
Semantics of Query-Driven Communication of Exact Values1

Michal Konečný
(School of Engineering and Applied Science, Aston University, United Kingdom

m.konecny@aston.ac.uk)

Amin Farjudian
(School of Engineering and Applied Science, Aston University, United Kingdom

a.farjudian@aston.ac.uk)

Abstract: We address the question of how to communicate among distributed processes values
such as real numbers, continuous functions and geometrical solids with arbitrary precision, yet
efficiently. We extend the established concept of lazy communication using streams of approx-
imants by introducing explicit queries. We formalise this approach using protocols of a query-
answer nature. Such protocols enable processes to provide valid approximations with certain ac-
curacy and focusing on certain locality as demanded by the receiving processes through queries.

A lattice-theoretic denotational semantics of channel and process behaviour is developed. The
query space is modelled as a continuous lattice in which the top element denotes the query de-
manding all the information, whereas other elements denote queries demanding partial and/or
local information. Answers are interpreted as elements of lattices constructed over suitable do-
mains of approximations to the exact objects. An unanswered query is treated as an error and
denoted using the top element.

The major novel characteristic of our semantic model is that it reflects the dependency of answers
on queries. This enables the definition and analysis of an appropriate concept of convergence
rate, by assigning an effort indicator to each query and a measure of information content to each
answer. Thus we capture not only what function a process computes, but also how a process
transforms the convergence rates from its inputs to its outputs. In future work these indicators
can be used to capture further computational complexity measures.

A robust prototype implementation of our model is available.
Key Words: exact real computation, distributed computation, dataflow networks, denotational
semantics, domain theory
Category: F.1.1, C.2.4, F.3.2, G.1.0, G.0

1 Introduction

Numerical computation is usually carried out in the floating-point model, which does
not accurately represent the real numbers due to rounding errors. The discrepancy be-
tween real and floating-point results is studied mainly to find out how negligible the
errors are. As an alternative, exact real number computation has been under active de-
velopment for several decades (e. g. [Turing 1935, Gosper 1972, Weihrauch 1987] and
more recently [Escardó 1997, Edalat and Potts 2000, Müller 2001, Lambov 2007]) pro-
viding results:

1 Supported by the EPSRC grant number EP/C01037X/1

Journal of Universal Computer Science, vol. 16, no. 18 (2010), 2597-2628
submitted: 14/12/09, accepted: 18/7/10, appeared: 28/9/10 © J.UCS

A. with explicit error bounds (validated computation),

B. to any arbitrarily high accuracy (exact computation).

Consequently, exact real programs are typically much easier to analyse and they can
even be correct by construction. On the other hand, they tend to execute slower than
their floating-point counterparts.

Some of the most practically successful approaches to validated computation are
interval arithmetic [Moore 1966] and the so-called Taylor models [Revol et al. 2005,
Neumaier 2003]. Note that computation using intervals with fixed-precision floating
point numbers as end-points guarantees (A) but not (B).

1.1 Our goals

Practical approaches to exact real computation are mainly of two kinds: those emphasis-
ing compositional denotational semantics (e. g. [Escardó 1997, Edalat and Potts 2000]),
and those emphasising execution speed (e. g. [Müller 2001, Lambov 2007]). One of our
goals is to provide a framework for exact real computation that takes the best of the two
approaches: compositional denotational semantics as well as the practical speed-up
afforded by flexible representations and flexible programming models. For example,
works from the former camp often support exact real computation via incrementality,
i. e. the ability to extend previously given result by further digits, thus making it more
and more accurate. Incrementality makes it particularly easy to compose exact compu-
tations as the computations can be seen as digit stream processors. On the other hand,
in some cases incrementality leads to high resource usage due to the need to encode
the previously given answers [Heckmann 1998]. In such cases, more efficiency could
be obtained if computations are allowed to start from scratch when asked to give a more
accurate approximation. Nevertheless, it is not as straightforward to compose computa-
tions that communicate their results non-incrementally.

Another important goal is to support practical exact computation where continuous
and/or differentiable real functions and geometrical objects, such as solids and mani-
folds, are first-class data. This type of computation tends to be complex to program and
computationally expensive to run, giving more weight to our first goal. Moreover, in
certain instances this kind of computation can benefit from being distributed.

A computation that produces partial information about an exact result from par-
tial information about exact parameters does so while producing and consuming the
information at certain interdependent convergence rates. Our last goal is to provide a
compositional analysis of convergence rates and make this notion available not only for
real numbers but also for functional and geometrical data types.

1.2 Outline of our contribution

To achieve these goals, we propose an adaptation of dataflow process networks — pi-
oneered by Kahn [Kahn 1974] — as they provide a model of distributed computation

2598 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

with simple denotational semantics that can be derived compositionally for nested sys-
tems. A Kahn dataflow network is a collection of processes connected by directed chan-
nels. The networks can be infinite if they are described recursively. During execution,
the layout of channels is static and processes communicate via streams of symbols over
buffered channels.

We build on the existing theory of Kahn dataflow networks by adding a more ab-
stract semantics and a slightly more complex execution model. Our semantics adds
appropriate data types to cater for computation with continuous data types such as real
numbers, continuous real functions and geometrical solids. Kahn’s semantics is at the
level of symbol streams and therefore requires that the processes are deterministic at
that level. Our processes are not deterministic but typically are extensional, i. e. de-
terministic at the level of our more abstract semantics. The execution model for our
networks is stipulated to be a lazy one in which all communication is driven by explicit
queries to facilitate a more efficient partial information flow.

Section 2 outlines these ideas together with examples. The rest of this article gives
formal definitions of these concepts, focusing on individual channels and individual
processes as outlined in Subsection 2.4.

1.3 Technical summary

The main technical contribution of this article is the derivation of domain-theoretic
denotational semantics from query-answer trace semantics. The queries form the basis
of a complete continuous lattice, each query representing a request for some partial
information about an exact result. The top element represents an ultimate query for
all information — it usually cannot be asked directly but via a sequence of smaller
queries converging to it. The answers to queries are identified with a basis of a dcpo
with an added top element that represents error. A trace is a set of query-answer pairs
with an explicit causality relation. We deliberately ignore time interleaving. Initially we
consider traces of communication between a value provider and value consumer and
later we consider traces that include all communication of a process on its input and
output sockets. In related work [Konečný and Farjudian 2010] we also consider traces
of networks. The causality relation is used for processes to capture for each outgoing
query the query or queries that caused it. Networks will introduce other sources of
explicit causality.

Semantics for a simple two-party communication is derived from a set of traces cap-
turing all possible interactions and it is a continuous function from the query lattice into
the answer lattice. The difficulty is how to safely supply values for queries that do not
appear in any trace. Our solution makes important use of the top element in the answer
lattice. Semantics is then extended to processes that can be denotationally viewed as
transformers of query-to-answer semantics of individual input/output connections.

2599Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

T0

T1

T2

×
+

. . .

. . .

ex

x

Tk =

∩[0, 3]

1
k!

Figure 1: An infinite network computing the exact exponential on [0, 1], cf. [Potts 1998,
p.124].

fun(f) maxD

f : D→ R max { f (x) x ∈ D} : R

Figure 2: A simple network computing the maximum of a function f over an interval J.

2 Kahn’s dataflow networks extended

2.1 Data types

Kahn’s semantics is in terms of sequences of symbols, thus abstracting away the exact
timing but not interpreting the sequences as representations of any higher-level data
such as real numbers. Potts [Potts 1998] has used similar dataflow networks interpreting
the sequences as exact real numbers, albeit restricted to a fixed representation and a very
specific type of process. Our framework is more general than that of Potts’ in the sense
that it provides a formalism for dataflow networks with a wider variety of data types,
processes and representations.

For example, we can have a simple real number network such as the one in Fig. 1.
When executing, only a finite portion of the infinite network will be built and activated
at each moment. Using a fixed-point method similar to that of Kahn, one can work
out denotational semantics of finite portions of the network over the real interval do-
main (see e. g. [Escardó 1997]), replacing certain infinite parts with decoys that output
no information, which is denoted as bottom in the semantic model. Then, using a do-
main theoretic limit, one extends the semantics to the whole infinite network. Using the
Taylor theorem it can be proved that in such domain theoretic exact real number se-
mantics the network outputs the exact exponential of the input real number x whenever
x ∈ [0, 1].

The network in Fig. 2 computes the maximum value of a fixed continuous function
f over a compact domain D. Information about the function is communicated over a
channel to the process maxD that contains a general maximum-finding algorithm for
continuous functions of type D → R. In a yet unpublished paper, we have presented

2600 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

a rigorous proof demonstrating that, once considered over the space of all continuous
functions of type D→ R, an appropriate query-answer protocol provides superior over-
all performance for the maximisation network of Fig. 2, compared with a strict one-way
protocol. With a query-answer protocol, at successive iterations, the maximising pro-
cess maxD can ignore the areas guaranteed not to contain any maximum point, and
instead focus the resources on the rest of the domain of search. This way, the maximum
set of the function f — i. e. the set of all maximum points of f — is approximated
together with the maximum value. Furthermore, we have quantified the improvement
in the complexity of the communications once the query-answer protocol is employed,
whereby the maximising node can specify which region of the function’s domain it is
interested in.

2.2 Convergence rates

The next step in adapting dataflow networks to exact computation is adding another
kind of semantics. The semantics discussed so far tells us that the network in Fig. 1
outputs the exact exponential of the input. This type of denotational semantics com-
pletely hides the method of transferring the potentially infinite amount of information
about particular real numbers or functions between the processes in the network. As-
suming the transfer is gradual and one can measure the progress (e. g. using natural
numbers), we may want to also capture the rates at which the transferred approxima-
tions converge2. In the case of the exponentiating network in Fig. 1, we may want to
check that whenever the input number is provided with an exponential rate, the output
number is also provided with an exponential rate. Assuming that all processes used in
the network have this property, we claim that the whole network does. (Note that this is
not true for all networks.)

2.3 Lazy communication

As our last step, we turn our attention to how the networks are executed. Most dataflow
networks in the literature assume that communication over a channel is one-way, i. e. it
is the supplier process that solely determines what symbols are sent over the channel.
The programmer establishing a channel makes sure the data sent by the supplier process
is the data the consumer process needs.

For objects such as functions and solids, the consumer may only need informa-
tion on specific parts of the object, e. g. the graph of a function only on certain sub-
domains, with varying accuracies over each. The portion a consumer needs is (typically)
very hard, or practically impossible, to be determined statically. We therefore let net-
works execute with two-way communication over channels so that consumers can make
queries to indicate what they need. For simplicity, we require that each query receives at

2 Note that the convergence rate is usually independent of computational complexity measures.

2601Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

Reply(out,qid,ax1*ax2)

(qid,i) := GetQry(out)
× out

x2

x1

qidx2:= DoQry(x2,i,qid)qidx1:= DoQry(x1,i,qid)

ax2:= GetAns(x2,qidx2)ax1:= GetAns(x1,qidx1)

Figure 3: A process multiplying two real numbers communicated using intervals.

most one answer and nothing is sent from the supplier except an answer to a query. This
execution model extends traditional laziness where the set of allowed queries is deter-
mined by the structure of the data, e. g. if the data is a pair, the query can only specify
whether one needs the left or the right component. With functional or geometric data
types, there is a much wider choice of meaningful queries and one has to restrict them
explicitly as part of a protocol. For example, the maximising network in Fig. 2 may use
a protocol, which we denote PFn, that allows e. g. the following interaction about the
function λx.ex:

([0, 1], 2) ?�→! (0[0,5]— 1)

([0, 2], 2) ?�→! (0[0,9]— 2)

([1, 2], 3) ?�→! (1[2,9]— 2)

([0, 2], 3) ?�→! (0[0,3]— 1[2,9]— 2)

(1)

where ?�→! joins a query with its answer. Each query gives the provider a domain of
interest (e. g. [0, 2] in the last pair) and a so-called effort indicator, i. e. a number indi-
cating how hard to try to give a precise answer.3 The answers are piecewise constant
function enclosures, e. g.:

(f = 0[0,3]— 1[2,9]— 2) ≡
(
if x ∈ [0, 1] then f (x) ∈ [0, 3]; if x ∈ [1, 2] then f (x) ∈ [2, 9]

)

Fig. 3 shows how a process could be defined using a version of UML2 activity
diagrams. Recall that the horizontal bars represent thread fork and join points. The
backwards arrow from the fork starts a new thread ready to process the next request

3 The value provider process may interpret the effort indicator as a desired accuracy. If the value
converges, effort indicators can be always interpreted as accuracy indicators but may be very
hard to determine what accuracy they indicate. We deal with this issue to some degree in
Subsection 4.5.

2602 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

concurrently. Note that our processes are also lazy: they cannot do anything observable
until a query arrives because each outgoing query has to be justified by some incoming
query. This is important when defining process semantics (see Subsection 5.3). The
assignments in the code blocks use four primitive instructions: receive a query, send a
query, receive an answer and send an answer. Query identifiers are used to link answers
to queries and also to indicate which incoming query is the reason for an outgoing
query.

Communication using queries and answers allows for a natural definition of conver-
gence rate, as long as we define (cf. Subsection 4.5):

– what type of ideal result each query aims for;

– a measure of progress within a sequence of queries;

– a measure of quality for the answers relative to the aim of the queries.

2.3.1 Connection with game semantics

It is worth mentioning here that our query-answer approach is very similar to the way
game semantics is constructed [Abramsky et al. 2000]. Our objective here is not to
obtain mathematical structures for the semantics of our computation model through
games, though the connection will definitely be explored in future work.

2.4 Outline of formalisation

In order to develop these ideas of ours into a framework suitable for design and imple-
mentation of practical exact computation, one needs to:

– define one or more languages in which one can precisely define various protocols
for communicating approximations of exact values over a two-way channel;

– define one or more languages in which one can express precisely how a process
receives and generates query and answer events for the channels that are connected
to it through its sockets (e. g. the one used in Fig. 3);

– give functional semantics to the language(s) to express process behaviour in terms
of:

• transforming information from input to output channels as elements of high-
level data types derived from real numbers,

• transforming information as above but also capturing how processes react to
and define channel communication convergence rates,

• propagating queries from output to input channels to aid liveness analysis;

2603Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

– provide a practical way to compute useful estimates for the above semantics for
nested process networks in a compositional manner.

In this article we focus on the third step only. We omit the first two steps, i. e. we
do not formally define any languages for defining protocols and processes. Instead we
define channel protocols and process behaviour as sets of possible event traces. This will
facilitate the inclusion of processes defined in a variety of languages as long as these
languages have trace semantics compatible with our assumptions. Our traces are slightly
more abstract than usual. We switch the usual linear ordering of events by time for a
transitive causality relation, thus hiding the time interleaving of independent events,
which would unnecessarily increase the number of traces if it had to be accounted for.
The causality relation is used chiefly to capture when a query made to a process on one
of its output channels explicitly results in the process making one or more queries on its
input channels. One can have a query causing other queries around a loop in a network
and by transitivity causing another query on the same channel. Thus we have to account
for potential causality even when considering channels in isolation.

We first introduce our take on the concept of trace in Section 3. Then we consider
protocols and the various semantics for traces of events on individual channels in Sec-
tion 4 whilst in Section 5, we focus on semantics of individual processes.

3 Causality traces

A trace in our context is viewed as a set of events and their descriptions partially ordered
by a causality relation. In practice, an event description usually consists of a query and
either its corresponding answer or the symbol Ω when the query is unanswered. 4

Definition 1 (Causality trace, TrΣ). A causality trace over a set Σ is a tuple
ζ = (Σ, E, η,�•) where

– Σ is a set of event descriptions,

– E is a set of events,

– η: E → Σ assigns descriptions to events,

– �• ⊆ E×E is the direct causality relation, which is anti-reflexive and well-founded,
i. e. there is no infinite chain · · · �• β3 �• β2 �• β1.
Whenever β1 �• β2, we say event β1 directly causes event β2.

We use � to denote the transitive closure of �•.
Let TrΣ be the set of all causality traces over Σ.

4 It may seem a bit dangerous to amalgamate query and its answer as one event as they happen
at different times. Nevertheless, as our traces deliberately do not capture time sequencing,
separate timing is irrelevant. There seems to be no benefit in keeping queries and their answers
separate.

2604 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

Definition 2 (Subtrace, causally-closed subtrace). Any subset of events E ′ ⊆ E in a
causality trace ζ = (Σ, E, η,�•) determines a subtrace, denoted ζ�E′ , which is defined
as the causality trace (Σ, E ′, η�E′ ,�•′) where �•′ is the binary relation on E ′ defined as

β′1 �•′ β′2 ⇔ ∃n ∈ N, β1, . . . , βn ∈ E \ E′ : β′1 �• β1 �• β2 �• · · · �• βn �• β′2
(If n = 0 then the right hand side would simply be β ′1 �• β′2.)

Whenever there are no β′ ∈ E′, β ∈ E \E′ with β′ �• β nor β �• β′ then ζ�E′ is called
a causally-closed subtrace of ζ.

To cater for traces whose events are indexed by process socket names and process
names, we need the following:

Notation 1 For an indexed family of sets {Xi | i ∈ I}, its discriminated union and
Cartesian product are denoted and defined as follows, respectively:
∑

i∈I Xi �
⋃{
{i} × Xi

∣∣∣∣ i ∈ I
}
,
∏

i∈I Xi =
{
f : I → ∪{Xi | i ∈ I}

∣∣∣∣ ∀i ∈ I : f (i) ∈ Xi

}

Definition 3 (Indexed causality trace, restriction, projection). A causality trace ζ
over the discriminated union Σ =

∑
i∈I Xi is said to be indexed by I.

For each index subset I ′ ⊆ I we define a restriction of ζ = (Σ, E, η,�•) to I ′, denoted

ζI′ = (ΣI′ , EI′ , ηI′ ,�•I′)

as the subtrace ζ�EI′ further restricted to be over the set Σ I′ =
∑

i∈I′ Xi instead of Σ and
where EI′ is the set of those events among E that are labelled with descriptions from
ΣI′ . Thus, if we let γI′ : EI′ ↪→ E and ιI′ : ΣI′ ↪→ Σ to be inclusion maps of their
respective domains into their codomains, then the following diagram commutes:

EI′
ηI′� ΣI′

E

γI′
�

∩

η� Σ

ιI′
�

∩

We call γI′ an event inclusion map.
The projection of ζ to the index i ∈ I is the trace

ζi = (Xi, Ei, ηi,�•i)

where Ei = E{i} , �•i = �•{i} and ηi(α) is the second component of the pair η {i}(α) ∈
{(i, c) c ∈ Xi}. When the index set I is a singleton {i}, we simply write γ i instead of γ{i}.

An indexed causality trace ζ is sometimes referred to as an interleaving of all its
projections (ζi)i∈I .

Fig. 4 illustrates the concept of trace interleaving. Note that the two dashed links
between elements related by �• cannot be “inherited” by any of the projections, only
its transitive consequence (the bold link) is inherited indirectly. Similarly, there can be
causality pairs in ζ that are not inherited in any of the projections, even indirectly.

2605Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

ζ1 ζ2

�•1

�• 2

�• 2

�•2

�• 1

ζ
�•

�•

Figure 4: An interleaving ζ of two finite causality traces ζ1 and ζ2.

4 Query-answer protocols

As explained in Subsection 2.4, no concrete language for defining channel protocols is
given here, nor any algebra of protocol operations. Instead we start from a low-level
semantics in terms of trace sets and the way these sets are defined is left open. As a
consequence, a constructive systematic mapping from protocols to semantic domains is
impossible to develop and we will only require certain features and properties.

4.1 Protocol traces

We use causality traces to model channel protocol traces. Nevertheless, the causality
relation plays no particular role at this stage. The relation will be used substantially
when defining traces for processes and networks. For individual channels, the order is
often inherited via projection from that of the processes and networks.

Definition 4 (Query-answer trace, TrQ,A). A query-answer trace over the set of
queriesQ and the set of answers A is a causality trace over the set ΣQ,A � Q×(A∪{Ω}).
We additionally require ∈ A, which denotes an explicit “error” and Ω � A, which
denotes a lack of answer.

We write TrQ,A to stand for TrΣQ,A , i. e. all query-answer traces over the given sets.

Each event in a query-answer trace contains a query. When we focus on queries, we
sometimes refer to events simply as queries. If such an event also contains an answer,
we call it an answered query, otherwise an unanswered query.

In query-answer traces, causality β1 � β2 where η(β1) = (q1, x1) and η(β2) = (q2, x2)
is interpreted in two ways:

– occurrence β1 of query q1 causes occurrence β2 of query q2,

– occurrence β2 of (non-)answer x2 causes occurrence β1 of (non-)answer x1.

2606 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

Definition 5. For a trace ζ = (Σ, E, η,�•) ∈ TrQ,A we define:

– Qry(ζ) �
{
q
∣∣∣ ∃x.(q, x) ∈ η(E)

}
(the queries in ζ)

– QA(ζ) � η(E) ∩ (Q × A) (the query-answer pairs in ζ)

– Ans(ζ) �
{
a
∣∣∣ ∃q.(q, a) ∈ QA(ζ)

}
(the answers in ζ)

Definition 6. A query-answer protocolP is a triplet (QP,AP,TP) whereQP and AP are
sets, called its query and answer sets, respectively, and TP ⊆ TrQP ,AP is a set of traces,
called its permissible traces, satisfying the following property, which intuitively means
that the protocol must allow both parties the freedom not to communicate:

For any ζ = (Σ, E, η,�•) ∈ TP the following traces are in TP as well:

– (Σ, E, η,�•′) for any anti-reflexive and well-founded �•′⊆ E × E

– ζ�E′ for each E ′ ⊆ E (subtrace)

– (Σ, E, η′,�•) where η′ is obtained from η by turning some events to unanswered
queries, i. e. for some E ′ ⊆ E we have η′(β) = η(β) for all β ∈ E \ E ′, whilst for
each β′ ∈ E′, ∃q ∈ QP, a ∈ AP : η(β′) = (q, a) and η′(β′) = (q, Ω). (less answered
trace)

Note that the empty trace is permissible in any protocol.

4.2 Protocol semantics

While data on channels is communicated as concrete symbols, we would like to inter-
pret these symbols as representations of approximations that gradually communicate a
more abstract semantic value. This concept is well-captured by domain-theory, which
is the semantic model we use to interpret the abstract values being communicated.

Domain and lattice theory are rich theories, yet there are still varied — even oppos-
ing — terminology used even for very basic definitions. We adopt the terminology and
definitions used by [Gierz et al. 2003].5

To minimise notation overhead, we will identify the query and answer symbols used
in query-answer traces with their meaning as approximations to the ‘perfect query’
(i. e. “give me the whole object!”) or approximation to a ‘perfect answer’ (e. g. a con-
tinuous real function). With this in mind, from now on we will require that for each
query-answer protocol P we have:

– QP is a basis of a continuous complete lattice, which we denote �P�Q and call the
query lattice;

5 In addition to [Gierz et al. 2003] the reader may refer to [Abramsky and Jung 1994,
Amadio and Curien 1998] for extra information on the subject of domains and their use in
semantics of programming languages.

2607Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

– QP must not contain ⊥, which is interpreted as “no query”;

– AP is a basis of a continuous complete lattice, which we denote �P�A and call the
answer lattice;

– (i. e. the “error” answer introduced in Def. 4) is the top element of �P�A.

The maximal elements of the domain �P�A \ {} are the ideal objects that the ‘conver-
sation’ is about, i. e. the ‘perfect answers’. For example, a protocol for continuous real
functions similar to the one we considered informally on page 6 will have in its answer
lattice a domain of continuous functions over the interval domain:

Definition 7 (ProtocolPFn for continuous real functions). The protocol PFn has the
following components:

– APFn �
{⊔n

i=1(ai ↘ bi) n ∈ N, ai, bi ∈ IQ
}
∪ {} ⊆ [IR→ IR] � �PFn�A

where (q↘ a)(x) = a when x �1 q, otherwise (q↘ a)(x) = ⊥.

– QPFn �
{
aL

n—aR

∣∣∣∣ n ∈ N, a = [aL, aR] ∈ IQ
}
⊆ [R→ ω⊥] � �PFn�Q

where ω is the poset of naturally ordered natural numbers

– TPFn �
{
ζ
∣∣∣∣ ζ ∈ TQPFn ,APFn

,
⊔

Ans(ζ) �
}

Notice that in this protocol the piece-wise constant function enclosures used as an-
swers act on intervals, whereas on page 6 they acted on real numbers. Nevertheless, as
the interval version is an extension of the real number version, it is justified to use the
same notation for concrete queries and answers in this protocol as we did on page 6.
In practise we may need more sophisticated variants of this protocol. For example, one
can use piece-wise polynomial enclosures as implemented in [Konečný 2008] instead
of piece-wise constant enclosures.

4.3 Extracting semantics from a set of traces

Next, we lift semantics of individual queries and answers to channel traces and sets of
such traces so that we can describe the essence of channel communication for one or
more variants of nondeterministic network execution. The higher the query, the more
specific answer is required. Therefore, to safely approximate queries, we consider the
least upper bound over alternative executions because we need an upper bound on the
ideal type of answer the queries are asking for, e. g. when calculating convergence rates.
To safely approximate answers, we use the greatest lower bound so that we obtain a
lower bound on the information transferred in any execution variant.

Definition 8. The Q-semantics of a trace ζ ∈ TP is the element of �P�Q defined as�
ζ
�

Q �
⊔

Qry(ζ). The Q-semantics of a set Z ⊆ TP is �Z�Q �
⊔
ζ∈Z
�
ζ
�

Q.

2608 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

The query-to-answer mapping defined by a set of traces under protocol P can
be expressed by a continuous function from �P�Q to �P�A. From such a function
one can find out whether under all circumstances the answers in the traces converge
to the same object and if they converge, what object they converge to and a lower
bound of the rate at which they converge. We denote the lattice of such functions
�P�QA �

[
�P�Q → �P�A

]
. To define the semantics of traces in this space, we first

need the following auxiliary construction:

Definition 9. Let (P1,�1) and (P2,�2) be two posets and assume that P2 has a top
element . To each pair (q, a) ∈ (P1 × P2) a co-step function is assigned as defined by

(q↗ a) : P1 → P2 (q↗ a)(x) �

⎧⎪⎪⎨⎪⎪⎩
a if x �1 q

 otherwise

Notice that this is dual to the usual step function (q↘ a)(x) used in Def. 7.

Definition 10. The QA-semantics of a trace ζ ∈ TP is the element of �P�QA defined as

�
ζ
�

QA �
�{

q↗ a
∣∣∣∣ q = ⊔i∈Iqi, a =

⊔
i∈Iai,

{
(qi, ai)

∣∣∣ i ∈ I
} ⊆ QA(ζ)

}

The QA-semantics of a set Z ⊆ TP of traces is defined as �Z�QA �
� {�
ζ
�

QA | ζ ∈ Z
}
.

Trace A-semantics is defined as
�
ζ
�

A �
�
ζ
�

QA (
�
ζ
�

Q) and �Z�A � �Z�QA (�Z�Q).

To help unpack these definitions, let us consider the semantics of the example finite
trace from equation (1) on page 6. The meanings of its individual queries and answers
are illustrated by diagrams in Fig. 5. Let us call this trace ζexp,fin. The Q-semantics
�ζexp,fin�Q is the supremum of the four query elements, which is equal to the last one.
The QA-semantics �ζexp,fin�QA maps the elements of the query lattice as shown in Fig. 6.

Our definition of QA-semantics does not seem natural at first sight. Next, let us jus-
tify the choices made and state a few key properties of this semantics. When computing
QA-semantics of a set of alternative traces, we would like the result to be a safe lower
bound for what was communicated in each trace:

Lemma 11 (QA-semantics safety). For any set of traces Z and any query answer pair
(q, a) ∈ ζ ∈ Z, we have �Z�QA (q) � a.

To get this property we need to use infimum when combining semantics of individ-
ual traces. When a specific query appears literally in multiple traces, it seems natural
to assign it the infimum of all the answers given. This is the case for our definition ex-
cept for the kind of undesirable behaviour when there is a higher query that is answered
worse. When a single query appears twice in one trace, we could legitimately assign the
better answer to the query in the semantics. Providing for such improvement would lead
to a more complex definition. We avoid this as we view multiple occurrences of single
queries in one trace as an undesirable behaviour. Thus we always take the infimum of

2609Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

0 2—1 ? �→! (0[0,5]— 1)

0 2—2 ? �→! (0[0,9]— 2)

1 3—2 ? �→! (1[2,9]— 2)

0 3—2 ? �→! (0[0,3]— 1[2,9]— 2)

Figure 5: The semantics of individual queries and answers in the example trace ζ exp,fin,
which communicates partial information about the function e x using protocol PFn.

Figure 6: The QA-semantics of ζexp,fin.

2610 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

all answers whether in the same trace or in different traces as the semantics for a query
that appears literally.

The main issue is what to assign to query elements that do not appear literally in the
traces under consideration. It may seem natural that one should consider queries that are
below the given element and use their answers as approximations. The problem is that it
makes no sense to take the infimum of such approximations — it would always be near
⊥. Thus we have no choice and take the opposite view and consider trace queries above
the current query element and assign to this element the infimum of their answers. This
is appropriate as long as we assume that the queries used in the formula are the only
ones that could ever be asked on a certain channel. We will use trace QA-semantics
only where this assumption is clearly true.

Let us now return to the example trace semantics. Notice that the bound [0, 5] on
domain interval [0, 1] in the first query-answer pair does not play any role in the QA-
semantics. This is so because its query is lower than the second query but its answer
is higher than the second answer when restricted to [0, 1]. Whenever the first query-
answer pair is relevant for computing QA-semantics for a particular query-lattice value,
so is the second pair and due to taking an infimum of the co-step functions, the second
answer will absorb the first answer over [0, 1].

This behaviour seems to go against intuition as some extra information carried by
the first pair is lost. If we want to avoid the loss, we need to either change the protocol
or change the definition of QA-semantics. From the explanation following Lemma 11
it seems that one cannot define a safe QA-semantics otherwise without making it sub-
stantially more complicated. We concluded that the benefits obtained by adding an extra
layer to the semantics do not justify the cost.

In our view, a better solution would be to use another interpretation of queries where
the queries in our example are not comparable. The query lattice would be a variant of
ωIQ, i. e. the Cartesian product of a family — indexed by elements of IQ— of copies of
ω. This leads to a different protocol, although syntax we used for the queries in PFn can
be re-used for specifying atomic queries in this new protocol and the answers would
be exactly the same in both protocols. We do not develop this protocol here any further
because it is harder to formalise and reason about than PFn and its benefits over PFn

seem negligible.

4.4 Relative convergence

It seems natural to call a trace ζ ∈ TP convergent if
�
ζ
�

A is a maximal element of
the domain �P�A \ {}. This is all the more intuitive when we deal with ground types
rather than function types, e. g. when �P�A is IR, the interval domain [Escardó 1997].
Nonetheless, in higher orders this definition is not adequate as there are cases where
we are only interested in information locally. For instance, let f : R → R and assume
that we are only interested in information about the graph of the function obtained by
restricting the domain of f to [0, 2]. Thus, we consider a more general concept which

2611Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

SubAPq2 SubAPq1
�P�A

RestrAq2

RestrAq1

RestrAq2
◦ InclAq1

RestrAq1
◦ InclAq2

InclAq1

InclAq2

Figure 7: Illustration of adjunctions on semantic spaces relative to query elements q 1 �
q2.

we call relative convergence. To that end, for each protocol P and each q ∈ �P�Q, we
assume the existence of:

– a complete continuous lattice SubAPq and

– a surjective adjunction RestrAPq : �P�A � SubAPq : InclAPq .

such that:

– for q = the adjunction is bijective.

– for each q1 � q2 in �P�Q, the following adjunction is surjective (see Fig. 7)

RestrAPq1
◦ InclAPq2

: SubAPq2
� SubAPq1

: RestrAPq2
◦ InclAPq1

We shall omit the superscript P where protocol is clear from context.
The injective right adjunction InclAq can be seen as embedding the lattice SubAq

as a sub-lattice near the bottom of the lattice �P�A and RestrAq can be seen as pro-
jecting every element in the larger lattice to a lower element in the sub-lattice. (Such
adjunctions are called embedding-projection pairs.) Intuitively, for each query element
q the adjunction determines a family of relevant answers, i. e. the maximal elements of
SubAPq \ {}.

We now augment Def. 7 (i. e. protocol PFn) with these newly introduced protocol
components so that we can talk about relative convergence of trace sets in this protocol:

– SubAPFn
q � [ISq → IR]

where Sq =
{
r ∈ R ∣∣∣ q(r) = } and ISq =

{
a
∣∣∣ a ∈ IR, a ⊆ Sq

}

– InclAPFn
q (f) � λa.

(
if a ∈ ISq then f (a) else ⊥) : [IR→ IR], InclAPFn

q () �
– RestrAPFn

q (f) � λa. f (a) : [ISq → IR], RestrAPFn
q () �

2612 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

For PFn query-lattice elements that do not reach for any real number, S q is empty
and the space SubAPFn

q is the trivial two-element lattice, whose elements are mapped to
⊥ and by InclAPFn

q .

Definition 12 (Relative convergence). Let P be a protocol and q t ∈ �P�Q. An element
d ∈ �P�QA is convergent relative to qt iff RestrAqt

(d(qt)) is maximal in SubAPqt
\ {}.

Moreover, d is fully convergent iff it is convergent relative to ∈ �P�Q.
A trace ζ ∈ TP is relatively convergent iff

�
ζ
�

QA is convergent relative to
�
ζ
�

Q.
A set of traces Z is relatively convergent iff �Z�QA is convergent relative to �Z�Q.

All finite PFn traces have the trivial one-element target space and are therefore triv-
ially relatively convergent. To get more interesting examples, consider the following
PFn traces:

– ζexp,[0,2] =
{
([0, 2], n) ?�→!

⊔n
i=0
(
0 [1,1+2−i] 2−i) ∣∣∣∣ n ∈ N

}

– ζexp,0 =
{
([0, 2−n], n) ?�→!

⊔n
i=0
(
0 [1,1+2−i] 2−i) ∣∣∣∣ n ∈ N

}

The function �ζexp,[0,2]�Q reaches on the interval [0, 2] and thus aims to know
the function fully on the whole interval [0, 2]. On the other hand, �ζ exp,0�Q reaches
 only at point 0 and thus aims to know the function fully only at point 0. Both
�ζexp,0�QA(�ζexp,0�Q) and �ζexp,[0,2]�QA(�ζexp,[0,2]�Q) give the same approximation, i. e.
the enclosure that maps the singleton [0, 0] to [1, 1] and maps every other interval to a
non-singleton interval or ⊥. Thus ζexp,0 is relatively convergent whereas ζexp,[0,2] is not.
The set

{
ζexp,[0,2], ζexp,0

}
is not relatively convergent because the higher one of the two

query-lattice elements is used to determine the target information and neither of the
traces meets it. Please note that for a set to be relatively convergent, all the traces in
it have to meet the common target. Also, a set of relatively convergent traces does not
have to be convergent if the traces have different targets and do not reach the supremum
of these targets.

Another interesting example is the trace that differs from ζ exp,0 by replacing the
supremum in the answers with only one term with i = n. The answers in the trace all
agree that at point 0 the communicated function admits the value 1 but the answers also
lose information close to point 0 while the query effort indicator increases. This leads
in the limit to losing all information also about point 0 and the resulting semantics of
the whole trace is the constant ⊥ function. (The function that maps [0, 0] to [1, 1] and
all other intervals to ⊥ is not continuous and thus cannot be the infimum of the step
functions that arise from this trace — the constant ⊥ function is in fact the infimum.)

4.5 Convergence rates

Our next goal is to develop a notion of convergence rate. For that we need to quantify
the information content in answers (i. e. the quality of answers) and extract from queries

2613Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

an indication of required answer quality. We will measure answer quality using real
numbers extended with +∞ for perfect answers (i. e. maximal elements of the answer
domain) and indicate required quality using natural numbers extended with bottom and
top. A convergence rate is a mapping from the latter to the former.

Thus, we require each protocol P to be equipped with:

– a relative approximation quality measure |·|P,q: SubAPq \ {} → R+∞ satisfying

• a � b⇒ |a|P,q ≤ |b|P,q
• |a|P,q = +∞ ⇔ a is a maximal element in SubAPq \ {};

– a monotone query effort indicator map |·|P: �P�Q → ω that takes ⊥ to 0, to
and no other element is mapped to 0.

We equip protocol PFn with such measures as follows:

– | f |PFn,q
� | f |−1

max (i. e. the inverted maximum width of function enclosure f)

– |q|PFn
= 1 +max(q) (assuming that 1 + ⊥ = 0 for convenience)

Definition 13 (Convergence rate). Let P be a protocol and d ∈ �P�QA convergent
relative to qt ∈ �P�Q.

The function

convRateP,qt (d) : N→ R+∞ : n �→
∣∣∣∣∣
�

q�qt ,|q|P≥n
RestrAPqt

(
d(q)
)∣∣∣∣∣P,qt

is called the convergence rate of d measured relative to q t.
For a relatively convergent trace ζ, convRateP(ζ) � convRateP,�ζ�Q

(
�
ζ
�

QA) and
analogously for a relatively convergent set of traces Z, we define convRateP(Z) �
convRateP,�Z�Q(�Z�QA).

We can now work out the convergence rate of the relatively convergent trace ζ exp,0.
In this trace, for a query whose second component is n − 1, corresponding to an effort
indicator n, we get an answer of size 2n−1 when focusing on the locus of convergence,
i. e. point 0. Thus the rate of convergence for ζ exp,0 is λn.2n−1. For a relatively convergent
set of traces, its convergence rate is the infimum of the convergence rates of individual
traces.

4.6 Protocols for higher order types

When communicating a value of a higher-order type such as a function operator, a query
needs to specify a substantial amount of information such as a fairly accurate enclosure
of a function or even an approximation of a higher-order function. While for order 2
it is still practical to send such an approximation as a part of the query, for orders 3

2614 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

and more, it is usually not practical. We suggest to instead use a separate sub-channel
going in the opposite direction for communicating the query information and have the
query refer to this channel. Instead of formalising the creation of sub-channels and their
references, we will simply pretend that a query can contain a trace of a sub-protocol. In
practical implementations this trace would be realised on a sub-channel and could be
shared among multiple queries. We consider this an optimisation that does not influence
the semantics. When we consider computational complexity in future work, we may
need to adapt the model to reflect sub-channels more closely.

Definition 14. A higher-order query-answer protocol is a query-answer protocol P
with associated:

– sub-protocol for queries PS

– set of direct queries Q′P

– a surjective query-constructor map qHO
P : TPS ×Q′P → QP

Thus queries can be thought of as having two components: a direct component and a
finite trace in the sub-protocol. When giving semantics to a higher-order query-answer
protocol P, it is recommended to first give semantics to the query sub-protocol P S and
define the semantics of P queries with the help of the semantics of PS traces. One way
to realise this idea is formalised in the following construction:

Definition 15 (Generic construction of higher-order protocol).
Assume query-answer protocols P1 and P2 (which themselves may be higher-order).

The higher-order protocol [P1 → P2] has the following components:

– A[P1→P2] �
{⊔n

i=1(ai ↘ bi) n ∈ N, ai ∈ AP1 , bi ∈ AP2

}
∪ {}

⊆ [�P1�A → �P2�A
]
� �[P1 → P2]�A

– [P1 → P2]S � P1,Q
′
[P1→P2] � QP2

– qHO
[P1→P2](ζ, q

′) �
�
ζ
�P1

A ↘ q′

∈ Q[P1→P2] ⊆ [�P1�A → �P2�Q
]
� �[P1 → P2]�Q

– T[P1→P2] �
{
ζ
∣∣∣∣ ζ ∈ TQ[P1→P2],A[P1→P2] ,

⊔
Ans(ζ) �

}

– SubA[P1→P2]
q �

{
F ∈ [�P1�A → �P2�A

] ∣∣∣∣ ∀a ∈ �P1�A .F(a) ∈ SubAP2
q(a)

}
∪ {}

– InclA[P1→P2]
q (F) � λa.

(
InclAP2

q(a)

(
F(a)
))

InclA[P1→P2]
q () �

– RestrA[P1→P2]
q (F) � λa.

(
RestrAP2

q(a)

(
F(a)
))

RestrA[P1→P2]
q () �

– |F |[P1→P2],q � mina∈�P1�A

(
|F(a)|P2,q(a)

)

2615Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

– |q|[P1→P2] � maxa∈�P1�A

(
|q(a)|P2

)

We shall now briefly study an example higher-order query-answer protocol for com-
municating continuous real function operators, which is defined using an instance of the
above construction:

Definition 16 (Protocol PFnFn for continuous real function operators).
PFnFn � [PFn → PFn].

As an example, consider the following PFnFn trace, called ζ(f−1)(1), which communi-
cates partial information about the function operator λ f .λx. f (x − 1):

{
qHO
PFnFn

(
ζn, ([1, 1 + 2−n], n)

)
?�→!

(
An(0)↘ An(1)

)
n ∈ N

}

where ζn =
{((

[0, 2−i], i
)

?�→! An(0)
) ∣∣∣∣ 1 ≤ i ≤ n

}
are finite prefixes of a unique PFn

trace, which we call ζ, that communicates that the function in question has value close

to 1 near point 0 and An(t) =
⊔n

i=1
(
t [1,1+21−i] (t + 2−i)

)
is an enclosure that specifies that

a function’s value is close to 1 in the neighbourhood of t. Notice that
�
ζn
�

A = An(0).
Thus our trace ζ(f−1)(1) communicates the fact that the operator takes a function whose
value is close to 1 at point 0 to a function whose value is close to 1 at point 1.

The semantics qD � �ζ(f−1)(1)�Q is a map that takes each function enclosure:

– that is not above A1(0) to ⊥
– that is above An(0) but not above An+1(0) to

⊔n
i=1
(
[1, 1 + 2−i]↘ i

)

– that is above A∞(0) to
⊔∞

i=1
(
[1, 1 + 2−i]↘ i

)

Any enclosure a that falls into the first two cases above has trivial SubAPFn

qD(a) and there-
fore only enclosures that fall into the third case can be given non-trivial constraints
within SubAPFnFn

qD
. Moreover, the constraints are limited by the fact that for such lucky

enclosures a, SubAPFn
qD(a) is only registering the value of the resulting enclosure at point

1. This means that our trace ζ(f−1)(1) is relatively convergent because its A-semantics
map function enclosures in the third category to the enclosure A∞(1), whose restriction
to SubAPFn

qD(a) is a maximal element in this domain because its value at point 1 is exact.
The convergence rate of the trace is λn.2n−1.

As discussed earlier, in a practical implementation it is desirable to optimise com-
munication in higher order protocols, e. g. the trace components of the queries would
not be sent with the query directly but communicated over a private channel. In the case
of trace ζ(f−1)(1) the channel should be shared for all queries as they are prefixes of one
another. Also the answers could be substantially compressed owing to the fact that part
of the answer can be reconstructed from the query.

2616 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

5 Processes

Processes communicate with each other through channels connected to the process’
sockets. As explained in Subsection 2.4, we do not develop a particular language or
calculus for defining processes. Instead, we capture their behaviour by observing the
way they participate in the generation of queries and answers through their sockets. A
functional denotational semantics for processes will be inferred based on the way events
appear on their input and output sockets.

5.1 Process traces

Informally, a process trace is an interleaving of protocol traces indexed by the names of
sockets, which are divided into input and output sockets. The intuition behind points (iii)
and (iv) in Def. 17 below is that we make a distinction between internal and external
events on a process trace. A process has complete control over its internal events but no
control over the external ones, which can only be discovered.

Definition 17. A process (sometimes called a ‘node’) N comprises:

– a pair of disjoint sets of socket names: S −N (input) and S +N (output),
with notation for the set of all sockets: SN � S −N ∪ S +N ,

– a protocol type assignment, i. e. an assignment of a query-answer protocol P s
N to

each socket s ∈ SN,

– a set of valid process traces TN such that:

(i) Each trace ζ = (Σ, E, η,�•) ∈ TN is an interleaving of its projections (ζs)s∈SN

(see Def. 3) where

• each ζs is a valid trace in the protocol P s
N;

• each query on an input socket is directly caused by at least one query on
an output socket;

• there is no direct causality among events on input sockets, nor on output
sockets, i. e. �• �ES−N

×ES−N
= �• �ES+N

×ES+N
= ∅.

(ii) A process cannot influence the way its queries on input sockets cause some
queries on its output sockets (e. g. via a network loop), i. e. whenever

• ζ = (Σ, E, η,�•) ∈ TN and

• �• \ (ES −N × ES +N

)
= �•′ \ (ES −N × ES +N

)
then also (Σ, E, η,�•′) ∈ TN.

2617Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

(iii) A process cannot prevent its neighbours connected via output sockets to
remain silent, nor can it control the way they make queries.

(iv) Similar to (iii), a process cannot prevent any partners connected via input
sockets to remain silent, nor can it control the way they answer queries. 6

A process can be given in a concrete language, such as that of Fig. 3, if its extracted
trace set meets (i)–(iv).

As an example, consider the process defined in Fig. 3. It is supposed to multiply
two real numbers communicated through its two input sockets named ‘x1’ and ‘x2’
and communicate the result through its only output socket named ‘out’. Assume all
of the process’ sockets use the protocol for exact real numbers in which each query
is a natural number with semantics in ω⊥ and each answer is an interval with rational
endpoints with semantics in IR. The following is an example finite trace in the process’
trace set:

We see three queries on the output socket, each causing a pair of similar events on
the input sockets. Moreover, one of the events on the input sockets caused via means
unknown to the process two of the three incoming queries. By rule (ii) in the above
definition, if we remove these two causalities from the trace, we get another valid trace.
Also if we add any other such causality from output queries to input queries, the trace
will be valid for the process as long as the causalities do not form a cycle as this would
break the definition of causality trace (Def. 1).

Also, notice that the left and middle queries have the same content, being two oc-
currences of the same query element. If the process would cache its answers the trace
could show the middle query without any consequences, i. e. the two events underneath
it would be removed, assuming the middle query occurred after the left query had been
answered. Alternatively, the middle and left ‘out’ queries can both individually cause
the same pair of ‘x1’ and ‘x2’ queries.

The underlined bits are the ones given externally. Thus by rules (iii-iv), there have
to be traces that take into account any other set of queries (potentially with very differ-
ent consequent events) and for the same queries, there have to be traces that consider

6 We omit the full formalisation of these two rules. The formalisation is technically complex
but intuitively straightforward: Each event is broken down into bits that are determined by the
current process and bits that are determined by its environment. The process must not make
any assumptions about the bits that are given by the environment except that all protocols are
followed. This is expressed by stating that for each trace in the trace set many other traces also
have to be in the set — namely those traces that differ from this trace in the externally given
bits. Moreover, the process has the freedom to adapt its own bits that depend on the changed
external bits.

2618 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

different answers to the queries on input sockets, potentially giving different answers to
the queries on output sockets, or even generating further queries on input sockets before
answering. Furthermore, there have to be other traces that capture what happens when
some or all of the queries on the input sockets are not answered.

5.2 Further example processes

To get further insight, we introduce further two processes that in our experience tend to
appear often in networks. Their activity diagram definitions are in Fig. 8. N mergeP has
two input sockets and one output socket of the same protocol P and it merges infor-
mation from both input sockets to the output socket, assuming the two input sockets
provide information consistent with each another. N cacheP behaves as a cache of pre-
viously sent information to minimise repetition of queries. It can be inserted into any
channel without changing the network denotational semantics but improving its opera-
tional behaviour. We usually omit its occurrences in network diagrams for simplicity.

Note that both of these processes are defined generically for any protocol P. This is
possible thanks to the generic availability of concepts such as effort indicator for queries
and lattice-theoretical semantics for answers. Nevertheless, if one wants to instantiate
such processes to a concrete protocol in a computable manner, one has to provide an
effective representation of these concepts.

5.3 Process semantics

5.3.1 Process Q-semantics

To make the study of processes tractable, they are usually viewed functionally, i. e. as
transformers, generating output based on what they receive as input. When focusing on
queries instead of answers, processes act as transformers in the opposite direction. The
following definitions formalise these two functional views of processes in the universe
of our query and answer lattices.

We present two slightly different definitions of semantics. One is based on traces
and one on individual events within traces. In many cases these are equivalent but not
always. When focusing on events, we may capture situations that occur only in a certain
context, such as when the process has accumulated certain knowledge based on previous
requests, separating only certain events from that context even though they may be
influenced by the context. On the other hand, when using traces, we cannot separate
groups of events unless the groups can be split into two valid traces, i. e. when the
groups are de facto independent. We will give examples of the differences after the
definitions are established.

2619Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

Reply(out,qid,a)

cache
in out

P P

(qid,q) := GetQry(out)

[q � bestq]

inqid := DoQry(in,q,qid)

a := GetAns(in,inqid)

bestq := bestq � q
x := x � a

NcacheP

pick a, a valid answer to q
with a � x, maximising a

global x := ⊥ ∈ �P�A; bestq := ⊥ ∈ �P�Q

[x=]
Reply(out,qid,)

out

in
merge

in0

P

P
P

NmergeP

(qid,q):= GetQry(out)

[x�]

in0qid :=

x := a0 � aa

DoQry(in0,q,qid)

DoQry(in,q,qid)

inqid :=

a0 := GetAns(in0,in0qid)

aa := GetAns(in,inqid)

Reply(out,qid,a)

pick a, a valid answer to q
with a � x, maximising a

Figure 8: Definitions of processes N cacheP and NmergeP .

2620 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

Definition 18. The event-based Q-semantics of a process N for an output socket s + is
defined as:

�N�s+

Q :
�
Ps+

N

�
Q
→
∏

s−∈S −N

�
Ps−

N

�
Q

(
�N�s+

Q (qs+)
)

s−
�

⊔{
q−
∣∣∣∣∃(Σ, E, η,�•) ∈ TN, β+, β−, q+, x+, x− :

η(β−) = (s−, (q−, x−)), η(β+) = (s+, (q+, x+)),

β+ �• β−, q+ � qs+
}

i. e. the function that given an upper bound on what has been asked on the output socket
s+, for each of its input sockets s−, returns the least upper bound on what the process
consequently asks through this input socket.

The event-based Q-semantics of N on all output sockets is defined as:

�N�EQ :
∏

s+∈S +N

�
Ps+

N

�
Q
→
∏

s−∈S −N

�
Ps−

N

�
Q

�N�EQ
(
(qs+)s+∈S +N

)
�
⊔

s+∈S +N
�N�s+

Q (qs+)

The trace-based definition is much simpler:

Definition 19. The trace-based Q-semantics of a process N is defined as:

�N�TQ
(
(qs+)s+∈S +N

)
�
⊔{(�

ζs−
�

Q

)
s−∈S −N

∣∣∣∣ ζ ∈ TN,∀s+ ∈ S +N :
�
ζs+
�

Q � qs+
}

Lemma 20. For any process N, we have �N�TQ � �N�EQ.

Proof. Starting with Def. 19, we note that for each trace ζ considered in the set con-
struction, we have only queries below q s+ on each output socket s+ and all queries on
input sockets are caused by some queries on output sockets, thus

(�
ζs−
�

Q

)
s−∈S −N

is ac-

counted for in �N�EQ via the queries in ζ. ��

As noted earlier, the two Q-semantics may differ. A simple example where it is the
case is a process that passes a continuous real function using the PFn protocol from its
one input socket into its one output socket enforcing the 2 n convergence rate. More-
over, assume that the process is optimised to record past queries and when asked for a
higher accuracy tries to guess the query in order to avoid having to make many queries
while waiting for the accuracy of the input to reach the required level. Thus we may see
the following queries: ([0, 1], 1) on output causing copies of the same query but with
effort indicators 1, 2, 3, 5, 10 on the input, then ([1, 2], 2) on the output, causing query

2621Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

([1, 2], 20) on the input. If the same process receives query ([1, 2], 2) without any his-
tory, it results in sending multiple queries with effort indicators 1, 2, 3, 5, 10, 17 to the
input socket. This means that trace-based Q-semantics maps ([1, 2], 2) to ([1, 2], 17),
whereas the event-based Q-semantics maps it to (([1, 2]), 20) or higher because while
studying what happens when ([1, 2], 2) arrives, it considers the first trace and its last
two events ignoring the first six events and thus ignoring their learning effect.

It is desirable to identify a natural class of processes where the two semantics co-
incide. From our example it appears that one has to forbid learning of a certain nature.
We capture such a property as being able to replay any causally-closed sub-trace of a
valid trace, i. e. responding the same with or without context that is not connected via
the causality relation:

Definition 21. A process N is said to be without hidden state iff for each trace ζ ∈ TN

any causally-closed subtrace ζ�E′ is also in TN.

In our example we can expose the process’ hidden state by modifying it to be more
honest about which outgoing query supports which incoming query — if all the past
queries inform future answers, then they should all be seen as “caused by” the future
queries.

Lemma 22. For any process N without hidden state, we have �N�TQ = �N�
E
Q.

Proof. Starting with Def. 18, for each trace with query q+ � qs+ we take the causally-
closed subtrace generated by this event. Moreover, by point (ii) in Def. 17 we can as-
sume that this subtrace contains no other query on an output socket. This subtrace is
a valid process trace because the process is without hidden state. Such subtraces will
account for all pairs q+, q−, so we get �N�TQ � �N�EQ, which together with Lemma 20
gives the result. ��

We use the notation �N�Q whenever we know that N is without hidden state.
From now on we will assume that all unspecified processes are without hidden state.

All processes we considered so far are such except N cache . We change Ncache to expose
its hidden state by declaring that each of its queries is directly caused not only by the
first query that triggered it but also by all subsequent queries that are informed by it
via the cache. Note that in an infinite trace one query going out on an input socket may
thus be formally caused by infinitely many queries that come through the output sockets
afterwards.

2622 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

5.3.2 Process QA-semantics

Definition 23. The event-based QA-semantics of a process N is defined as:

�N�EQA :
∏

s−∈S −N

�
Ps−

N

�
QA
→
∏

s+∈S +N

�
Ps+

N

�
QA

(
�N�EQA

(
(ds−)s−∈S −N

))
s+

(qs+) �
�{⊔

i∈I a+i ∃(Σ, E, η,�•) ∈ TN,
(
β+i , q

+
i
)
i∈I :

∀i ∈ I. η(β+i) = (s+, (q+i , a
+
i)), q+i � qs+ ,

∀s− ∈ S −N, J ⊆ I,
(
β−j , q

−
j , a
−
j

)
j∈J

:

∀ j ∈ J. β+j �• β−j , η(β−j) = (s−, (q−j , a
−
j)) :

ds−
(⊔

j∈J q−j
)
� ⊔ j∈J a−j

}

i. e. the function that for a tuple of query-to-answer mappings representing a lower
bound on what is available through the input sockets, returns a lower bound on the
query-to-answer mappings the process will offer through its output sockets.

The reason q+i � qs+ has been used in Def. 23 above instead of equality is that
an element qs+ ∈ �P�Q need not necessarily be the semantics of a single query, even
though it may well be the limit of the semantics of (infinitely many) other queries. In
such cases equality would lead to an infimum over the empty set, which is .

As before, the trace-based semantics is much simpler to define:

Definition 24. The trace-based QA-semantics of a process N is defined as:

�N�TQA

(
(ds−)s−∈S −N

)
�
�{(�

ζs+
�

QA

)
s+∈S +N

∣∣∣∣ ζ ∈ TN,∀s− ∈ S −N :
�
ζs−
�

QA � ds−
}

Having no hidden state guarantees the equality of the two variants of QA-semantics,
in much the same way it did for Q-semantics in Lemma 22:

Lemma 25. For any process N without hidden state, we have �N�TQA = �N�
E
QA.

While the proof of this lemma is bound to be more technically complex than it was
for Q-semantics, its essence is the same: each trace can be represented by its groups of
causally-closed query-answer pairs and each output-input causality can be isolated in a
separate trace. We therefore omit a detailed proof.

For a process N without hidden state we denote its QA-semantics simply as �N�QA.

5.3.2.1 Semantics of example process

The multiplication process given in Fig. 3 has fairly simple Q- and QA-semantics. The
Q-semantics is λi.(i, i). Such semantics is interpreted as follows: whenever the output

2623Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

socket has only queries below or equal i, then each of the input sockets will be given
only queries below or equal i. Estimates of queries in this direction are useful for giving
a condition that prevents queries from forming infinite dependency cycles in networks
(see [Konečný and Farjudian 2010]).

The QA-semantics of the multiplication process is the map that takes a pair of map-
pings of type [ω⊥ → IR] to a mapping of the same type by point-wise multiplying the
two mappings. Thanks to the consideration of queries that are not directly expressible in
the protocol, i. e. the “query” in this case, the QA-semantics contains the information
that the process does not give partial or incorrect answers when multiplying two exact
numbers in the limit.

5.3.3 Process responsiveness and consistency

Unfortunately, one cannot deduce from a process’ QA-semantics that the process al-
ways gives correct answers. For example, even when the QA-semantics says that a
network computes the exact product of its inputs, it may in fact be the case that the
network rarely answers any query sent to it. This is because QA-semantics has no way
of capturing whether or not queries always get answered and whether or not answers
exclude . When taking alternative traces into account and some of them map some
queries to while others don’t, the infimum in Def. 24 will hide the occurrence of .

If we can show that a network answers all its queries and the answers are not , we
have ruled out that the QA-semantics could be unless certain queries are genuinely
never asked. It is therefore important to find ways to prove that a process answers all its
queries and it does so in a consistent manner. We start by defining what this means.

Definition 26. A process N is called responsive iff there is no trace ζ ∈ TN in which
there is an unanswered query β on an output socket while all queries in ζ that are directly
caused by β are answered.

Definition 27. A process N is called consistent iff there is no trace ζ ∈ TN in which�
ζs+
�

A = for some output socket s+ while
�
ζs−
�

A � for all input sockets s−.

Since all processes we consider are responsive, we will focus on maintaining this
property via composition (see Part II). To show the consistency of a composite process,
we will have to develop other means because one important basic process is not consis-
tent, namely Nmerge — unless the two input sockets of Nmerge give consistent values, the
output is not consistent. To handle such processes, we introduce the following property:

Definition 28. A process N is called QA-consistent if for each trace ζ ∈ TN and output
socket s+

�N�QA

((�
ζs−
�

QA

)
s−∈S −
)
(
�
ζs+
�

Q) =
�
ζs+
�

A

2624 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

By definition of QA-semantics, we always have the � part of the above equality. In a
QA-consistent process all traces agree about the result in the limit, and thus avoid weak-
ening the process QA-semantics. In other words, a QA-consistent process is almost ex-
tensional, i. e. despite various differences in execution due to the representation of input
information and nondeterminism, whenever the inputs have the same QA-semantics, the
output is unambiguous in its limit, including the presence or absence of inconsistencies.

All processes we have considered so far are QA-consistent. Some important pro-
cesses that are not easy to make QA-consistent could be ones that require many-valued-
ness. For example, a process that given coefficients of a third-order polynomial, returns
one of its real roots cannot be extensional, i. e. for different representations of the same
coefficients, it sometimes returns a different root. We do not deal with such processes
in this article but plan to support them using appropriate power-domain semantics and
thus maintaining a weaker version of QA-consistency.

5.3.4 Input-relative Q-semantics

Consider a process that computes the identity function on real numbers using a protocol
whose queries are natural numbers and answers are rational intervals. Additionally the
process guarantees the convergence rate λn.2−n on its output socket. The standard Q-
semantics will be constant as one cannot put an upper bound on the size of queries
that will have to be made to get even the first approximation of the required size. To
have a useful Q-semantics for such cases, we define a Q-semantics relative to a certain
lower bound QA-semantics on the input channels:

Definition 29 (Input specific Q-semantics). The Q-semantics of a process N without
hidden state relative to input QA-semantics (ds−)s−∈S −N is defined as:

�
N/(ds−)s−∈S −N

�
Q

(
(qs+)s+∈S +N

)
�

⊔{(�
ζs−
�

Q

)
s−∈S −N

∣∣∣∣ ζ ∈ TN,∀s+ ∈ S +N :
�
ζs+
�

Q � qs+ ,∀s− ∈ S −N :
�
ζs−
�

QA � ds−
}

i. e. the function that given an upper bound on what has been asked on the output sock-
ets, for each of its input sockets s−, returns the least upper bound on what the pro-
cess consequently asks through this input socket, assuming the input’s QA-semantics is
above the given bound (d s−)s−∈S −N .

In our example exponential rate identity process, if is is known that the input is
provided with QA-semantics that implies the convergence rate λn.2 1−n, the process has
the Q-semantics λq.q + 1 specific to this input.

5.3.5 Process continuity

Lemma 30. �N�EQ, �N�TQ, �N�EQA and �N�TQA are monotone for any process N.

2625Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

Proof. Increasing the argument increases (resp. decreases) the set of traces considered,
which increases the supremum (resp. infimum) of the semantics of these traces. Also
with increasing the argument, the set of events considered increases (resp. decreases),
which has the same monotone effect. ��

In light of Lemma 30 one may expect to be able to extend the result to continuity.
However, as we have not considered any language or any restrictive method of defining
processes, they may well be non-computable with non-continuous behaviour. Moreover,
even if the processes are computable and thus have a continuous low-level trace seman-
tics based on time-ordered sequences, our time-agnostic semantics is not necessarily
continuous for non-maximal elements. Next, we discuss such an example.

5.3.5.1 Non-continuous process example

An example non-continuous process is one that has one input and one output socket,
both using thePFn protocol, and answers some queries directly with⊥, while it forwards
other queries to its input socket. When forwarding a query sometimes it forwards the
answer it receives and sometimes it forgets the answer and answers ⊥ instead.

Assume all queries strictly below ([0, 1], 2) (such as ([0, 1/2], 2) and ([0, 1], 1)) are
ignored while all others, including ([0, 1], 2) itself are forwarded. Then the Q-semantics
maps ([0, 1], 2) to itself but all strictly lower queries it maps to ⊥. This means that
Q-semantics is not continuous as the supremum of all queries strictly below ([0, 1], 2)
is ([0, 1], 2) but the supremum of their Q-semantics is ⊥, which is different from the
Q-semantics of ([0, 1], 2).

Also assume that all answers strictly below [0, 1]↘[0, 1] (such as [0, 1]↘[0, 2] or
[0, 1/2]↘[0, 1]) are replaced by ⊥ whereas all others are forwarded. The QA-semantics
maps λq.([0, 1] ↘ [0, 1]) to itself whereas the functions λq.d for any d strictly below
[0, 1]↘[0, 1] are all mapped to ⊥. As these functions converge to λq.([0, 1] ↘ [0, 1])
but their QA-semantics do not converge to λq.([0, 1]↘ [0, 1]), the QA-semantics is not
continuous.

6 Summary and future work

We have laid the foundations of a framework in which one can study distributed query-
answer based computation. We have presented the basic definitions up to the process
level, providing, in particular, means to:

– analyse protocols for query-answer dialogues facilitating the transfer of partial in-
formation about objects;

– express the behaviour of a process that communicates with others using protocols
of this kind, capturing it both at abstract trace and semantic levels;

2626 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

We have had in mind the exact computation over real numbers, and other similar
continuous types — on ground or higher orders — as encountered in analysis and ge-
ometry.

In related work [Konečný and Farjudian 2010] we provide basic definitions of finite
or infinite networks built over these processes and establish results on how to safely es-
timate the semantic behaviour of a finite or infinite process network from the behaviour
of its components.

We also plan to make use of our explicit effort indicators to measure communication,
time and space complexity of processes using query-driven communication of exact
values.

References

[Amadio and Curien 1998] Amadio, R. and Curien, P.-L.: Domains and Lambda Calculi, vol-
ume 46 of Cambridge Tracts in Theoretical Computer Science Cambridge University Press,
1998.

[Abramsky and Jung 1994] Abramsky, S. and Jung, A.: Domain theory; In Abramsky, S., Gab-
bay, D. M., and Maibaum, T. S. E., editors, Handbook of Logic in Computer Science, vol-
ume 3, pages 1–168. Clarendon Press, Oxford, 1994.

[Abramsky et al. 2000] Abramsky, S., Jagadeesan, R., and Malacaria, P.: Full abstraction for
PCF; Information and Computation, 163(2):409–470, 2000.

[Edalat and Potts 2000] Edalat, A. and Potts, P. J.: A new representation for exact real numbers;
In Brookes, S. and Mislove, M., editors, Electronic Notes in Theoretical Computer Science,
volume 6, pages 119–132. Elsevier Science Publishers, 2000.

[Escardó 1997] Escardó, M. H.: PCF extended with real numbers: a domain theoretic approach
to higher order exact real number computation PhD thesis, Imperial College, 1997.

[Gierz et al. 2003] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., and
Scott, D. S.: Continuous Lattices and Domains, volume 93 of Encyclopedia of Mathematics
and its Applications Cambridge University Press, 2003.

[Gosper 1972] Gosper, R. W.: Continued fraction arithmetic; Technical Report HAKMEM Item
101B, MIT AI MEMO 239, MIT, February 1972.

[Heckmann 1998] Heckmann, R.: Big integers and complexity issues in exact real arithmetic; In
Edalat, A., Jung, A., Keimel, K., and Kwiatkowska, M., editors, Comprox III, Third Workshop
on Computation and Approximation, volume 13 of Electr. Notes Theor. Comput. Sci., page 69.
Elsevier, 1998.

[Kahn 1974] Kahn, G.: The semantics of a simple language for parallel programming; In Rosen-
feld, J. L., editor, Information Processing, Proc. of IFIP, Stockholm, August 5-10, 1974, pages
471–475. North Holland, 1974.

[Konečný and Farjudian 2010] Konečný, M. and Farjudian, A.: Compositional semantics of
dataflow networks with query-driven communication of exact values; Journal of Universal
Computer Science, 16(18):2629–2656, 2010.

[Konečný 2008] Konečný, M.: AERN-RnToRm: Arbitrary-precision arithmetic of multivari-
ate piecewise polynomial enclosures; A Haskell library available at: http://hackage.
haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm, July 2008.

[Lambov 2007] Lambov, B.: Reallib: An efficient implementation of exact real arithmetic;
Mathematical Structures in Computer Science, 17(1):81–98, 2007.

[Moore 1966] Moore, R. E.: Interval Analysis Prentice-Hall, Englewood Cliffs, NJ, USA, 1966.
[Müller 2001] Müller, N. T.: The iRRAM: Exact arithmetic in C++; In Selected Papers from

the 4th International Workshop on Computability and Complexity in Analysis (CCA), volume
2064, pages 222–252. Springer-Verlag, 2001 Lecture Notes in Computer Science.

2627Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

[Neumaier 2003] Neumaier, A.: Taylor forms - use and limits; Reliable Computing, 9(1):43–79,
2003.

[Potts 1998] Potts, P. J.: Exact Real Arithmetic Using Möbius Transformations PhD thesis,
University of London, Imperial College of Science, Technology and Medicine, Department of
Computing, July 1998.

[Revol et al. 2005] Revol, N., Makino, K., and Berz, M.: Taylor models and floating-point arith-
metic: proof that arithmetic operations are validated in COSY; Journal of Logic and Algebraic
Programming, 64:135–154, 2005.

[Turing 1935] Turing, A. M.: On computable numbers with an application to the Entschei-
dungsproblem; Proceedings of London Mathematical Society. II. Series., 42:230–265, 1935.

[Weihrauch 1987] Weihrauch, K.: Computability Number 9 in EATCS Monographs on Theo-
retical Computer Science. Springer, Berlin, 1987.

[Weihrauch 2000] Weihrauch, K.: Computable Analysis, An Introduction Springer-Verlag,
2000.

2628 Konecny M., Farjudian A.: Semantics of Query-Driven Communication ...

