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Abstract: Veldman proved that the contrapositive of countable binary choice is a
theorem of full-fledged intuitionism, to which end he used a principle of continuous
choice and the fan theorem. It has turned out that continuous choice is unnecessary
in this context, and that a weak form of the fan theorem suffices which holds in the
presence of countable choice. In particular, the contrapositive of countable binary choice
is valid in Bishop-style constructive mathematics. We further discuss a generalisation
of this result and link it to Ishihara’s boundedness principle BD-N.
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In this paper, we work in Bishop-style constructive mathematics

[Bishop and Bridges 1985], that is informal mathematics using only intuition-

istic logic. However, we will state explicitly when choice principles are used.

This way our results not only hold in the usual varieties of constructive math-

ematics such as Brouwer’s intuitionism (INT) or Russian recursive mathe-

matics (RUSS) [Bridges and Richman 1987], they can also be interpreted in

a wide range of formal systems such as extensions of Heyting arithmetic

[Troelstra and van Dalen 1988].

Veldman [Veldman 1982] has proved that the contrapositive of countable bi-

nary choice

CCC2 ∀α ∃nA (n, α (n)) =⇒ ∃n ∀i A (n, i)

for every decidable predicate A on N× {0, 1}
is a theorem of intuitionistic mathematics à la Brouwer. To be more precise:

Veldman showed that in the presence of a certain (classically false) continuity

principle CCC2 follows from the fan theorem for decidable bars.1 By inspection

of Veldman’s proof we will see that the bare fan theorem for decidable bars

suffices; in particular, to prove CCC2 there is no need to use any continuity

principle whatsoever.2 We will, furthermore, show that it is also possible to

1 Veldman [Veldman 1982] even claimed that to achieve this implication the predicate
A occurring in CCC2 need not be decidable.

2 We have been informed that this has also been observed by Veldman [Veldman 2005].
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derive CCC2 from an altered version of the fan theorem, which itself can be

proved under surprisingly weak choice assumptions.

As usual {0, 1}N denotes the set of infinite binary sequences α, β, . . . and

{0, 1}∗ stands for the set of finite binary sequences u, v, w, . . . The letters k, �,

m, n, N , M are understood as variables ranging over the set N of non-negative

integers, whereas i, j are reserved for elements of {0, 1}.
If u ∈ {0, 1}n for some n, then |u| = n is the length of u. The n–th finite

initial segment αn = (α (0) , . . . , α (n− 1)) and un = (u (0) , . . . , u (n− 1)) of α

and of u with |u| � n, respectively, has length n. In the case n = 0 this yields

the empty sequence (). Note also that u |u| = u, and that u ends with u (|u| − 1)

whenever |u| > 0. The concatenation of u and v will be denoted by u ∗ v.
A predicate B on {0, 1}∗ is a bar, if for every α there is n with B (αn), while

a bar B is uniform if there exists N such that for every α there is n � N with

B (αn)—or, equivalently, there is N such that for every u ∈ {0, 1}N there is

n � N with B (un).

The fan theorem for decidable bars says that every decidable bar is uniform:

FANΔ ∀α ∃nB (αn) =⇒ ∃N ∀u ∈ {0, 1}N ∃n � N B (un)

for every decidable predicate B on {0, 1}∗.

Recall that an infinite path (in {0, 1}∗ viewed as the complete binary tree)

is a function γ : N → {0, 1}∗ such that γ(0) = () and γ(n+ 1) is an immediate

successor of γ(n); in particular, |γ(n)| = n. The infinite paths can be identified

with the infinite binary sequences in an obvious way. By an infinite pseudopath

(in {0, 1}∗) we understand a function π : N → {0, 1}∗ with |π (n)| = n; in

particular, π (0) = (). In the sequel the variable π exclusively stands for infinite

pseudopaths; we will often write πn in place of π (n).

Clearly, the infinite paths are precisely the infinite pseudopaths whose ranges

are linearly ordered with respect to the successor relation. In particular, every

infinite binary sequence α gives rise to the infinite pseudopath π defined by

πn = αn; whence FANΔ implies

FAN p
Δ ∀π ∃nB (πn) =⇒ ∃N ∀u ∈ {0, 1}N ∃n � N B (un)

for every decidable predicate B on {0, 1}∗.

Note that FANp
Δ differs from FANΔ only in FANp

Δ having a stronger antecedent.

Proposition 1 FAN p
Δ (and therefore also FANΔ) implies CCC2.

Proof. Assume FANp
Δ. To prove CCC2, let A be a decidable predicate on N ×

{0, 1}. We define a decidable predicate B on {0, 1}∗ by

B (u) ≡ |u| > 0 ∧ A (|u| − 1, u (|u| − 1))
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for every u ∈ {0, 1}∗.
Suppose that ∀α ∃nA (n, α (n)). To show that

∀π ∃nB (π (n+ 1)) ,

let π be an infinite pseudopath. Define α ∈ {0, 1}N by

α (n) = π (n+ 1) (n)

for every n: that is, π (n+ 1) ends with α (n). By hypothesis there is n with

A (n, α (n)): that is, with B (π (n+ 1)) as required.

By FANp
Δ there now is N such that ∀u ∈ {0, 1}N ∃n � N B (un), for which

in particular N > 0 and ∀u ∈ {0, 1}N ∃n < N A (n, u (n)). For this N we claim

that ∃n < N ∀i A (n, i). Indeed, if ∀n < N ∃i¬A (n, i), then there is u ∈ {0, 1}N
with ∀n < N ¬A (n, u (n)), a contradiction. In all we have ∃n ∀i A (n, i).

In the sequel we will need to invoke the following choice principle:

ACΔ-NN ∀n∃mA(n,m) =⇒ ∃f : N → N ∀nA(n, f(n))
for every decidable predicate A.

This principle is number-number choice restricted to decidable predicates on

N×N. In some of the invocations of ACΔ-NN we tacitly assume a fixed (primitive

recursive) bijection between {0, 1}∗ and N. Since countable choice is generally

accepted by the practitioners of Bishop-style constructive mathematics and its

varieties, so is ACΔ-NN. It is easy to see that ACΔ-NN is equivalent to

AC!-NN ∀n∃!mA(n,m) =⇒ ∃f : N → N ∀nA(n, f(n))
for any predicate A whatsoever.

As an instance of unique choice ACΔ-NN thus also holds in the constructive

version of ZF set theory CZF (see for instance [Aczel and Rathjen 2001]), and

in certain extensions of Heyting arithmetic [Troelstra and van Dalen 1988].

Proposition 2 ACΔ-NN implies FAN p
Δ.

Proof. Assume that B is a decidable predicate on {0, 1}∗ satisfying the an-

tecedent of FANp
Δ. To deduce the consequent of FANp

Δ for B, note first that

it is equivalent to ∃N ∀u ∈ {0, 1}N B′ (u) where the decidable predicate B′ is
defined by

B′(u) ⇔∃m � |u|. B(um) .

Clearly, B(u) implies B′(u). We next define the decidable predicate D by

D(u) ⇔
(
u = 0|u| ∧ ∀v ∈ {0, 1}|u|. B′(v)

)

∨
(
¬B′(u) ∧ ∀v ∈ {0, 1}|u|.¬B′(v) → u � v

)
,
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where � is the lexicographic (or any other decidable) order on {0, 1}n and 0n is

the finite sequence of n zeroes. It is easy to see that for a given n ∈ N, there is a

unique u ∈ {0, 1}n such that D(u), and if there is any v ∈ {0, 1}n with ¬B′(v),
then ¬B′(u) for this u. By ACΔ-NN, there is a (unique) pseudopath π such that

∀n ∈ N. D(πn) .

The antecedent of FANp
Δ applied to this π yields the existence ofN ∈ N such that

B(πN) and therefore B′(πN) holds. Now if there exists v ∈ {0, 1}N such that

¬B′(v), then, because D(πN), also ¬B′(πN); a contradiction. Hence, because

of the decidability of B′, B′(v) holds for all v ∈ {0, 1}N .

Corollary 3 ACΔ-NN implies CCC2.

There are two more versions of the fan theorem that have been investigated

in constructive (reverse) mathematics: The fan theorem for Π1-bars (FANΠ1 )

and for c-bars (FANc). In this context a predicate B on {0, 1}∗ is called Π1, if

there exists a decidable predicate D on {0, 1}∗ × N such that

B(u) ⇔ ∀i ∈ N.D(u, i) ,

and it is called a c-predicate if there exists a decidable predicate D on {0, 1}∗
such that

B(u) ⇔ ∀v ∈ {0, 1}∗.D(u ∗ v) .
Naturally FANc and FANΠ1 are just FANΔ ranging over c-predicates and Π1-

predicates respectively. It is easy to see that the following implications hold

FANΔ ⇐ FANc ⇐ FANΠ1 .

It is furthermore known that the left implication is actually strict [Berger 2009],

and that the right one can be reversed under the assumption of the principle

BD-N, which will be stated below.

Next we will consider the following pseudo-fan principle.

FAN p
c−Π1

∀π∃n∀m � nB(πm) =⇒ ∃N ∀u ∈ {0, 1}N ∃n � N. B (un)

for every Π1-predicate B on {0, 1}∗.
Since FANp

c−Π1
differs from FANΠ1 only in having a stronger antecedent:

FANΠ1 =⇒ FANp
c−Π1

.

However, neither of the implications

FANc =⇒ FANp
c−Π1

=⇒ FANp
Δ
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seems provable.

The question we consider next is, whether FANp
c−Π1

can also be proved, solely

with the help of ACΔ-NN. To answer this question, we need to recall Ishihara’s

boundedness principle BD-N. A countable3 subset S of N is pseudobounded if

for every sequence (am) in S there is M such that am � n whenever m � M .

The principle reads as follows:

BD-N Every countable, pseudobounded subset of N is bounded.

Apart from being valid with classical logic, BD-N holds both in INT

and in RUSS. More information on BD-N can be found in [Richman 2009,

Ishihara 1992]. Even though BD-N is a very weak principle it is strongly remi-

niscent of all the other principles discussed in this note; since they all are about

concluding from bounds for every function of a certain type to a uniform bound

for all such functions. This might motivate the following result.

Proposition 4 BD-N together with ACΔ-NN implies FAN p
c−Π1

.

Proof. Assume that B is a Π1-predicate satisfying the antecedent of FAN p
c−Π1

.

Since B is Π1, there exists a decidable predicate D on {0, 1}∗ × N with

B(u) ⇔ ∀i ∈ N. D(u, i).

We will show below that

S = {0} ∪ {n ∈ N : ∃u ∈ {0, 1}n∃i ∈ N.¬D(u, i)}

is pseudobounded. Since it is also, as a simply existential and inhabited subset of

N, countable, an application of BD-N yields a bound N ∈ N of S; that is n < N

for all n ∈ S. This N satisfies the consequent of FANp
c−Π1

, since for u ∈ {0, 1}∗
with |u| � N , the assumption that there exists i ∈ N such that ¬D(u, i) holds

implies that |u| ∈ S. But this contradicts S being bounded by N and thus, since

D is decidable, we have D(u, i) for all i ∈ N; whence B(u) holds.

It remains to show that S is pseudobounded. So let (an)n�1 be a sequence in

S. For each n there exists u ∈ {0, 1}∗ and i ∈ N with |u| = an and ¬D(u, i). By

ACΔ-NN, there exists a function p : N → {0, 1}∗ × N such that |P1(p(n))| = an
and ¬D(p(n)). To get a pseudopath out of p, using ACΔ-NN again, we define

π : N → {0, 1}∗ the following way: For every k ∈ N it is decidable if there exists

l � k such that k = al, or if k �= al for all l � k. In the first case we set

π(k) = P1(p(l)) for the smallest l � k with al = k. In the second case we set

π(k) = 0k. This way, we ensure that π is a pseudopath. By the antecedent of

FANp
c−Π1

there exists M such that B(π(m)) for all m � M . Now assume that

am > m for a m � M , and let l � am be the smallest natural number such that

3 We call a set S countable if there exists a surjection ϕ : N → S.
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al = am. (Note that m is a candidate for this l.) Then π(am) = P1(p(l)), which

implies, in particular, that ¬B(π(am)) holds. This would be a contradiction and

therefore am � m for all m � M . Thus S is pseudobounded and we are done.

It might be worth pointing out that the proof of the above proposition actually

shows that BD-N together with ACΔ-NN implies the stronger

∀π∃n∀m � nB(πm) =⇒ ∃N∀u. |u| � N ⇒ B(u).

Proposition 4 may be compared with a result in [Diener 2008], where it was

shown—with the use of countable choice—that under the assumption of BD-N

FANc =⇒ FANΠ1 .

Corollary 5 Since FANΔ is provably wrong in RUSS we cannot expect to find

a proof of

FAN p
c−Π1

=⇒ FANΔ .

Overview

To summarise the results of and conclude the paper:

FANp
Δ

�
CCC2

FANΔ

�

�

ACΔ-NN
BD-N

FANp
c−Π1

FANΠ1

� �

�

�

Acknowledgements

During the preparation of this note Schuster was holding a Feodor Lynen Research

Fellowship for Experienced Researchers granted by the Alexander von Humboldt Foun-

dation from sources of the German Federal Ministry of Education and Research; he

is grateful to Giovanni Sambin, Andrea Cantini, and their colleagues in Padua and

Florence, for their generous hospitality.

2561Diener H., Schuster P.: On Choice Principles and Fan Theorems



References

[Aczel and Rathjen 2001] Aczel, P. and Rathjen, M.: Notes on constructive set theory;
Technical Report 40, Institut Mittag-Leffler, The Royal Swedish Academy of
Sciences, 2001.

[Bishop and Bridges 1985] Bishop, E. and Bridges, D.: Constructive Analysis
Springer-Verlag, 1985.

[Berger 2009] Berger, J.: A separation result for varieties of brouwer’s fan theorem; In
Proceedings of the 10th Asian Logic Conference (ALC 10), Kobe University
in Kobe, Hyogo, Japan, September 1-6, 2008, to appear.

[Bridges and Richman 1987] Bridges, D. and Richman, F.: Varieties of Constructive
Mathematics Cambridge University Press, 1987.

[Diener 2008] Diener, H.: Compactness under constructive scrutiny PhD thesis, Uni-
versity of Canterbury, Christchurch, New Zealand, 2008.

[Ishihara 1992] Ishihara, H.: Continuity properties in constructive mathematics; J.
Symbolic Logic, 57(2):557–565, 1992.

[Richman 2009] Richman, F.: Intuitionistic notions of boundedness in N; MLQ,
55(1):31–36, 2009.

[Troelstra and van Dalen 1988] Troelstra, A. S. and van Dalen, D.: Constructivism in
mathematics. Vol. I, volume 121 of Studies in Logic and the Foundations of
Mathematics North-Holland Publishing Co., Amsterdam, 1988.

[Veldman 1982] Veldman, W.: On the constructive contrapositions of two axioms of
countable choice; In A.S. Troelstra, D. v. D., editor, The L.E.J. Brouwer
Centenary Symposium, pages 513–523. North–Holland, Amsterdam, 1982.

[Veldman 2005] Veldman, W.: Brouwer’s fan theorem as an axiom and as a contrast
to Kleene’s alternative; Technical Report 0509, Department of Mathematics,
Radboud University Nijmegen, July 2005.

2562 Diener H., Schuster P.: On Choice Principles and Fan Theorems


