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Abstract: It is known that the essential ingredients of a Lisp-style unhygienic macro
system can be expressed in terms of advanced hygienic macro systems. We show that
the reverse is also true: We present a model of a core unhygienic macro system, on top of
which a hygiene-compatible macro system can be built, without changing the internals
of the core macro system and without using a code walker. To achieve this, the internal
representation of source code as Lisp s-expressions does not need to be changed. The
major discovery is the fact that symbol macros can be used in conjunction with local
macro environments to bootstrap a hygiene-compatible macro system. We also discuss
a proof-of-concept implementation in Common Lisp and give historical notes.
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1 Introduction

Macros are local program transformations triggered explicitly in the source code

of a program. Since their introduction into Lisp in 1963 [Hart 63], they have

found their way into many Lisp dialects, including Common Lisp [ANSI 94], IS-

LISP [ISO 97] and Scheme [Kelsey et al. 98]. Lisp dialects are especially attrac-

tive for macros due to Lisp’s ‘homoiconic’ nature: Lisp source code is constructed

from s-expressions, that is lists, symbols and (literal) values, which are all core

data types of Lisp itself [Kay 69, McIlroy 60]. Therefore it is straightforward to

express Lisp macros as functions that simply map s-expressions to s-expressions.

Compared to mere string replacement systems, like in C macros, s-expressions

naturally represent the structure of nested language constructs. For this reason,

Lisp-style macros are also sometimes called structural macros.

A Lisp compiler or interpreter recognizes macro invocations based on defi-

nitions of such macro functions which are in scope, calls such macro functions

with s-expressions representing source code fragments, and uses the resulting

s-expressions in place of the original ones for further processing. This process of

replacing s-expressions with new ones is called macroexpansion.

Macros are useful for adding new language constructs, for expressing domain-

specific languages and for controlling evaluation of arguments in an otherwise

strict language, among other uses [Graham 93]. The operators one can define

as macros are essentially ‘just’ syntactic sugar. Nevertheless, they are deemed
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as critical productivity enablers among users of Lisp dialects. Furthermore, the

strictly local nature of macro expansion has led to a useful formal characteriza-

tion of the expressive power of language constructs [Felleisen 91].

One of the issues related to macros that has been researched in depth is that

of macro hygiene. Since the initial macro systems for Lisp have operated on ‘raw’

s-expressions, variable names that are introduced and/or referenced in the result

of a macroexpansion are susceptible to inadvertent capture by introductions

and/or references in the surrounding code of the macro invocation. Bawden

and Rees introduce the following macro definitions in a hypothetical dialect of

Scheme to illustrate inadvertent variable capture [Bawden and Rees 88]:

(define-macro (push obj-exp list-var)
‘(set! ,list-var (cons ,obj-exp ,list-var)))

(define-macro (or exp-1 exp-2)
‘(let ((temp ,exp-1))

(if temp temp ,exp-2)))

(define-macro (catch body-exp)
‘(call-with-current-continuation

(lambda (throw) ,body-exp)))

Here, the formal parameters in the macro definitions are bound to source

code fragments represented as s-expressions, and the bodies of the macro defini-

tions are functions that construct new s-expressions by way of quasiquotation.

Quasiquote (‘) is similar to quote (’) in Lisp and Scheme, that is, it prevents

the subsequent form from being evaluated. However, quasiquote enables marking

subforms of the quasiquoted form to be evaluated and possibly spliced in the

immediately surrounding form by way of comma (,) and comma-at (,@). See

[Bawden 99] for more details about quasiquotation.1

Bawden and Rees continue to give the following two examples of uses of these

macros.2 The first one illustrates the inadvertent capture of free symbols in the

result of a macroexpansion:

(let ((cons 5))
(push ’foo stack))

...expands into...

(let ((cons 5))
(set! stack (cons ’foo stack)))

1 There are variations in the semantics of quasiquotation in different Lisp dialects, but
since we use only simple examples of quasiquotation throughout this paper, these
variations do not matter here. Quasiquote is historically also known as backquote.

2 They actually give four examples, but the two examples we do not list here are mere
variations of the same problems.
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Here, the macro push expands into code that attempts to use the cons func-

tion for creating pairs, as predefined in Scheme. However, the code in which the

invocation of push is macroexpanded creates a new binding for cons which is

clearly not the one that push intends to use. Nevertheless, the reference to cons

in the result of the macroexpansion inadvertently sees the new binding.

The second example illustrates the inadvertent capture of symbols passed as

arguments to a macro:

(or (memq x y) temp)

...expands into...

(let ((temp (memq x y)))
(if temp temp temp))

Here, the macro creates a binding for a temporary variable temp. However,

the macro invocation itself attempts to use another variable temp that is pre-

sumably already defined in the surrounding code of the macro invocation. Due to

the placement of the arguments to the macro invocation in the macroexpanded

code, the latter reference to temp sees the binding created by the macro, which

is clearly not the one that the user of the or macro intended.

The terms free symbol capture for the first kind of variable capture and macro

argument capture for the second kind are due to Graham [Graham 93].

Macro argument capture is straightforward to prevent: A macro just has to

make sure that variable names it introduces are unique and cannot be inad-

vertently captured by other code. For that purpose, most Lisp dialects provide

a gensym function that generates symbols that are guaranteed to be unique:

Such symbols cannot be accidentally typed in as regular source code tokens, and

consecutive invocations of gensym are guaranteed to yield different symbols.3

So by providing the following new definition for the or macro above, the

unintended capture of macro arguments can be avoided in this example. This

generalizes to all kinds of macro argument capture in a straightforward way.

(define-macro (or exp-1 exp-2)
(let ((temp (gensym)))

‘(let ((,temp ,exp-1))
(if ,temp ,temp ,exp-2))))

However, traditionally the kind of macro system sketched so far does not provide

a systematic solution for the case of free symbol capture.

3 This can, for example, be achieved by generating symbol names that are not accepted
by the parser, or by relying on the object identity of symbols for their comparison
instead of their names. In the latter case, gensym generates fresh symbol objects on
each invocation. A parser then has to ensure that, while reading source code, the
same names are always mapped to the same symbols. Since macros are expanded only
after parsing, gensym does not interfere with it. See [Graham 93] for more details.
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Consider the following code fragment:

(let ((x 42))
(macrolet (((foo) ’x))

(let ((x 4711))
(foo))))

Here, the local macro foo presumably wants to expand into a reference to the

outer x variable. However, the invocation of foo in this code fragment will even-

tually expand into a reference of the inner x, making the overall code fragment

evaluate to 4711. This is a very compact example of free symbol capture.

Some workarounds are suggested in the literature for inadvertent variable

capture, like naming conventions, rearranging the results of macroexpansion,

and so on. See [Graham 93] for a comprehensive overview. However, especially

the solutions for free symbol capture are ad hoc and do not generalize well.

Finally, Bawden and Rees give the following example to illustrate that vari-

able capture may be intentional:

(catch (+ 5 (throw ’x)))

... expands into ...

(call-with-current-continuation
(lambda (throw) (+ 5 (throw ’x))))

Here, catch is a construct that provides an escape in a way similar to the

throw/catch constructs in traditional Lisp dialects. It implicitly creates a bind-

ing for the variable throw, and that is the very purpose of this macro. This kind

of intentional capture by macros is not uncommon.

The fact that free symbol capture does not have a straightforward solution,

and that both unintentional variable capture should be avoided but intentional

variable capture enabled, has led to extensive research on macro hygiene espe-

cially in the Scheme community.4 There are two ways of achieving macro hygiene:

Hygiene-compatible macro systems essentially stick to the kind of macro system

sketched so far, but provide additional operators to help avoid free symbol cap-

ture manually [Bawden and Rees 88, Clinger 91a]. Hygienic macro systems, on

the other hand, introduce different models of macroexpansion. They ensure that

locally visible bindings are automatically respected - macro arguments refer to

the bindings of the macro invocation site and free symbols refer to the bindings

of the macro definition site - and add means for intentionally breaking macro

hygiene [Dybvig et al. 92]. This eases expressing simple macros compared to tra-

ditional Lisp-style macro systems. However, more involved macros become more

4 Macro hygiene has been considered a less important problem in the Common Lisp
community mostly due to the separation of function and variable namespaces in
Common Lisp, which avoids most of the practically occurring capture problems in
macros. See [Gabriel and Pitman 88] for a detailed discussion.
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complex, due to the fact that the latter approach differentiates between surface

syntax, which is still represented as s-expressions, and internal representation

of source code in terms of syntax objects. This leads to a system in which the

‘homoiconicity’ of traditional Lisp macros is lost and, in some cases, code frag-

ments have to be manually mapped between the different representations in

macro definitions, for example for the purpose of breaking macro hygiene. The

hygienic macro system adopted in R5RS Scheme even goes as far as to disal-

low intentional breaking of macro hygiene [Kelsey et al. 98]. This removes the

burden introduced by syntax objects, but makes it impossible to express certain

kinds of macros [Dybvig et al. 92].

It has indeed been suggested that in order to support macro hygiene, the

internal representation of source code has to be changed. For example, Rees

discusses a few alternatives for implementing hygienic macro systems, which all

rely on introducing new data types for the internal representation of source code

that differ from the data types used for the surface syntax [Rees 93]. On the

other hand, Clinger claims that “if a macro needs to refer to a global variable or

function [...], then it is quite impossible to write that macro reliably using the

Common Lisp macro system” [Clinger 91b]. Since Common Lisp’s macro system

is modelled after the traditional Lisp-style approach sketched above, this seems

to suggest, in other words, that an unhygienic macro system cannot support

macro hygiene for both macro argument capture and free symbol capture.

In this paper, we make the following contributions.

– It is known that the essential ingredients of an unhygienic macro system can

be expressed in terms of advanced hygienic macro systems [Sperber et al. 07].

We show that the reverse is also true: The essential operators of hygiene-

compatible macro systems, as discussed in the literature [Clinger 91a], can

be expressed in terms of an advanced unhygienic macro system.

– We show that for this, the internal representation of source code in the

form of s-expressions does not need to be changed. The major discovery is

the fact that symbol macros can be used in conjunction with local macro

environments to bootstrap a hygiene-compatible macro system.

– We present an implementation of our approach in Common Lisp that does

not require a code walker and has a fully portable implementation.

On the other hand, we also show how the unhygienic and hygiene-compatible

macro systems presented in this paper are incompatible with each other.

This paper is structured as follows. In Section 2, we present the essential

elements of an advanced unhygienic macro system. In Section 3, we bootstrap a

hygiene-compatible macro system on top of the unhygienic macro system of Sec-

tion 2. The essential idea here is that each identifier gets both an external and
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an internal name, and higher-order macros are used to map from potentially am-

biguous external names to guaranteed unique internal ones. This can be achieved

without changing the internals of the unhygienic macro system of Section 2 and

without involving a code walker. In Section 4, we discuss an integration of this

paper’s approach into Common Lisp. The latter is relatively straightforward be-

cause all ingredients described in Section 2 already exist there. In Section 5, we

provide some historical remarks and discuss related work, before we conclude

and present future work in Section 6.

2 An Unhygienic Macro System

In this paper, we use an effect-free5 subset of Scheme for developing both a core

unhygienic macro system, as well as the hygiene-compatible macro system built

on top in the next section to back our claims. We use Scheme to be able to focus

on the essential elements of our approach before discussing a more complete

implementation in Common Lisp in Section 4. The following constructs from

Scheme are sufficient for this paper:

– define, let, let* and letrec for introducing new variables.

– Functions with lambda for defining functions, function application, and map

for mapping functions over lists.

– begin for sequencing expressions.

– Boolean values with operators not, or and and, and conditional expressions

if, cond and case.

– Symbols with symbol? for testing for symbols, and gensym for creating

unique symbols (see above).

– Pairs with cons, list, append and reverse for constructing pairs/lists; car,

cdr, cadr, cddr, and caddr for accessing elements in pairs/lists; pair? for

testing for pairs; null? for testing for empty lists; and assoc for treating

lists as association lists.

– eq? for testing for object identity.

– quote for preventing a subsequent form from being evaluated.

– eval for evaluating a form. The latter is used in this paper only for converting

lambda forms into functions.

5 i.e., without assignments and first-class continuations
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For most of the constructs used in this paper, the definitions given in any of

the recent Scheme reports are sufficient, except for gensym, which is not part of

any Scheme report, but has been characterized in Section 1 and is provided by

many Scheme implementations.

Both our unhygienic and hygiene-compatible macro systems correctly ex-

pand the arguments to set! in user programs, but themselves do not use side

effects in their expansion algorithms. We do not provide syntactic sugar for

destructuring macro arguments and constructing resulting s-expressions, since

this does not affect the core issues addressed in this paper. We do use (simple

forms of) quasiquotation in our macro systems and in example macro defini-

tions, but we consider this part of the metalanguage which is assumed to be

manually translated into invocations of list, cons and quote. An integration

of full quasiquotation is extensive but straightforward.

2.1 Required Elements

The macro system in this section provides the following elements which are

required to build a hygiene-compatible macro system on top in Section 3.

List macros are regular macros, as for example illustrated in Section 1. They

define the expansion of list forms, like in (push ’foo stack), where push is

the first, ’foo is the second and stack is the third element of the given list. In

the literature, they are typically called just macros, but we want to explicitly

distinguish them here from symbol macros.

Symbol macros are macros that define the expansion of symbol forms. They

are, for example, part of ANSI Common Lisp [ANSI 94] and R6RS Scheme (there

called identifier macros [Sperber et al. 07]). Symbol macros are, for example,

used in object-oriented extensions for Lisp and Scheme to introduce convenience

syntax for accessing members of the implicit variables this or super. They

typically expand into procedure calls, for example as in name expanding into

(person-name this).

Both list and symbol macros are introduced as local macros, which are af-

fected by other local macros of the surrounding scope. To illustrate this, consider

the following hypothetical code fragment, where a local list macro foo is defined:

(let ((x 42))
(macrolet (((foo) (if (< x 50) ’(print #t) ’(print #f)))) ;; buggy

(foo)))

In lexically scoped Lisp dialects, we would expect that the macro definition

sees the variables from the surrounding code (like x). However, one important

goal of macro systems is that macros can be fully expanded at compile time, be-

fore a program is executed. In other words, macro definitions cannot see runtime

bindings of local variables, so the definition of foo above is invalid as is.
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However, things are different for macro definitions in the surrounding code:

(macrolet (((x) 42))
(macrolet (((foo) (if (< (x) 50) ’(print #t) ’(print #f)))) ;; correct

(foo)))

Since the macro x in this version is also available at compile time, foo can in-

deed see and use it. The local invocation of (foo) thus expands into (print #t).

Finally, we require low-level functions with which macros can be expanded

explicitly, like Common Lisp’s macroexpand. They are typically used for inter-

actively testing macro definitions, but they also have uses in advanced macro

programming. For example, consider a with-lock macro that is used in a hy-

pothetical library for mulithreading, for locking an object during the extent of

a block of code. However, if that block of code actually does not contain any

references to that object, the potentially costly locking operation can be avoided:

(define-macro (with-lock variable block)
(if (contains-reference? variable (expand-all block))

(generate-costly-lock-operation variable block)
block))

Here, macroexpansion of the block parameter (via expand-all) is neces-

sary because block may contain macro invocations resulting in references to

variable that would otherwise remain undetected. Due to local macro defini-

tions, however, such low-level macroexpansion functions require representations

of local macro environments to be passed. Consider the following example:

(define-macro (foo) ’(display x))

(macrolet (((foo) ’(display y)))
(with-lock y (foo)))

Here, the invocation of (foo) will expand into code that references the vari-

able y, due to the local redefinition of foo. This means that in the definition

of the with-lock macro, we somehow need to capture a representation of the

locally effective macro definitions and pass this to expand-all to ensure that it

does not erroneously expand the global definition of foo.

To summarize, we require the following elements:

– List and symbol macros.

– Local macros, which are affected by surrounding local macros.

– Macro expansion functions which operate on local macro environments.
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2.2 A Model of Macroexpansion

In our macro system, macro environments are represented as assocation lists

that map macro names to tags and expansion functions. A tag is either the

symbol list-macro or symbol-macro, indicating what kind of macro is bound

to the respective macro name. Macro expansion functions take two parameters:

the form to be expanded and a macro environment. Macros are introduced using

an expander-let form. Consider the following local macro definition fragments:

(expander-let
((foo list-macro (lambda (form env) ... 1 ...)))
(expander-let

((bar symbol-macro (lambda (form env) ... 2 ...)))
(expander-let
((baz list-macro (lambda (form env) ... 3 ...)))
... enclosed code ...)))

These definitions create the following local macro environment:

((baz list-macro ... function 3 ...)
(bar symbol-macro ... function 2 ...)
(foo list-macro ... function 1 ...))

Macro environments list inner before outer definitions, to aid assoc finding

the innermost macro definition for a given name. Based on this data structure,

we can now define the core macro system in Figure 1. It consists of three mutu-

ally recursive functions expand-once, expand and expand-all, and three helper

functions bind-expander, flatten-parameters and bind-variable. Each of

the three expansion functions takes a macro environment and a form to be ex-

panded as parameters. For convenience, these functions are curried.

The function expand-once performs one step of macro expansion, based on

the given macro environment, in case it successfully determines that the passed

form is indeed a macro invocation of the appropriate kind (symbol-macro or

list-macro). If it is not a macro invocation, or not applicable to the given

form, the form is simply returned without change. The function expand repeat-

edly invokes expand-once on the passed macro environment and form until the

consecutive forms yielded by expand-once are not changed anymore. This en-

sures that in the end, the resulting form is not a macro invocation anymore,

but represents either a literal value or a core language construct. The function

expand-all initially calls expand on the passed macro environment and form. It

then analyzes the form to determine whether any of the subforms of the resulting

form require further macroexpansion, in case the resulting form is a list.
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(define expand-once
(lambda (env)

(lambda (form)
(let ((binding (cond ((symbol? form) (assoc form env))

((pair? form) (assoc (car form) env)))))
(cond
((and binding

(or (and (symbol? form) (eq? (cadr binding) ’symbol-macro))
(and (pair? form) (eq? (cadr binding) ’list-macro))))

((caddr binding) form env))
(else form))))))

(define expand
(lambda (env) (letrec ((local-expand

(lambda (form)
(let ((new-form ((expand-once env) form)))
(cond ((eq? form new-form) form)

(else (local-expand new-form)))))))
local-expand)))

(define bind-expander
(lambda (env)

(lambda (spec) (list (car spec) (cadr spec)
(eval ((expand-all env) (caddr spec)))))))

(define flatten-parameters
(lambda (spec)

(cond ((null? spec) ’())
((symbol? spec) (list spec))
(else (cons (car spec) (flatten-parameters (cdr spec)))))))

(define bind-variable
(lambda (spec) (list spec ’variable (lambda (form _) form))))

(define expand-all
(lambda (env)

(letrec
((local-expand-all

(lambda (form)
(let ((form ((expand env) form)))

(cond ((pair? form)
(case (car form)

((quote) form)
((begin if set!)
‘(,(car form) ,@(map local-expand-all (cdr form))))
((expander-let)
(let ((new (map (bind-expander env) (cadr form))))
‘(begin ,@(map (expand-all (append new env))

(cddr form)))))
((lambda)
(let* ((params (flatten-parameters (cadr form)))

(new (map bind-variable params)))
‘(lambda ,(cadr form)

,@(map (expand-all (append new env))
(cddr form)))))

(else (map local-expand-all form))))
(else form))))))

local-expand-all)))

Figure 1: The core unhygienic macro system of Section 2.
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There are five cases:

– If the form is a quoted form, it is returned unchanged.

– If it is a sequence, conditional or assignment (begin, if, or set!), the re-

maining elements are further expanded.6

– If the form is an expander-let, a new local macro environment is created

in which the new expanders are bound (see below), and the subforms of the

expander-let form are then expanded in that new macro environment.

– If the form is a lambda, the parameter list of the lambda form remains un-

changed. However, a new local macro environment is created in which the

parameters are bound as variables (see below) to ensure that they properly

shadow potential macro definitions in the old macro environment. The sub-

forms of the lambda form are then expanded in that new macro environment.

– Otherwise, the form is a function application. In that case, each element of

the list that represents the function application is further expanded.

Except for the expander-let and lambda cases, all local macro expansions are

performed with the same environment as initially passed to expand-all.

The function bind-expander is used for creating an entry in a macro envi-

ronment. It is passed an environment of the macros that are considered to be

in scope for the macro definition in question, and a specification describing that

macro definition. It is either of the form (name list-macro (lambda ...)) or

(name symbol-macro (lambda ...)). This specification is converted by fully

expanding the respective lambda form in the passed macro environment using

expand-all, and then using eval to convert it into a function.7

The expander-let case in expand-all uses bind-expander for creating new

local macro environments and creates a new sequence form (with begin) that

contains the subforms from the expander-let form covered by the new macro

definitions, fully expanded in the newly created macro environment.

The function flatten-parameters takes a parameter list, as accepted by

Scheme lambda expressions, and turns it into a flat list of parameter names.

The function bind-variable takes a variable name as a parameter, and cre-

ates an entry for a macro environment which states that the entry is of kind

variable, and whose expansion function returns the passed form unchanged.8

6 Unlike required by some Scheme specifications [Kelsey et al. 98, Sperber et al. 07],
we avoid the special treatment of begin for ‘splicing’ internal definitions here without
loss of generality.

7 Since the macro expansion function does not see local (runtime) variables, it is
sufficient to evaluate the lambda form in a predefined global environment. A more
robust implementation of our macro system would perform additional checks to
ensure that what is evaluated here is indeed a correctly shaped lambda form.

8 By convention, we use the underscore in this paper as a variable name to indicate
that we are actually not interested in the corresponding parameter.
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This adds a third kind for macro environments, namely variable, alongside the

already mentioned list-macro and symbol-macro, so that macro definitions can

be properly shadowed by variable definitions. The lambda case in expand-all

uses flatten-parameters and bind-variable for creating a new local macro

environment and creates a new lambda form that contains the subforms from

the original lambda form, fully expanded in the modified macro environment.

As already pointed out, the macro system presented in this section is still

unhygienic. Here are some definitions for macros shown in this paper so far using

this new macro system:

(expander-let
((push list-macro (lambda (form _)

(let ((obj-exp (cadr form))
(list-var (caddr form)))

‘(set! ,list-var (cons ,obj-exp ,list-var)))))
(or list-macro (lambda (form _)

(let ((exp-1 (cadr form))
(exp-2 (caddr form))
(temp (gensym)))

‘(let ((,temp ,exp-1))
(if ,temp ,temp ,exp-2)))))

(catch list-macro (lambda (form _)
(let ((body-exp (cadr form)))

‘(call-with-current-continuation
(lambda (throw) ,body-exp)))))

(name symbol-macro (lambda _ ’(person-name this))))
...)

3 Bootstrapping Support for Macro Hygiene

To illustrate the essential idea of how to build a hygiene-compatible macro sys-

tem on top of the unhygienic macro system presented in the previous section,

recall the example for free symbol capture from the introduction in Section 1,

now expressed in the macro system of the previous section:

(let ((x 42))
(expander-let ((foo list-macro (lambda _ ’x)))

(let ((x 4711))
(foo))))

We can actually solve it by simply renaming one of the variables manually to

make the code fragment evaluate to 42:

; (1) Manual renaming.
(let ((y 42))
(expander-let ((foo list-macro (lambda _ ’y)))

(let ((x 4711))
(foo))))
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This is indeed one of the proposed workarounds for avoiding free symbol

capture in unhygienic macro systems. However, this is unsatisfactory because

we would like to be able to choose names freely everywhere in the code. What

we actually need is an operator, say alias, that gives us a reference to a variable

in the current lexical scope that cannot be inadvertently captured:

; (2) Using aliases.
(let ((x 42))
(expander-let ((foo list-macro (lambda _ (alias x))))

(let ((x 4711))
(foo))))

The core idea of the hygiene-compatible macro system introduced in this

section is indeed that whenever a variable is introduced by a programmer, this

actually leads to the introduction of two variables: One ‘external’ symbol macro

that has the original name chosen by the programmer, and one ‘internal’ vari-

able that has a unique name, as generated by gensym, that carries the actual

variable binding. The external symbol macro is defined such that each reference

to the original variable name in scope expands into a reference to the correct

variable. Additionally, we can introduce the desired alias operator which yields

internal names to unambiguously refer to correct variable bindings. Effectively,

our hygiene-compatible macro system works by automating the renaming shown

in code example (1).

In order to make our hygiene-compatible macro system work, we introduce

new operators aexpander-let, alambda and alet in the next subsection, as

‘alias-aware’ variants of expander-let, lambda and let, as well as the alias

operator itself. To make our example work in the hygiene-compatible macro

system of this section, it has to use the alias-aware operators as replacements

for their ’unhygienic’ counterparts, as follows:9

; (3) Using alias-aware operators.
(alet ((x 42))
(aexpander-let ((foo list-macro (alambda _ (alias x))))

(alet ((x 4711))
(foo))))

Code example (2) now expands into something as follows (occurrences of vari-

able names with the prefix % indicate unique symbols, as generated by gensym):10

; (4) Expanded form of example (3).
(let ((%sym01 42))
(expander-let ((x symbol-macro (lambda _ ’%sym01)))

(expander-let ((foo list-macro (lambda _ ’%sym01)))
(let ((%sym02 4711))

(expander-let ((x symbol-macro (lambda _ ’%sym02)))
%sym01)))))

9 We discuss in Sections 3.2 and 4 how to avoid having to use new names here.
10 expander-let introductions are actually removed after they have been ‘consumed’

in expand-all (see Figure 1). However, for clarity we have left them in this example.
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3.1 Generating Aliases

Figure 2 shows the additional definitions that are needed on top of the unhy-

gienic macro system from the previous section to make that automatic renaming

work. It defines three helper functions: The function make-alias-formals takes

a parameter list as used in Scheme lambda forms and generates a congruent list,

where each occurrence of a variable name is replaced by a unique symbol gen-

erated by gensym. The function make-lambda-aliases takes two such parame-

ter lists, one with external variable names and one with corresponding internal

names as created by make-alias-formals, and creates binding forms suitable

for being embedded in an expander-let form. Those binding forms map ex-

ternal variable names to lambda forms that ignore their parameters and simply

return the quoted internal variable names.

The third helper function make-expander-aliases takes a list of bindings as

used in expander-let forms and creates new binding forms that can be embed-

ded again in an expander-let form. It transforms the binding forms in such a

way that each macro definition introduced by a binding has its (external) name

replaced by a unique symbol generated by gensym, which thus becomes its inter-

nal name. On top of that, for each such macro definition, an additional macro is

inserted that maps the external macro name to a lambda form that returns a cor-

responding macro invocation using the internal macro name. In case of symbol

macros, that lambda form simply ignores its parameters and returns the quoted

internal macro name, just like for variable names in make-lambda-aliases. In

case of list macros, that lambda form returns a new list macro invocation, where

the first entry is replaced with the internal macro name, but the remaining

entries are left unchanged from the original macro invocation.

Using these helper functions, we can now define the new macros alias,

alambda and aexpander-let. The alias macro yields quoted internal names

for external names by simply performing one step of macro expansion on its

parameter. The alambda macro expands into a lambda form where the parame-

ter list is replaced by the result of passing it to make-alias-formals, and the

body is wrapped by an expander-let mapping external to internal names. The

aexpander-let macro expands into an expander-let form where the bindings

are replaced by the result of passing them to make-expander-aliases.

We have to ensure that these new macros can themselves be protected against

inadvertent capture by user-defined macro definitions, so we have to provide

the separation into internal and external names manually.11 In Figure 2, we

use %alias, %alambda and %aexpander-let for illustration as placeholders for

actual internal names as generated by gensym.

11 Since we cannot use aexpander-let for this purpose yet because it is just being
defined, we have to manually simulate its result.
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(define make-alias-formals
(lambda (spec)

(cond ((null? spec) ’())
((symbol? spec) (gensym))
(else (cons (gensym) (make-alias-formals (cdr spec)))))))

(define make-lambda-aliases
(lambda (spec alias-spec)

(cond
((null? spec) ’())
((symbol? spec) (list (list spec ’symbol-macro

‘(lambda _ (quote ,alias-spec)))))
(else (cons (list (car spec) ’symbol-macro

‘(lambda _ (quote ,(car alias-spec))))
(make-lambda-aliases (cdr spec) (cdr alias-spec)))))))

(define make-expander-aliases
(lambda (bindings)

(cond
((null? bindings) ’())
(else (let* ((binding (car bindings))

(spec (car binding))
(alias (gensym))
(kind (cadr binding))
(form (caddr binding)))

(cond ((eq? kind ’symbol-macro)
(cons (list alias ’symbol-macro form)
(cons (list spec ’symbol-macro

‘(lambda _ (quote ,alias)))
(make-expander-aliases (cdr bindings)))))

((eq? kind ’list-macro)
(cons (list alias ’list-macro form)
(cons (list spec ’list-macro

‘(lambda (form _)
(cons (quote ,alias) (cdr form))))

(make-expander-aliases (cdr bindings)))))))))))

(expander-let
((%alias list-macro (lambda (form env)

‘(quote ,((expand-once env) (cadr form)))))
(%alambda list-macro

(lambda (form _)
(let* ((formals

(make-alias-formals (cadr form)))
(new-env
(make-lambda-aliases (cadr form) formals)))

‘(lambda ,formals
(expander-let ,new-env ,@(cddr form))))))

(%aexpander-let list-macro
(lambda (form _)

‘(expander-let ,(make-expander-aliases (cadr form))
,@(cddr form))))

(alias list-macro (lambda (form _) ‘(%alias ,@(cdr form))))
(alambda list-macro (lambda (form _) ‘(%alambda ,@(cdr form))))
(aexpander-let list-macro

(lambda (form _) ‘(%aexpander-let ,@(cdr form)))))

...)

Figure 2: The hygiene-compatible macro system of Section 3.
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New hygiene-compatible binding forms can now be expressed in terms of

these macros. As an example, alet is defined in terms of alambda below in the

usual way, where the use of alambda is protected against inadvertent capture:

(aexpander-let
((alet list-macro

(alambda (form env)
‘((,(alias alambda) ,(map car (cadr form)) ,@(cddr form))
,@(map cadr (cadr form))))))

...)

We can now also express our example by embedding it in these macro definitions.

This version indeed evaluates to 42:

(alet ((x 42))
(aexpander-let ((foo list-macro (alambda _ (alias x))))

(alet ((x 4711))
(foo))))

3.2 Global Definitions

The macro systems presented in the previous sections handle only local identi-

fiers. In a more realistic scenario, we also want to be able to use global identifiers

(as for example introduced with top-level defines in Scheme) and/or identifiers

exported from modules in a module system. In case programs are deployed in

their source form, and macro expansion can be performed at load time, ensuring

uniqueness of internal names is still feasible for such global/exported identifiers.

However, one goal of module systems is to enable separate compilation, which

requires user-defined external names to be present in the compiled files such that

they can be used for identifying definitions at link or load time.

Module systems themselves suffer from potential name clashes when two

independently developed modules happen to have the same names and export

the same identifiers. The only way to completely avoid such accidental name

clashes is by ensuring that module names and exported identifiers are globally

unique, as is the case for example in Java, where internet domain names are used

to ensure uniqueness [Gosling et al. 05], or in Microsoft COM, where globally

unique identifiers (GUIDs) are used for similar purposes [Box 98]. An extension

of our hygiene-compatible macro system where global/exported identifiers map

to such globally unique names instead of internal names generated by gensym is

relatively straightforward, and is discussed in more detail in Section 4 below.

A drawback of our approach is that the presented unhygienic and hygiene-

compatible macro systems are incompatible: If the lambda and expander-let

operators (or any derived binding forms) from the language recognized by the

core unhygienic macro system are used in the same code where alambda, alet

and especially the alias operator are used, the necessary mappings from ex-

ternal to internal names are not created anymore, and existing mappings are
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shadowed due to the handling of lambda and expander-let in the core unhy-

gienic macro system. Consider the following example, under the assumption that

let is expressed in terms of the core lambda operator in the usual way:

(let ((x 42))
(aexpander-let

((foo list-macro (lambda _ (alias x))))
(alet ((x 4711))
(foo))))

Contrary to what one might expect, this form evaluates to 4711, because

the introduction of the outer binding for x does not lead to a mapping from a

symbol macro x to some internal symbol for the actual binding, so the invocation

of (alias x) cannot detect such an internal mapping. Instead, the invocation of

(foo) sees the inner definition of x. The fact that the inner definition is turned

into a symbol macro, due to being introduced by an alet, does not have an

effect here, (foo) expands into x and uses whatever x is locally defined.

However, in a realistic setting, it is desirable not to have to use new names for

standard binding forms anyway (like alambda, alet, etc.), but rather to keep the

original names (lambda, let, etc.), but with the added functionality described in

the previous subsection. This also makes it easier to port existing code to the new

hygiene-compatible macro system. Fortunately, advanced module and package

systems, like provided by PLT Scheme [Flatt 07] and Common Lisp [ANSI 94],

allow renaming and/or shadowing of imported identifiers in such a way that

keeping the original names is also relatively straightforward to achieve. This also

enables preventing the core unhygienic language from being used in conjunction

with the hygiene-compatible language to avoid the problems discussed above.

See Section 4 for a discussion how we achieve this in Common Lisp.

3.3 Additional High-Level Operations

Although the alias operators introduced above are sufficient for avoiding inadver-

tent free symbol capture, we can introduce additional high-level operators (see

Figure 3), similar to the ones commonly available in traditional advanced hy-

gienic and hygiene-compatible macro systems, like syntax-case [Dybvig et al. 92]

and syntactic closures [Bawden and Rees 88].

With free-symbol-identifier?, we can determine whether a symbol names

a bound or free identifier. We simply check whether that symbol expands to itself

(expand-once has not found an expansion, or only an identity expansion as

introduced by bind-variable) or into something else (it is directly or indirectly

introduced by alambda, or by aexpander-let as a symbol macro).

With rebound-symbol-identifier?, we can determine whether a variable

or a symbol macro has been rebound in an inner lexical scope. For that, we need

an operator current-env to yield the current macro environment.
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(aexpander-let
((free-identifier? list-macro

(alambda (form env)
(and (symbol? (cadr form))

(alet ((expanded ((expand env) (cadr form))))
(eq? (cadr form) expanded))))))

(alet ((x 42))
(display "x free? ")
(display (free-identifier? x))
(newline)
(display "y free? ")
(display (free-identifier? y))
(newline)))

; displays:
; x free? #f
; y free? #t

(aexpander-let
((current-env list-macro

(alambda (_ env) ‘(quote ,env)))
(alet ((x 1) (y 2))

(aexpander-let
((rebound-identifier? list-macro

(alambda (form env)
(and (symbol? (cadr form))

(not (eq? ((expand env) (cadr form))
((expand (current-env)) (cadr form))))))))

(alet ((x 3))
(display "x rebound? ")
(display (rebound-identifier? x))
(newline)
(display "y rebound? ")
(display (rebound-identifier? y))
(newline))))))

; displays:
; x rebound? #t
; y rebound? #f

(aexpander-let
((or list-macro

(alambda (form env)
(alet ((exp-1 (cadr form))

(exp-2 (caddr form)))
‘(,(alias alet) ((temp (expander-let ,(reverse env) ,exp-1)))

(,(alias aif) temp temp
(expander-let ,(reverse env) ,exp-2)))))))

(alet ((temp 42))
(or #f temp)))

Figure 3: Additional high-level operators on top of the macro system of Section 3.
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Since we have access to all expanders which are in scope where a macro is

invoked, we can also easily protect subforms from being captured. For example,

we can define the or macro from Section 1 as in Figure 3.12 This is similar to the

use of syntactic closures, where forms can be closed over syntactic environments

in a similar way [Bawden and Rees 88, Hanson 91]. Compare this to a version of

the or macro that uses gensym for protecting against macro argument capture:

(aexpander-let
((or list-macro (alambda (form _)

(alet ((exp-1 (cadr form))
(exp-2 (caddr form))
(temp (gensym)))

‘(,(alias alet) ((,temp ,exp-1))
(,(alias aif) ,temp ,temp ,exp-2))))))

(alet ((temp 42))
(or #f temp)))

3.4 Discussion

The required elements listed in Section 2.1 that are provided in the unhygienic

macro system of the previous section are used to build the hygiene-compatible

macro system in this section as follows:

– Symbol macros are used to map from external to internal names.

– Macro environments and low-level macro expansion functions enable alias

to look up internal names for the respective scopes.

– Local macros are affected (expanded) by outer macros. This allows defining

alias as well as the high-level operators in the previous subsection as higher-

order macros to be expanded at compile time.

The hygiene-compatible macro system presented in this section is fully lay-

ered on top of the unhygienic macro system in the previous section. Especially,

there is no need for walking the code embedded in a macro definition to ensure

that external names are correctly mapped to internal ones. Consequently, the

hygiene-compatible macro system does not need any knowledge about the core

language that is processed by the core unhygienic macro system, but relies on

the fact that the core macro system already correctly distinguishes core language

constructs from macros. In contrast, traditional algorithms for supporting macro

hygiene have to explicitly walk code embedded in macro definitions [Rees 93].

As a consequence, they have to be aware of the core constructs of the underlying

language, so they have to be intimately tied to the compiler of the core language.

12 The expanders can be reinstated by way of expander-let instead of aexpander-let
here, since no new aliases need to be created.
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Furthermore, our hygiene-compatible macro system does not require any ad-

ditional data structures for representing identifiers and recording their syntactic

levels, as is typically done in traditional hygienic and hygiene-compatible macro

systems [Rees 93]. Instead, we exclusively use plain symbols for representing

identifiers, which effectively leads to a ‘flattening’ of all identifiers in the result

of expand-all, independent of whether an identifier is introduced by the pro-

grammer or by a macro, and independent of the stage at which an identifier is

introduced. This is a consequence of the automation of the renaming solution

for avoiding inadvertent free symbol capture that our approach is based on. This

also means that we can still use plain unaliased symbols if we want to express

macros that intentionally capture variable names.

4 Integration into Common Lisp

As a proof of concept, we have implemented a full version of a hygiene-compatible

macro system in Common Lisp following the approach in Section 3.13 To achieve

this, all binding forms (defvar, defun defmacro, let, let*, flet, macrolet,

and so on) have to be reimplemented in a way similar to alambda and alet, so

that they can generate the necessary mappings from external to internal names.

The ‘internal’ names for global definitions cannot be uninterned symbols, so they

are symbols with the name of their respective package prepended and interned

in a dedicated package: As long as that package is not manipulated by user code,

it thus guarantees uniqueness for global names. To keep things manageable, we

have not reimplemented all of Common Lisp, but restricted ourselves to ISLISP,

which is mostly a small but non-trivial subset of Common Lisp [ISO 97].

On the one hand, this implementation is feasible since Common Lisp pro-

vides all of the required elements listed in Section 2, including ‘list’ macros and

symbol macros, local macros affected by surrounding macros, and macro ex-

pansion functions which operate on local macro environments. Although macros

are specified differently from the expander-let forms used in this paper (using

macrolet), it is still also possible to access the local macro environment as part

of the macro’s parameter list via the &environment keyword.

On the other hand, we are faced with two additional technical challenges:

Whereas Scheme uses a single namespace for values, Common Lisp and ISLISP

provide different namespaces for variables, functions, block names, and so on.

This requires different alias operators for the different namespaces that can be

locally rebound, that is, alias, function-alias, and block-alias.14 However,

apart from minor differences, the approach for mapping external to internal

names is always the same, like for alias.

13 Download available at http://p-cos.net/core-lisp.html
14 For example, classes and go tags cannot be locally rebound.
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Secondly, although providing access to local macro environments, ANSI Com-

mon Lisp does not provide any operators for accessing their entries. However,

it provides macroexpand-1 and macroexpand (as equivalents to expand-once

and expand) that take such macro environments as parameters. In order to pro-

vide mappings from external to internal names, we have to rebuild the macro

environments as discussed in this paper on top of these low-level mechanisms.

In spite of these technical challenges, we have been able to preserve the

characteristics of the hygiene-compatible macro system presented in this paper.

Especially, it is a mere layer on top of Common Lisp’s unhygienic macros, does

not require a code walker and has a fully portable implementation, as confirmed

by tests on several Common Lisp implementations. Additionally, Common Lisp’s

package system allows the reuse of the same names for binding forms as the

original ones provided by Common Lisp, by defining our own package, shadowing

the original binding forms, and reimplementing them as described above.

This esentially means that we have built our own Lisp dialect on top of Com-

mon Lisp (HCL for Hygiene-compatible Lisp). A question that arises is whether

and how HCL can use Common Lisp libraries and vice versa in a safe way. To

answer this question constructively, we make the following assumptions: ANSI

Common Lisp specifies that redefining or lexically rebinding symbols exported

from the COMMON-LISP package has undefined consequences (Section 11.1.2.1.2

in [ANSI 94]). We assume that Common Lisp libraries therefore indeed do not

redefine or lexically rebind such symbols, which ensures that macros specified

in ANSI Common Lisp, and therefore exported from the COMMON-LISP package,

always see the correct bindings of predefined variables and functions. We fur-

thermore assume that Common Lisp libraries do not redefine or lexically rebind

symbols from any other packages either. In other words, we assume that pro-

grammers of Common Lisp libraries have indeed used the known workarounds

and measures to protect their macro definitions from inadvertent capture.

In such a case, exporting definitions from packages implemented in HCL and

importing them into Common Lisp code does not pose any problems: Symbols

from HCL will not be redefined or rebound in Common Lisp code, so they will

not be replaced with bindings without the necessary mappings from external to

internal names that are necessary for HCL’s aliasing operators to work correctly.

Definitions exported from Common Lisp and imported into HCL pose a more

serious challenge: A HCL programmer expects to be able to use aliasing to

protect against free symbol capture, but aliasing does not work on symbols

imported from Common Lisp libraries, because they do not provide the necessary

mappings from external to internal names. The solution is that HCL packages

never import symbols from Common Lisp. Instead, we provide operators for

importing definitions from Common Lisp packages, which define new symbols

in HCL packages that map to original symbols in Common Lisp packages.
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Consider the following example:

(import-variable pi common-lisp:pi)

This example expands into the following code:

(progn (define-symbol-macro pi common-lisp:pi)
...)

The omitted code contains the necessary actions to ensure that macro en-

vironments ‘know’ that common-lisp:pi is the ‘internal’ name for pi. HCL

provides similar operators for importing functions, symbol macros and macros.

Another important case are Common Lisp macros that create new local bind-

ings for some code body. For example, Common Lisp’s defmethodmacro creates

the local function call-next-methodwhose name is a symbol exported from the

COMMON-LISP package. To ensure that local HCL macros can alias such bindings

introduced locally by Common Lisp macros, such symbols should not be im-

ported from Common Lisp packages either. Instead, HCL provides operators

with-imported-variables, with-imported-functions, and so on, to provide

local mappings from HCL names to Common Lisp names, which are again con-

sidered ‘internal’ names for the purpose of the HCL macro system. So in the

following example, call-next-method has a corresponding local mapping:

(defmethod foo ((x integer) (y integer) (z integer))
(with-imported-functions

((call-next-method common-lisp:call-next-method))
...))

These import operators for both global and local definitions from Common

Lisp libraries cover the most important cases when interoperating between HCL

and Common Lisp. One case that is still not covered are Common Lisp macros

that compute new names for automatically generated bindings (like the various

functions generated by the defstructmacro). HCL does not provide a straight-

forward solution here. Instead, more effort is necessary in a separate library to

define wrappers for such macros that ensure that the new names are interned in

an external package, and then imported with the operators discussed above.

Another special case are keywords exported from Common Lisp’s keyword

package that are specified to evaluate to themselves: If used in HCL code, they

retain their special status and should not be redefined or rebound. HCL’s nil

is even more special in that it loses its equivalence to ’nil inside HCL code.

5 History and Related Work

Since the introduction of macros into Lisp in 1963 [Hart 63], macro systems have

been continuously improved in various Lisp dialects. Pitman gives a summary
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of the then state of the art in an overview paper in 1980 [Pitman 80], shortly

before the initial specification of Common Lisp was commenced.

Based on the good experiences with lexical scoping in Scheme, which set

that language apart from other Lisp dialects that were typically dynamically

scoped by default, one goal for Common Lisp was to define equally powerful

lexically scoped constructs. Due to Common Lisp’s different namespaces for

different kinds of values, it was necessary to provide multiple constructs for lex-

ically scoped definitions as well. For example, Common Lisp defines flet and

labels for functions, let and let* for variables, block for blocks, and so on.

One of the additions was a lexically scoped macrolet which, to the best of our

knowledge, did not exist in previous Lisp dialects. The introduction of macrolet

required a representation of local macro environments, as well as a change to

macroexpand to accept such environments as an additional parameter. The func-

tion macroexpand itself already existed in previous Lisp dialects [Pitman 80].

According to the Common Lisp email history [White 84], the discussion about

the modification of macroexpand started around August 1982.

Symbol macros, on the other hand, were introduced much later, as part of

the Common Lisp Object System: It was considered desirable to enable access

to fields in objects in a way similar to that of other object-oriented languages,

without the need to mention the (implicit) this or self reference. In order to

generalize this idea, symbol-macrolet was introduced in 1988 as part of the

CLOS specification [Bobrow et al. 89].

Kohlbecker’s seminal work started the research on macro hygiene in 1986

[Kohlbecker et al. 86] - after the introduction of macrolet and macro environ-

ments in Common Lisp, but before symbol-macrolet. Although hygienic macro

systems were proposed for Common Lisp, they were not adopted, so research on

macro hygiene continued almost exclusively in Scheme. Housel gives an overview

of hygienic macro expansion in a series of usenet postings [Housel 93].

The algorithm in [Clinger and Rees 91] is a refinement of Kohlbecker’s work.

That algorithm performs hygienic macro expansion by way of renaming iden-

tifiers when they are newly introduced in macro definitions. This covers both

identifiers used for new local bindings as well as new free identifiers that are

supposed to refer to bindings in the lexical scope of the macro definition. A

low-level, hygiene-compatible macro facility is described in [Clinger 91a], and

was the basis for an implementation of the hygienic macro system described in

[Clinger and Rees 91]. The hygiene-compatible macro system presented in this

paper is very similar to the one described in [Clinger 91a]: In our system, ‘exter-

nal’ potentially ambiguous identifiers can be turned into ‘internal’ unique ones

by way of alias, whereas in their system, rename is used for the same purpose.

However, in their system, the mapping from potentially ambiguous to guaranteed

unique names is not created when bindings are introduced (like with alambda
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or derived forms in our system), but is generated by rename after the fact as

soon as macros introduce new identifiers as part of macroexpansion. Macroex-

panded code is further processed in a special lexical environment that maps the

renamed identifiers back to the bindings of the original identifiers in the respec-

tive lexical environments of the macro definitions. The algorithm described in

[Clinger and Rees 91] recognizes core language constructs of the underlying lan-

guage in order to work correctly, and thus must be integrated with the compiler

or interpreter for that language.

The fact that symbol-macrolet did not exist at the time when research on

macro hygiene started may be a reason why the potential of using it for resolving

macro hygiene issues was not recognized. Symbol macros have been explored in

the context of Scheme much later, by Waddell in 1999 [Waddell and Dybvig 99],

there called identifier macros, and have been adopted as part of R6RS Scheme

only relatively recently [Sperber et al. 07]. The fact that symbol macros can

be used in conjunction with local macro environments to bootstrap a hygiene-

compatible macro system is the major discovery of this paper.

6 Conclusions and Future Work

Macro argument capture and free symbol capture are sometimes compared to

the issues of dynamic scoping. In traditional Lisp dialects where variables are dy-

namically scoped by default, a new variable binding may inadvertently capture

another one with the same name that is needed by a function to be evaluated

further down the call chain. Lexical scoping is essential to ensure that closures

can close over the variables visible at their definition sites. It is probably impos-

sible to resolve such nameclashes otherwise without manually reimplementing

lexical scoping. This paper shows that the case for macro hygiene is a differ-

ent one, by constructing the essential ingredients of a hygiene-compatible macro

system as a mere layer on top of an advanced unhygienic one. The difference is

due to the fact that the different syntactic scopes are not needed in the fully

macroexpanded code, but that macroexpansion can ‘flatten’ all identifiers, while

separate lexical environments need to be maintained for closures at runtime.

It has been shown that hygienic macro systems can be implemented on top of

syntactic closures [Hanson 91], but it remains future work to show that we can

do this on top of our hygiene-compatible macro system as well. The hygiene-

compatible macro system presented in this paper works because macros can

expand into definitions of local symbol macros, and in this way control the fur-

ther expansion of embedded code fragments. Macros implemented in expansion-

passing style provide a different approach for controlling such further expansions

[Dybvig et al. 88], and it would be interesting to see whether the approach pre-

sented here can be reimplemented using expansion-passing style.
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