to each attribute Aj ∈ attr(O) a value vj ∈ dom(Aj). Objects of an entity
type (i.e., level k = 0) are called entities, while objects of a relationship type
(i.e., level k > 0) are called relationships.

For brevity, we use the notation o = (ρ1 : c1, . . . , ρn : cn, A1 : v1, . . . , Am :
vm) for an object o of type O = ({ρ1 : C1, . . . , ρn : Cn}, {A1, . . . , Am}). ��

Definition 7. An instance I of a GERM schema S is an S-indexed family
{I(O)}O∈S , such that for each object type O ∈ S the set I(O) is an interpreta-
tion of O, and only these sets are used to determine the value sets for structured
components. ��

It is common practice to visualise entity-relationship schemas as diagrams.
This approach has also been used in the presence of higher-level relationships,
see [Thalheim, 2000]. We will adopt this approach to our purposes here, and
extend it to include a notation for sets. The GERM diagram of a GERM schema
S is a directed graph with the object types of S as nodes, and with edges
from a node O to a node Q whenever Q appears in a structured component
ρi : Ci ∈ comp(O). Disjoint unions are indicated by diamonds labelled with ⊕,
while sets are indicated by diamonds labelled with ⊗.

Note that the GERM schema and its visualisation as a diagram are just
two different ways of presenting essentially the same information. We can attach
labels for attributes to the entity or relationship types to increase the level of
detail. For the sake of readability, however, we have omitted them in Figure 4.
For the same reason we have omitted role name labels if they correspond to the
object type name in a structured component.

4.4 An Example: A GERM Schema for WFP Modelling

Example 3. Let us consider a GERM schema for a WFP as illustrated by its
diagram in Figure 4. Among other it reflects geographic information related with
the farms that are managed with whole farm plans. The central entity type Farm

can have attributes farm name, owner, address, and boundary. The first three
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Figure 4: Example of a GERM diagram for WFP modelling

have the base type STRING assigned to them, while tp(boundary) = PolyBezier
is the data type assignment for the last one.

The object type Paddock is used to represent the arable land units of a
farm (commonly called paddocks), with attributes paddock code, boundary, and
usage. The data types assigned to them are STRING, PolyBezier , and (cattle :
1l) ⊕ (dairy : 1l) ⊕ (hort : 1l) ⊕ (sheep : 1l) ⊕ · · · ⊕ (other : 1l), respectively.

The object type LUC is used to capture the properties of landcare units of
a farm, with attributes year, boundary, and unit(class, sub class, capability). We
assigned the data types YEAR and PolyBezier to the first two attributes, while
the third one is a nested attribute formed using a record constructor from the
attributes class of data type INT , sub class of data type (w : 1l) ⊕ (e : 1l) ⊕ (s :
1l)⊕(c : 1l), and capability of data type INT. Note that the data type of sub class
is an enumerated type whose available values indicate wetness, erosion, soil, and
climate (for details please see Section 3 again).

The object type Building is used to represent buildings located on a farm,
with attributes base and kind. We assigned a further enumerated type to the
non-spatial attribute kind, and the data type Polygon to the spatial attribute
base. The object type Fence has an attribute shape of data type PolyLine, and
two components: a set of Paddock objects and a set of Path objects, referring
to the paddocks and paths it is adjacent to. The object type Path has attributes
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width, location, and shape. The latter is of data type PolyBezier , indicating the
course of the path by a polyBézier curve.

The object types River, Pond and Well are used to model water resources
on a farm. River has attributes river name, location, left and right. The latter
two are of data type PolyBezier, to capture the course of the left and right
bank of a river. The object type Well possesses attributes well number, depth,
and boundary of data types types STRING, FLOAT , and Circle, respectively.
The object type Pond has attributes pond name, and boundary of data types
STRING and PolyBezier , respectively. As usual we may assign different data
types to attributes (here boundary) if they appear in multiple object types.

The relationship type Inside is used to model part-of relationships that are
common on a farm. For example, an island may lie in a river, and a well, pond
or building may be located in a paddock. Inside has two components, one is a
disjoint union of the object types representing parts, while the other is a disjoint
union of the object types representing wholes.

A water consent for a farm refers to set of water extraction points, each
of them linked to a water resource (called source) such as a river, a well, or
a pond. The object type WaterExtractionPoint has attributes location,
capacity, and minimum. The data types assigned to them are Point , FLOAT , and
Month → FLOAT , respectively. capacity specifies the amount of water that may
be taken out of the source, while minimum defines a minimum season-dependent
standard that may not be fallen below. The object type WaterConsent has an
attribute allowance of data type Month → FLOAT defining the total amount
of water the farm is permitted to use. The object type WaterQuality is used
to model the water quality measured for a water resource (called source) such
as a river or a pond over time. It has a nested attribute measurement{date →
reading(agent, unit, value)} to capture measured levels of oxygen, nitrate, or
other agents. The object type WasteWaterAgreement is used to model the
contracted minimum and maximum values governing the water quality for a
farm.

5 GERM-SQL

Conceptual models are widely used during the analysis and design of data-
intensive applications. They provide a high-level documentation of user require-
ments, thus facilitate the communication between data architects and domain
experts during requirements capture. As design artifacts they often define a basis
for further development efforts and can be subject to contracts. It is good prac-
tice to equip a conceptual modelling language with suitable means for querying
conceptual models. For the entity-relationship model, such as query language
is SQL/ER [Gogolla, 1994] which was created in the spirit of SQL, but omits
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some ingredients of classical SQL such as the Group-By-clause. [Abiteboul et al.,
1995] introduced O2SQL that extends SQL to cope with complex data. [Thal-
heim, 2000] built on the experiences with SQL/ER and O2SQL when suggesting
HERM/SQL for the higher-order entity-relationship model. Note, however, that
geometric data types were not present in HERM, so that HERM/SQL does not
provide adequate support for querying geometric data on the conceptual level.

On the other hand, there is evidence that the use of SQL for certain spa-
tial queries is inconvenient and error-prone due to the high syntactic complexity
[Lorie and Meier, 1984; Westlake and Kleinschmidt, 1990]. There have been con-
siderable efforts to make SQL fit for querying spatial databases, for a summary
see [Schneider, 2009]. Examples include Pictorial SQL [Roussopoulos et al., 1988]
and Spatial SQL [Egenhofer, 1994] that extends SQL to cope with spatial data
on the logical level.

In this section we are concerned with the question of how to extend
HERM/SQL to cope with geometric data types. The challenge is to equip the
query language with means for describing and composing geometric data that
are compatible with the dual representation of geometric data on the surface
and the internal level that we use for GERM. Following the extensions of SQL
mentioned before, we aim to preserve the Select-From-Where structure of SQL
queries. However, additions are necessary to allow the user to pose queries in-
volving geometric features.

Every query Q has GERM schemas Sin and Sout as input and output schema,
respectively, and a mapping q that maps instances of Sin to instances of Sout.
Unless explicitly specified otherwise, the output schema consists of a single object
type Ans. Its attributes are given in the Select-clause.

Example 4. The following query asks for the names and boundaries of Golden
Kiwi’s farms. Its input schema is the illustrated in Figure 4, its output schema
contains the object type Ans = (∅, {farm name, boundary}).

SELECT farm name, boundary
FROM Farm

WHERE owner = ‘Golden Kiwi’;

The attributes in the Select-clause may be simple or nested attributes. They
may be already existing attributes of the object types in the input schema,
projections thereof to subattributes, or completely new attributes.

Example 5. To analyse the relationship between water quality and land quality,
one often want to find out all the farms that have a particular river going through.
To following query asks for all those Golden Kiwi farms that have the Manawatu
river going through. Herein, r.vicinity:Farm.farm name denotes the projection
of objects of type River to an attribute of its structured component Farm. In
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[Thalheim, 2000] such projections are also denoted using navigation paths in the
entity-relationship diagram. For the formal definition of projections on complex
data types using bulk and choice operators, we refer to [Hartmann et al., 2006;
Sali and Schewe, 2009].

SELECT r.vicinity:Farm.farm name
FROM River r

WHERE r.river name = ‘Manawatu’ and r.vicinity:Farm.owner =
‘Golden Kiwi’;

To provide adequate support for geometric data types, we need to include
operators acting on the respective domains. Examples are arithmetic operators,
such as area for the data types Polygon and Circle, length for the data types
PolyLine, Bezier and PolyBezier, or distance between pairs of points, curves or
regions. We further need unary geometric operators, such as closure, interior,
and border, and binary geometric operators, such as union, intersection, and dif-
ference. A particular challenge that arises here is that the result of applying such
operators does not necessarily belong to the same domain anymore. We discuss
this issue in more detail in Section 7. Moreover, we may also use aggregation
functions, such as average, minimum, and sum.

Example 6. The following query asks for the overall size of Golden Kiwi’s farms.

SELECT sum(area(boundary)) as total land
FROM Farm

WHERE owner = ‘Golden Kiwi’;

In the Where-clause we may also use Boolean operators, in particular those
reflecting topological relationships between points, curves and regions, such as
contains, covers, meets, or disjoint. Finally, the structure of queries may be
extended by further clauses as known from classical SQL, e.g., the Group-By-
clause.

Example 7. As part of the Sustainable Land Use Initiative (SLUI), the land
quality of participating farms is inspected on an annual basis. The outcomes
of this inspection are modelled by the object type LUC. A summary of the
outcomes for a particular year according to the LUC classification can be
retrieved using the following query.

SELECT �.unit(class, sub class, capability), sum(area(�.boundary))
FROM LUC �

WHERE �.in:Farm.farm name = ‘Rainbow Farm’ and �.in:Farm.year = 2009
GROUP BY �.unit(class, sub class, capability);
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The previous query can easily be extended to retrieve the improvement in land
quality over a certain period:

SELECT �.unit(class, sub class, capability), sum(area(�.boundary))
FROM LUC �

WHERE �.in:Farm.farm name = ‘Rainbow Farm’ and �.in:Farm.year = 2009
GROUP BY �.unit(class, sub class, capability);
MINUS

SELECT �.unit(class, sub class, capability), sum(area(�.boundary))
FROM LUC �

WHERE �.in:Farm.farm name = ‘Rainbow Farm’ and �.in:Farm.year = 2005
GROUP BY �.unit(class, sub class, capability);

6 Geometric Types and Algebraic Varieties

Usually, the domain dom(t) associated with a data type t defines a set of values
and a set operations acting on these values. For geometric data, however, this
approach needs to be questioned. For example, a value of data type Bezier as
defined in the previous section is simply a list of n + 1 points p0, . . . ,pn ∈ R

2.
However, it defines a Bézier curve of order n in the two-dimensional plane.
This calls for an additional geometric domain gdom(t), which associates with a
geometric data type t a suitable set of point sets in the n-dimensional Euclidean
space R

n, together with a mapping dom(t) → gdom(t). In the following we will
concentrate on the case n = 2, i.e., we focus on points, curves and regions in
the plane, but most definitions are not bound to this restriction. We will use
algebraic varieties and polyhedra to define the point sets of interest.

Definition 8. An (algebraic) variety V of dimension n is the set of zeroes of a
polynomial P in n variables, i.e., V = {(x1, . . . , xn) ∈ R

n | P (x1, . . . , xn) = 0}.
A base polyhedron H is the intersection of half planes, i.e.,

H = {(x1, . . . , xn) ∈ R
n | Pi(x1, . . . , xn) ≥ 0 for i = 1, . . . , k}

where P1, . . . , Pk are polynomials in n variables. A polyhedron H is the union of
a finite set of base polyhedra H1, . . . , H�. ��

It is well-known that algebraic varieties in the plane include all classical two-
dimensional curves [Brieskorn and Knörrer, 1981]. Note that P (x1, . . . , xn) = 0
holds if and only if both P (x1, . . . , xn) ≥ 0 and −P (x1, . . . , xn) ≥ 0 hold true,
so base polyhedra are straightforward generalisations of algebraic varieties.

If a point set is defined by polynomials as in Definition 8, this is called
an implicit representation of the point set. Alternatively, point sets are often
given by a function γ(u) : R → R

n which is called an explicit or parametric
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representation of the point set [Gao and Chou, 1992]. Note that an parametric
representation can always be turned into an implicit one, while the converse is
not always possible. For most two-dimensional point sets of interest, however, it
is possible to find rational parametric representations [Gao and Chou, 1992].

Example 8. Take the simple example of the unit circle. It has the implicit repre-
sentation P (x, y) = x2 + y2 = 0, but also the rational parametric representation

γ(u) = (x, y) with x =
2u

u2 + 1
and y =

1 − u2

1 + u2
.

Example 9. A Bézier curve of degree n is defined by n + 1 control points

p0, . . . ,pn. A parametric representation is B(u) =
n∑

i=0

Bin(u) · pi (0 ≤ u ≤ 1).

Herein Bin denotes the ith Bernstein polynomial of degree n, which is defined as

Bin(u) =
(

n

i

)
ui(1 − u)n−i.

A Bézier curve of degree 1 is simply a straight line between its two control
points p0 and p1. A Bézier curve of degree 2 is a parabolic curve connecting
p0 with p2 such that its tangents in both points pass through p1. To obtain
an implicit representation for it, we can start with the two quadratic equations
x = au2 + bu + c and y = du2 + eu + f that define B(u) = (x, y). Dividing
these equations by a and d, respectively, and subtracting them from each other
eliminates the quadratic term u2. This can then be solved to give u, plugged
back in to give x and y leading to a polynomial in x and y of degree 2 that
defines the implicitisation of the Bézier curve.

Example 10. A Bézier patch is defined by an (n×m) array of control points pij .

A parametric representation is P (u, v) =
n∑

i=0

m∑
j=0

Bin(u) · Bjm(v) · pij . If we fix

u = 0 or v = 0, we obtain Bézier curves P (0, v) and P (u, 0), respectively.

Definition 9. The geometric domain gdom(t) associated with a geometric data
type t is a set of point sets. Each element of gdom(t) has an implicit represen-
tation by a polyhedron H = H1 ∪ · · · ∪H� with base polyhedra Hi (i = 1, . . . , �)
defined by polynomials Pi1, . . . , Pini . For each of the polynomials Pij , the al-
gebraic variety defined by Pij has an explicit parametric representation γij(u),
unless this is impossible. ��

To obtain suitable polyhedra for two-dimensional regions surrounded by poly-
gons or polyBézier curves one often triangulates the region first. Triangulations
are a popular topic in computational geometry, and a number of algorithms have
been proposed in the literature to find triangulations efficiently.

Note that the union and the intersection of two polyhedra are polyhedra
again, but this is not generally true for their difference. Polyhedra are always
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closed sets with respect to the standard topology on the Euclidean space R
n, but

the difference of closed sets is not necessarily closed. We may, however, regain
a polyhedron by building its closure. For a geometric domain, it desirable to

have operators available to obtain the closure X̄ , interior
◦
X, and the boundary

∂X of a point set X in the geometric domain. The semantics of these operators

can be defined in the usual way by
◦
X = {p ∈ X | ∃r > 0.Ur(p) ⊆ X},

∂X = {p | ∀r > 0.Ur(p) ∩ X �= ∅ �= Ur(p) − X}, and X̄ = X ∪ ∂X . Herein,
Ur(p) denotes the open set of radius r > 0 with centre p in the Euclidean space
R

n.

7 Mathematical Challenges in 2D Geometric Modelling

Let us concentrate on geometric data types whose associated geometric domains
consist of two-dimensional polyhedra. The polynomials P needed to define two-
dimensional polyhedron give rise to plane algebraic curves. The association of
geometric domains to geometric data types in GERM unlocks the wealth of a
wide range of (partly very old) mathematical results that are ready for exploita-
tion in conceptual modelling of geometric data.

7.1 Logical Properties

Paredaens and Kuijpers [Paredaens and Kuijpers, 1998] studied semi-algebraic
sets from the point of view of generic database queries. Typical geometric queries
would involve semi-algebraic sets A, their interior Å, boundary ∂A, closure Ā

and complement R−A, distances, angles, and also spatial relations as mentioned
in the introduction.

The key question addressed in [Paredaens and Kuijpers, 1998] is complete-
ness. In the context of relational databases, a query language is complete if it
can express all computable queries, i.e., all queries that can be expressed by a
partial recursive function that is generic in the sense that it commutes with all
isomorphisms. Isomorphisms for relational databases are defined by permuta-
tions acting on the domain of values, which are then extended to tuples and
relations in a canonical way.

This approach, however, cannot be transferred to geometrical queries without
making changes to the notion of isomorphism, as arbitrary permutation of points
in Euclidean space would destroy all geometric properties. Therefore, genericity
has been defined with respect to various groups that operate on Euclidean space
such as the group T of translations and the group I of isometries, i.e. transfor-
mations that preserve distances. Unfortunately, for many relevant groups G the
property of G-genericity is undecidable [Paredaens et al., 1994]. Still, Gyssens et
al. [Gyssens et al., 1997] were able to define languages that capture exactly the
G-generic queries for some relevant groups such as T and I.
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Each such transformation group G expresses the geometric properties we
would like to preserve in queries, so the completeness results in [Gyssens et al.,
1997] show that for the most relevant cases we can adequately query databases
involving geometric objects that are defined by semi-algebraic sets, i.e. we obtain
again semi-algebraic sets as the result of such queries. Furthermore, the execution
plans of such queries prescribe the level of accuracy that will be required for
elementary operations on point sets such as union and intersection.

7.2 Classification of Plane Algebraic Curves

While querying can be effectively expressed, we want to go further and demand
that one must also be able to retrieve a surface representation by means of
geometric data types in GERM. For that, we require translations from polyhedra
to the domain values of a geometric data type t, that is, a mapping from gdom(t)
back to dom(t).

For this let us take a closer look at plane algebraic curves, that is, algebraic
varieties defined by polynomials with two variables. In order to understand how
to approach operations on these objects (and thus the polyhedra defined by
them), we may exploit the classification of such curves, for which we consider
the degree of the defining polynomial P . If the degree of P is 1, we have P (x, y) =
ax+by+c with coefficients a, b, c ∈ R. Obviously, polynomials of degree 1 define
all straight lines in the plane, including the degenerated case of a single point.
If the degree of P is 2, we have P (x, y) = ax2 + by2 + cxy + dx + ey + f

with coefficients a, b, c, d, e, f ∈ R. It is known that polynomials of degree 2
define all cone sections [Brieskorn and Knörrer, 1981], that is, all circles, ellipses,
parabolas, and hyperbolas, including the degenerated cases of straight lines, two
straight lines and a single point.

For a semi-algebraic set A defined by formula ϕ we can then apply de Mor-
gan’s laws to obtain a form, in which negation only appears in front of atomic
formulae. From the fact that ¬P (x, y) ≥ 0 is equivalent to P (x, y) < 0 and
further to −P (x, y) > 0 we can further eliminate negation completely for the
price of permitting > in our formulae. Using laws of distributivity we can further
arrange A as a union of intersections of elementary semi-algebraic sets that are
defined by P (x, y) ≥ 0 or P (x, y) > 0. As emphasised in [Ma et al., 2009] most
applications of geometric modelling deal with compact sets, i.e., we are mainly
interested in elementary sets defined by P (x, y) ≥ 0. The intersection of such
sets will then be defined by sections of plane algebraic curves.

Thus returning to the cases of degree 1 and 2, the result of the most relevant
operations union, intersection and difference (modulo boundaries) gives rise to
regions with boundaries defined piecewise by straight lines and cone sections.
This is in accordance with the geometric data types provided by GERM. In
particular, Bézier curves are sections of parabolas.
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Furthermore, as non-degenerated cone sections are smooth, we always ob-
tain an explicit parametric representation as discussed in Examples 8 and 9 for
circles and parabolas, respectively, and this enables us to easily obtain the pa-
rameterisation of sections. If C(u) is a parameterisation of a subsection of a cone
section with parameter u ∈ [0, 1], and C(u0) and C(u1) (for u0 < u1) defines a
subsection of this curve, then this subsection can be obtained by a simple linear
parameter transformation, i.e., C′(u) = C((u1 − u0) · u + u0) for 0 ≤ u ≤ 1
defines the parameterisation of the subsection.

Similarly, the case of degree 3 requires the discussion of the following four
cases [Brieskorn and Knörrer, 1981]:

xy2 + ey = ax3 + bx2 + cx + d (1)

xy = ax3 + bx2 + cx + d (2)

y2 = ax3 + bx2 + cx + d (3)

y = ax3 + bx2 + cx + d (4)

These equations have already been carefully analysed by Newton using a
detailed investigation of 78 cases. Some of these curves were already known
by the ancient Greeks, e.g., the kissoid of Diocles, the folium Cartesii and the
Neilean parabola defined by the polynomials y2(2r − x)− x3, x3 + y3 + axy, and
x3 − y2, respectively.

Note that in the case of degree 3, curves can observe singularities, but nev-
ertheless can be composed piecewise by smooth sections. For these sections we
obtain parametric representations, which give rise to explicit parameterisations
of their subsections.

7.3 Natural Modelling Algebra

The two layers of GERM support the storage and retrieval of geometric objects
within a conceptual model. The challenge is, however, the manipulation of such
objects by queries and transactions. For this we now present an algebra on
geometric objects. As we always have an internal representation by point sets,
we first focus on these.

Standard operations on point sets are of course the Boolean ones, i.e. union,
intersection, difference, and complement. In combination with interior, closure
and boundary these operations are in principle sufficient to express a lot of
relationships between the geometric objects as discussed widely in the conceptual
GIS literature (see e.g. [Behr and Schneider, 2001; Shekhar and Xiong, 2008]).
For instance, A − B = ∅ is equivalent to A ⊆ B, so we only need difference and

an emptiness test. Similarly,
◦
A ∩ B = ∅ ∧ ∂A ∩ ∂B �= ∅ express that A and B

touch each other, but do not intersect.
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However, relying on the Boolean set operations is insufficient. We have to
address two concerns: 1) The closure problem: The set of point sets of interest
must be closed under the operations. For example applying the operations on
polyhedra should also return a polyhedra. We already remarked at the end of
the previous section that this is not true for the set difference and complement
operation. 2) The stability problem: The operations must be numerically stable
so that unavoidable numerical error, which are due to the rounding that is nec-
essary when dealing with floating-point representations of real numbers, remains
bounded and very small and that no large errors occur.

We can circumvent the closure problem as we are merely interested in point
sets “up to their boundary”. That is, we will apply an equivalence relation ∼
where A ∼ B holds for two geometric if and only if Ā = B̄. Then each equivalence
class has exactly one closed representative: a polyhedron. The problem then is
that the Boolean operations do not preserve this equivalence, and we lose some
of the properties of a Boolean algebra. However, these properties are volatile
anyway due to the necessary modifications that we propose to deal with the
stability problem.

For the stability problem, some conceptual modelling experts might argue
that this concerns only an implementation. We do not share this opinion as any
result obtained by operations of point sets (i.e. the polyhedra on the internal
level) must be re-interpreted by a value of the respective geometric data type
on the surface level. For instance, the union and intersection of polygons must
again be represented as a polygon, having a finite sequence of points as its surface
representation. Furthermore, we must be aware that the intersection of two two-
dimensional curves may be more than just a discrete set of points when the
stability problem is addressed adequately. Thus, stability considerations have an
non-negligible impact on the surface level of GERM.

7.4 Modification of Boolean Operations

It is known that Boolean operations on point sets may be instable. For instance,
for two straight lines their intersection point may be only obtainable with an
intolerable error. This problem occurs, when the angle between the two lines is
very small. Our solution will replace the intersection operation by a modified
operation, which in this case will enlarge the result. Thus, we actually obtain a
point set instead of a single point. The enlargement will depend on the operands,
so that for the uncritical cases we almost preserve the Boolean operations.

In general, we use the following new operations on point sets: A � B =
A∪B∪q(A, B) and A ∩+ B = (A∩B)∪q(A, B) with a natural modelling function
q that assigns a point set to a pair of point sets. The name “natural modelling”
is adopted from [Hartwig, 1996], as it should reflect properties associated with
stability and the original union and intersections operations in a natural way.
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We do not modify the complement X ′ of a set X . With A ∪- B = (A′ ∩+ B′)′ and
A ∩- B = (A′ � B′)′ we obtain two more modified operations. The simple idea
behind these operations is to slightly enlarge (or reduce) unions and intersections
in order to cope with the stability problem. The enlargement (or reduction)
depends on the arguments; critical operands require larger modifications than
uncritical ones.

Definition 10. A function q from pairs of point sets to point sets is called a
natural modelling function iff it satisfies the following properties for all A, B:

q(A, B) = q(B, A) q(A′, B) = q(A, B) q(A, ∅) = ∅

��

We require q to be symmetric, as the stability problem for building inter-
sections and unions does not depend on the order. Analogously, the potential
instability caused by A and B is the same as the one caused by A′ and B.

The simple idea behind these operations is to slightly enlarge unions and
intersections in order to cope with the accuracy problem. The enlargement de-
pends on the arguments – critical operands require larger modifications than
uncritical ones.

Definition 11. The natural modelling algebra consists of the set of equivalence
classes of polyhedra with respect to ∼ and the operations �, ∩+ , ∩- and ∪- with
a natural modelling function q. ��

Hartwig [Hartwig, 1996] studied the algebraic properties of the direct mod-
elling algebra (P(E),�, ∩+ ) and the small modelling algebra (P(E),�, ∩- ). In
both cases we obtain a weak Boolean algebra, i.e., the existence of neutral and
inverse elements is preserved, and the de Morgan laws still hold, but other prop-
erties of Boolean algebras have been abandoned.

Using the idea of a “natural modelling algebra” an intersection point of two
curves may be replaced by several points. In doing so, the desirable property of
having the exact intersection is given up in favour to a “global” minimisation
of error. For instance, if the union of two regions requires the computation of
an intersection point pi of two curves γ1 and γ2, then the approach may result
in two points q and r instead, and instead of building subsections of γ1 and
γ2 involving the point pi we may get subsections involving the point q or r,
respectively, and the straight line between q and r will be added to the solution.

7.5 Computing with Polyhedra and Surface Representations

The key question is of course how to choose a good natural modelling func-
tion q. Before addressing this let us first look at the modified operations on
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polyhedra. As these are defined by algebraic varieties, it will be decisive (and
sufficient) to understand the operations on two half-planes A = {(x1, . . . , xn) |
P (x1, . . . , xn) ≥ 0} and B = {(x1, . . . , xn) | Q(x1, . . . , xn) ≥ 0}. If A and B are
plane curves, we have to compute their intersection point(s) in order to deter-
mine a surface representation of their union and intersection, respectively. Let
us discuss this further for polygons and regions defined by a sequence of Bézier
curves.
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Figure 5: On the left the intersection of two polygons, on the right the intersection
of two regions with a boundary defined by Bézier curves

Example 11. Let us look at the union / intersection of two polygons depicted on
the left in Figure 5, one defined by the points A, B, C, the other one by D, E, F .
With A = (1, 1), B = (3, 4), C = (7, 2), D = (3, 0), E = (7, 4), and F = (9, 1)
the line through D and E is defined by P (x, y) = x − y − 3 = 0, and the line
through B and C is defined by Q(x, y) = x + 2y − 11 = 0. They intersect in
the point H = (5.66, 2.66). This intersection divides the plane into four parts
depending on whether P (x, y) and Q(x, y) take positive or negative values.

If we can compute the intersection points H and K, then A, B, H, E, F, D, K

defines the surface representation of the union, while K, H, C defines the one of
the intersection.

However, the angle between the lines DE and AC at the intersection point
K is rather small, which may cause a different result defined by the operations �
and ∩- instead of ∪ and ∩, respectively. The resulting polygon for the modified
union may become A, B, H, E, F, D, K1, K2, while the resulting polygon for the
modified intersection may become K ′

1, H, C, K ′
2 with points K1, K2, K

′
1, K

′
2 in a

small neighbourhood of K.
At H the angle between the two intersecting lines is nearly a right angle, so

the modified intersection may coincide with the normal one.

Example 12. Look at the two regions defined on the right in Figure 5,
both defined by values of the data type PolyBezier , the first one by
[(A, B), (B, E, C), (C, A)], the second one by [(D, B, F ), (F, G), (G, D)]. As in
the previous example the two intersection points H and K of the line (A, C)
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with the Bézier curve (D, E, F ) are decisive for the computation of the union
and intersection.

With A = (16, 5), B = (22, 4), E = (20, 3), C = (21, 0), D = (13, 4),
F = (19, 0), and G = (13, 0) the parametric representation of the Bézier
curve can be easily obtained as B(u) = (−12u2 + 18u + 13,−4u2 + 4),
and the straight line gives rise to x + y − 21 = 0. Substituting
B(u) = (x, y) in this gives rise to a quadratic equation with the

roots u1/2 =
9 ±√

17
16

, i.e. u1 = 0.304 and u2 = 0.82, which define

H = (17.32, 3.64) and K = (19.69, 1.31). Then the union can be represented
by [(A, B), (B, E, C), (C, K), (K, F ′, F ), (F, G), (G, D), (D, D′, H), (H, A)]
of the data type PolyBezier , while the intersection is represented by
[(H, H ′, K), (K, H)]. Once H and K are known, it is no problem to ob-
tain the necessary points D′ and H ′, as sections of Bézier curves are again
Bézier curves.

As in Example 11 the computation of the point K can
be expected to be relatively stable, whereas H is not. Us-
ing � instead of the usual union, we end up with a modified
union represented by [(A, B), (B, E, C), (C, K), (K, F ′, F ), (F, G),
(G, D), (D, D′, H1), (H1, H2), (H2, A)] of the data type PolyBezier , where
H1 and H2 are points in the vicinity of H on the Bézier curve and the straight
line (H, A), respectively. Analogously, using ∩- instead of ∩, we obtain a
representation [(H ′

2, H
′
1)(H

′
1, H

′, K), (K, H ′
2)] with points H ′

1, H
′
2 in the vicinity

of H on the Bézier curve and the straight line (H, K), respectively.

7.6 The Choice of the Natural Modelling Function

In view of the discussion in the previous subsection it is sufficient to consider
base polyhedra, i.e. if H = H1 ∪ · · · ∪ Hn and H ′ are polyhedra, we define

q(H, H ′) =
n⋃

i=1

q(Hi, H
′). Furthermore, for base polyhedra it is sufficient to

consider the boundary, i.e. if H and H ′ are base polyhedra, we define q(H, H ′) =
q(∂H, ∂H ′). In the two-dimensional plane E = R

2 we can therefore concentrate
on plane curves. If such a curve γ is defined by a union of (sections of) algebraic

varieties, say V1 ∪ · · · ∪ Vn, then we define again q(γ, γ′) =
n⋃

i=1

q(Vi, γ
′). If q is

symmetric, the naturalness conditions in Definition 10 are obviously satisfied.
In order to obtain a good choice for the natural modelling function q it

is therefore sufficient to look at two curves γ1 and γ2 defined by polynomials
P (x, y) = 0 and Q(x, y) = 0, respectively. Let p1, . . . ,pn be the intersection
points of these curves – unless γ1 = γ2 we can assume that there are only finitely
many. Then we define q(γ1, γ2) =

⋃n
i=1 Ui with neighbourhood Ui = Uγ1,γ2(pi)

as defined next.
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Definition 12. For ε > 0 the ε-band of a variety V = {(x, y) | P (x, y) = 0} is
the point set Bε(V ) = {(x′, y′) | ∃(x, y) ∈ V.|x − x′| < ε ∧ |y − y′| < ε}. ��

8 Conclusion

In this paper we presented the geometrically enhanced ER model (GERM) as our
approach to conceptual geometric modelling. GERM preserves aggregation as
the primary abstraction mechanism of the entity-relationship model, but loosens
the definition of relationship types permitting bulk and choice constructors to be
used for components without first-class status of bulk objects. Geometric features
in the application domain can be modelled by attributes that have geometric
data types assigned to them. This defines a syntactic level of GERM that largely
remains within the popular ER framework and thus enables a smooth integration
with non-geometric modelling. It also allows users to cope with modelling tasks
that involve geometry in a familiar, non-challenging way thereby preserving all
the positive experience made with entity-relationship modelling.

The syntactic level is complemented by an internal level that employs alge-
braic varieties, i.e., sets of zeros of polynomials, to represent geometric features
as point sets. The use of such varieties leads to a significant increase in expres-
siveness way beyond standard approaches that mostly support points, lines and
polygons. In particular, common shapes such as circles, ellipses, or Bézier curves
and patches are captured in a natural way. However, for polynomials of high
degrees we have to face computational problems.

The highly expressive internal level of GERM makes geometric modelling not
only very flexible, it is only the basis for an extended algebra that generalises
and extends the standard Boolean operators on point sets. By using this algebra,
GERM enables a higher degree of accuracy for derived geometric relationships.

Our next short-term goal is to apply GERM to WFP modelling for the
Sustainable Land Use Initiative (SLUI). In order to support the wider objectives
of this programme, GERM is general enough to capture spatio-temporal data as
well. We are also looking for applications beyond GIS. On the theoretical side we
plan to investigate further back and forth translations between the syntactic and
the internal level of GERM, and special cases of the natural modelling algebra
for specific applications. In this sense this paper is only the start of a larger
research programme devoted to geometric conceptual modelling.
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