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1 Introduction

The main objective of this paper is to provide algorithms which can be useful

for solving practical decision-making problems.

We start, in Section 2, with describing the main types of decision-related

problems like optimization. After describing each problem in decision-related

terms, we explain reasonable ways to describe these problems in precise mathe-

matical (“formal”) terms.

Our objective is to “compute” solutions to these problems. So, before we ex-

plain how to compute these solutions, we first recall, in Section 3, what it means

to compute a solution. Specifically, in this section, we recall the main definitions

and results related to computability that we will use in our algorithms. These

definitions and results are mostly taken from [Pour-El and Richards 1989] and

[Weihrauch 2000]. To make our algorithms understandable to people working in

optimization and in game theory, we also provide motivations and explanations

for the related notions of computable mathematics.

Then, in Section 4, we formulate our main result – about the existence of the

corresponding algorithms. The proof of this result is presented in Section 5.

Finally, in Section 6, we briefly discuss the questions of computational com-

plexity and feasibility of the resulting algorithms.
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2 Practical decision-related problems and their formal
descriptions

Optimization is important. In many practical decision making problems,

we are interested in finding the alternative which is the best (under given con-

straints). In many cases, an objective function f (x) is explicitly given. In these

cases, “the best” means that we want to find a solution which maximizes the

value of this objective function, i.e., a solution x∗ for which the value f (x∗) can-
not be improved – i.e., for every element x of the set X of all possible solutions,

we have f (x∗) ≥ f (x).

In formal terms, the condition that x∗ is a location of a global optimum can

be described as

∀x (f (x∗) ≥ f (x)) . (1)

Computing sets of optima is important. Often, there are several optima.

In this case, it is desirable to provide the user with the set of all these optima,

so that the user can see all the options when selecting an alternative.

From this viewpoint, it is desirable to “compute” (in some reasonable sense)

the set of all the optima – i.e., the set of all the points x∗ that satisfy the

condition (1).

Computing an exact global optimum of a computable function is, in

general, not algorithmically possible. It is known that even for functions

defined on the interval [0, 1], in general, it is not possible to have an algorithm

that, given a computable function f : [0, 1] → R, returns a location x∗ of its

local maxima. This result was first proven in [Specker 1959] (definitions of a

computable function will be reminded later in this paper).

Comment. Since 1959, Specker’s result has been expanded. For example, in

[Kreinovich et al. 1998], it has been proven that no algorithm is possible that,

given a computable polynomial of one variable which attains its optimum at

exactly two points, will return these two optimizing points; see also

[Nachbar and Zame 1996].

In practice, it is sufficient to be able to compute an approximation

to the set of optima. From the practical viewpoint, the above algorithmic

impossibility result is not that negative, since in practice, small differences in

the values of the objective function can be safely ignored. Also, the objective

function f (x) describing the consequences of selecting an alternative x is usually

only known approximately.

Let us denote, by ε, the accuracy below which differences in the values of

f (x) can be safely ignored. Thus,
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– the given value f (x∗) means that the actual (unknown) value fact (x
∗)

of the objective function can be any number from the interval

[f (x∗)− ε, f (x∗) + ε];

– the given value f (x) means that the actual (unknown) value fact (x) of the

objective function can be any number from the interval [f (x) − ε, f (x) + ε];

– the optimization requirement fact (x
∗) ≥ fact (x) means, in these terms,

that there exist values fact (x
∗) ∈ [f (x∗)− ε, f (x∗) + ε] and fact (x) ∈

[f (x)− ε, f (x) + ε] for which fact (x
∗) ≥ fact (x).

If one of the elements of the interval [f (x∗)− ε, f (x∗) + ε] is larger than

or equal to one of the elements of the interval [f (x)− ε, f (x) + ε], then the

largest element f (x∗) + ε of the interval [f (x∗)− ε, f (x∗) + ε] is larger than or

equal to the smallest element f (x) − ε of the interval [f (x)− ε, f (x) + ε], i.e.,

f (x∗) + ε ≥ f (x)− ε.

Vice versa, if f (x∗) + ε ≥ f (x) − ε, then an element f (x∗) + ε of the

interval [f (x∗)− ε, f (x∗) + ε] is larger than or equal to the element f (x) − ε

of the interval [f (x)− ε, f (x) + ε]. Thus, the above condition is equivalent to

f (x∗) + ε ≥ f (x)− ε, i.e., to f (x∗) ≥ f (x)− 2 · ε.
So, it is desirable to describe the set of all the values x∗ for which f (x∗) ≥

f (x)− 2 · ε for all x ∈ X , i.e., in formal notations, for which

∀x (f (x∗) ≥ f (x) − 2 · ε) . (2)

It is reasonable to call the alternatives x∗ that satisfy this requirement (2 · ε)-
optima. In these terms, instead of computing the set of all the optima, we are

arriving at a modified formalization of the original practical problem: compute

the set of all (2 · ε)-optima.

Additional complication: the approximation accuracy is also not ex-

actly known. The above modified formulation implicitly assumes that we know

the exact approximation accuracy ε. In other words, we assume that we know

the exact value ε such that smaller differences between the values of the objective

function f (x) can be safely ignored.

In practice, of course, this “threshold” value ε is also known with uncertainty.

A reasonable person can say that, e.g., 1% difference in the values of the objective

function can be safely ignored but 2% difference is no longer negligible. However,

it is difficult to expect a user to claim that a difference below 1.235% can be

safely ignored, while any difference above this threshold value 1.235% is not

negligible.

In other words, instead of a single exact value ε, we usually have two bounds

ε < ε, so that:

– every difference smaller than ε can be safely ignored, while
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– differences larger than ε cannot be ignored.

Computing the set of optima: the final formulation of the problem. If

we take into account the uncertainty with which we know the accuracy ε, then

we come to the following conclusion:

– every (2 · ε)-optimal alternative is desirable, and

– every desirable alternative must be (2 · ε)-optimal.

In other words, given an objective function f , we would like to compute a set S

with the following two properties:

– every (2 · ε)-optimal alternative belongs to the set S, and

– every alternative from the set S is (2 · ε)-optimal.

Comment. In mathematical physics, there is a useful distinction between

– strong approximations which are close to the actual solution of the original

problem, and

– weak approximations which solve the approximate problem, i.e., which have

properties similar to the properties of the actual solution.

In these terms, our explanations show that in many practical problems, we are

actually interested in weak approximations. In this paper, we produce an algo-

rithm that computes such weak approximations.

The resulting problem is algorithmically solvable. It turns out that the

problem of computing a set S with the above property is algorithmically solvable;

see, e.g., [G.-Toth and Kreinovich 2009]. Specifically, it is possible to produce a

finite list of elements L and a rational value δ > 0 such that the set S of all the

alternatives which are δ-close to one of the elements of L is the desired set.

Formally, if we denote the set of all (2 · ε)-optimal alternatives by M2·ε (f),
then the following two conditions are satisfied:

– If x0 ∈ M2·ε (f), then d (x0, �) ≤ δ for some � ∈ L.

– If d (x0, �) ≤ δ for some � ∈ L, then x0 ∈ M2·ε (f).

In other words, the union S of the corresponding balls Bδ (�)
def
= {x : d (�, x) ≤ δ}

satisfies the following property:

M2·ε (f) ⊆
⋃
�∈L

Bδ (�) ⊆ M2·ε (f) . (3)
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Comment. We do not describe here the algorithm for computing the list L, since

later in this paper, we present an algorithm for solving a more general problem.

Comment about continuity. The above result is based on the (implicit) assump-

tion that the objective function f is continuous. Continuous objective functions

describe the usual consequences of different actions, since usually a small change

in the solution only leads to a small change in the consequences.

In principle, there are some cases when the objective function is not contin-

uous. For example, for some undesired side products of an industrial process,

there is usually a threshold beyond which heavy fines start. In such situations,

however, the desire is to avoid exceeding this threshold. Thus, the environmen-

tally proper way of handling these situations is not to incorporate these fines

into the profit estimates, but rather to avoid such undesirable situations al-

together, and to view these restrictions as constraints that limit the set X of

possible solutions. On thus restricted set, the objective function is continuous.

Such constraint optimization problems will be discussed later in this section.

A more general problem: computing the Pareto set. The above descrip-

tion of the decision making problem assumes that we have a single objective

function that we are trying to maximize – albeit an imprecisely known one. In

other words, we assume that we have already agreed how to combine different

characteristics describing different aspects of the problem into a single numerical

quantity.

In practice, we usually have several objective functions

f (x) = (f1 (x) , . . . , fn (x))

describing different aspects of the possible solution x, such as profit, environmen-

tal friendliness, safety, etc. Ideally, we should maximize the values of all these

characteristics, but in reality, there is often a trade-off: e.g., to achieve more

environmental friendliness, it is often necessary to slightly decrease the profit;

there is a similar trade-off between cost and durability.

In many situations, the user does not have a clear a priori idea which trade-

offs are beneficial and which are not; in other words, the user does not have a

single combined objective function f (x) that would enable him or her to make an

ultimate decision. In such situations, it is reasonable to present the user with the

set of all possible solutions – and let the user decided between different possible

solutions from this set. The only possible solutions x∗ that we do not want to

present to the user are solutions x∗ which can be improved in all the senses, i.e.,

solutions for which, for some other solution x, we have fj (x
∗) ≤ fj (x) for all j

and fj (x
∗) < fj (x) for some j. The set of all such “non-improvable” solution is

known as the Pareto set. The problem is how to compute the Pareto set. This

problem has many practical applications; see, e.g., [Figueira et al. 2004].
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In formal terms, an alternative x∗ is dominated if

∃x (f1 (x) ≥ f1 (x
∗) & . . . & fn (x) ≥ fn (x

∗) &

(f1(x) > f1(x
∗) ∨ . . . ∨ fn(x) > fn(x

∗))). (4)

Thus, the condition that x∗ is not dominated (= Pareto optimal) takes the form

∀x (f1 (x
∗) > f1 (x) ∨ . . . ∨ fn (x

∗) > fn (x)∨
(f1 (x

∗) ≥ f1 (x) & . . . & fn (x
∗) ≥ fn (x))) . (5)

In these terms, the Pareto set is the set of all the alternatives x that satisfy the

property (5).

In general, the computation of a Pareto set is an algorithmically unde-

cidable problem. There exist efficient algorithms for computing the Pareto set

for several important specific classes of problems: e.g., for special location prob-

lems [Nickel and Puerto 2005] and for problems with linear objective functions

[Figueira et al. 2004].

In general, however, this problem is known to be computationally difficult;

see, e.g., [Ruzika and Wiecek 2005]. This difficulty has a theoretical explanation

– this problem is, in general, algorithmically undecidable. This undecidability

directly follows from the fact that for n = 1, we get the problem of computing

the set of optima, the problem which is (as we have mentioned earlier) algorith-

mically undecidable.

The problem of computing a Pareto set becomes decidable if we

take into account that the objective functions are known with

some accuracy. In practice, as we have mentioned, we know each of the

objective functions fj (x) only with some accuracy εj . It turns out that if we

appropriately take this uncertainty into account, then (verified) algorithms

for computing the resulting Pareto set become possible. Such algorithms

were described, for the case of n = 2 objective functions fj defined on

bounded subsets of Rm, in [Fernández et al. 2006], [Fernández and Tóth 2006],

[Tóth and Fernández 2006], [Fernández and Tóth 2007],

[Fernández and Tóth 2009]. For the general case of arbitrary computable

objective functions defined on a general “computable” compact set X , the result

is given in [G.-Toth and Kreinovich 2009]. (A similar algorithm is presented in

[Kubica and Woźniak 2008].)

Specifically, we assume that for every j, we know the bounds εj < εj on the

(unknown) accuracy εj . Similarly to the optimization case, for each combination

of values ε = (ε1, . . . , εn), we say that an alternative x∗ is (2 · ε)-Pareto optimal

if it satisfies the following property:

∀x ((f1 (x
∗) ≥ f1 (x)− 2 · ε1) ∨ . . . ∨ (fn (x

∗) ≥ fn (x)− 2 · εn)∨
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((f1 (x
∗) ≥ f1 (x)− 2 · ε1) & . . . & (fn (x

∗) ≥ fn (x)− 2 · εn))) . (6)

Comments.

– Please note that since we are considering approximate values anyway, we

replaced the strict equality f1 (x
∗) > f1 (x) − 2 · ε with a non-strict one

f1 (x
∗) ≥ f1 (x)− 2 · ε.

– After this replacement, the second part

((f1 (x
∗) ≥ f1 (x)− 2 · ε) & . . . & (fn (x

∗) ≥ fn (x)− 2 · ε))

of the condition (6) follows from the first one, so the requirement (6) take

the simplified form:

∀x ((f1 (x
∗) ≥ f1 (x)− 2 · ε1) ∨ . . . ∨ (fn (x

∗) ≥ fn (x)− 2 · εn)) . (7)

End of comments.

Given a tuple of objective functions

f = (f1, . . . , fn) ,

we would like to compute a set S with the following two properties:

– every (2 · ε)-Pareto optimal alternative belongs to the set S, and

– every alternative from the set S is (2 · ε)-Pareto optimal.

Specifically, it is possible to produce a finite list of elements L and a rational

value δ > 0 such that the set S of all the alternatives which are are δ-close to

one of the elements of L is the desired set.

Formally, if we denote the set of all (2 · ε)-Pareto optimal alternatives by

P2·ε (f), then the following two conditions are satisfied:

– If x∗ ∈ P2·ε (f), then d (x∗, �) ≤ δ for some � ∈ L.

– If d (x∗, �) ≤ δ for some � ∈ L, then x∗ ∈ P2·ε (f).

In other words,

P2·ε (f) ⊆
⋃
�∈L

Bδ (�) ⊆ P2·ε (f) . (8)

A similar problem: computing the set of Nash equilibria. In the previous

text, we considered the problem of selecting an alternative in which one person
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(or one entity) makes the decision, and the results depend only on this person’s

decision.

In practice, often, we have several different persons, with potentially different

objective functions f1 (x), . . . , fm (x), and we need to take into account the

interests of all the participants. Such decision problems are handled in game

theory. One of the most widely used solution concept is the concept of Nash

equilibrium: participants select a joint decision x∗ = (x∗
1, . . . , x

∗
m) in such a way

that none of them has the incentive to unilaterally change the decision. In other

words, for every xi ∈ Xi, we have

fi
(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

) ≥ fi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)
. (9)

Formally, we can say that x∗ = (x∗
1, . . . , x

∗
m) is a Nash equilibrium if the following

condition holds:

(∀x1 (f1 (x
∗
1, x

∗
2, . . . , x

∗
m) ≥ f1 (x1, x

∗
2, . . . , x

∗
m)) & . . . &(∀xm

(
fm

(
x∗
1, . . . , x

∗
m−1, x

∗
m

) ≥ fm
(
x∗
1, . . . , x

∗
m−1, xm

))))
. (10)

In general, the computation of the set of all Nash equilibria is an

algorithmically undecidable problem. Indeed, similarly to the Pareto case,

this undecidability directly follows from the fact that for m = 1, we get the

problem of computing the set of optima, the problem which is (as we have

mentioned earlier) algorithmically undecidable.

The problem of computing the set of all Nash equilibria becomes

decidable if we take into account that the objective functions are

known with some accuracy. In practice, as we have mentioned, we know each

of the objective functions fj (x) only with some accuracy εj. It turns out that if

we appropriately take this uncertainty into account, then (verified) algorithms for

computing the resulting set of (approximate) Nash equilibria become possible;

see, e.g., [Kubica and Woźniak 2010].

The above three cases are similar. The above three cases are similar, the

results and algorithms are similar. It is therefore desirable to find a general

formulation of a decision making problem that would include these results as

particular cases.

This desirability also comes from the fact that several other practically im-

portant decision making problems can be formulated in a similar manner – so a

general result will enable us to solve all these problems as well.

Another example of a similar problem. An example of such a decision mak-

ing problem is the problem of constraint optimization. In general, we can have

constraints of the equality type a (x) = b (x) and constraints of the inequality
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type a (x) ≥ b (x). By moving all the terms to one side, we can have an equiva-

lent reformulation as c (x) = 0 and c (x) ≥ 0, where c (x)
def
= a (x)− b (x). Every

constraint c (x) = 0 of the equality type can be represented as two inequality

constraints c (x) ≥ 0 and −c (x) ≥ 0. Thus, in general, we can formulate the con-

straints optimization problem as follows: optimizing a given objective function

f (x) under constraints c1 (x) ≥ 0, . . . , cn (x) ≥ 0.

For the alternative x∗ to be the location of the conditional optimum, this

alternative must satisfy the following two requirements:

– the alternative x∗ must satisfy all n constraints ci (x
∗) ≥ 0, and

– for every other alternative x that satisfies all n constraints, we must have

f (x∗) ≥ f (x).

Formally, these two requirements have the following form

c1 (x
∗) ≥ 0& . . . & cn (x

∗) ≥ 0&

∀x ((c1 (x) ≥ 0& . . . & cn (x) ≥ 0) → f (x∗) ≥ f (x)) . (11)

Replacing implication A → B with the equivalent formula B ∨ ¬A, we get the

following equivalent reformulation of (11) which makes it even closer to our

previous problems:

c1 (x
∗) ≥ 0& . . . & cn (x

∗) ≥ 0&

∀x (f (x∗) ≥ f (x) ∨ c1 (x) < 0 ∨ . . . ∨ cn (x) < 0) . (12)

It is desirable to prove that – similarly to the above results – the natural

ε-approximation is computable.

Comment. For conditions of the type c (x) ≥ 0, the effect of inaccuracy is some-

what different than for inequalities of the above type f (x) ≥ f (x′).
Indeed, let us denote, by ε, the accuracy below which differences in the values

of c (x) can be safely ignored. Thus, the given value c (x) means that the actual

(unknown) value cact (x) of the corresponding quantity can be any number from

the interval [c (x)− ε, c (x) + ε] .

The constraint c (x) ≥ 0 means, in these terms, that there exist a value

cact (x) ∈ [c (x)− ε, c (x) + ε] for which cact (x) ≥ 0.

If one of the elements of the interval [c (x)− ε, c (x) + ε] is larger than or

equal to 0, then the largest element c (x) + ε of the interval

[c (x)− ε, c (x) + ε]

is larger than or equal to 0: c (x) + ε ≥ 0.
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Vice versa, if c (x) + ε ≥ 0, then an element c (x) + ε of the interval

[c (x)− ε, c (x) + ε]

is larger than or equal to 0. Thus, the above condition is equivalent to c (x)+ε ≥
0, i.e., to c (x) ≥ −ε.

Note that here we have −ε instead of −2 · ε.
Other possible examples. Similarly, we can consider Pareto optimization un-

der constraints, Nash equilibrium under constraints, etc.

Another case is when we do not have any objective function, we simply want

to find all the alternatives that satisfy the given constraint(s).

Yet another case is when we want to find a alternative x∗ which guarantees

a certain level of outcome no matter what alternative y is selected by the second

participant: ∀y (f (x∗, y) ≥ f0), i.e., equivalently, ∀y (f (x∗, y)− f0 ≥ 0).

It is also possible to look for a maximin solution, a solution x∗ for which the

worst-case outcome min
y

f (x∗, y) is the largest possible. In this solution,

– there is an alternative yw for which the value f (x∗, yw) is the smallest pos-

sible, and

– for every other selection x, the value f (x, y) can be smaller than or equal to

f (x∗, yw), i.e., there exists y for which f (x, y) ≤ f (x∗, yw).

Formally, this property has the form

∃yw (∀y (f (x∗, yw) ≤ f (x∗, y)) & ∀x∃y (f (x∗, yw) ≥ f (x, y))) .

In some problems, we look for local optima, i.e., for a value x∗ for which, for

all x within a certain radius d from x∗, we have f (x∗) ≥ f (x). Local optima are

important in many practical problems: to separate an image of an astronomical

object into components; in spectroscopy to subdivide the observed spectrum into

individual lines corresponding to different ions and chemical substances, etc.; see,

e.g., [Villaverde and Kreinovich 1993].

Formally, a local maximum at x∗ means that we have

∀x (d (x, x∗) ≤ d → f (x∗) ≥ f (x))

i.e.,

∀x (d− d (x, x∗) ≥ 0 → f (x∗) ≥ f (x)) .

3 What is a computable function, what is a computable set: a
brief reminder

Computable numbers and computable functions. In the global optimiza-

tion problem, we have a set of alternatives X , we have an objective function
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f : X → R, and we are interested in computing the set of all optima. In other

problems, we have one or more functions, and we want to compute an appro-

priate set. In order to analyze these problems from the algorithmic viewpoint,

we need to know how this information is represented in a computer. I n other

words, we must start with a “computable” set X and “computable” function(s)

f , and we must “compute” the corresponding solution set S.

The notions of computable numbers and computable functions are known.

These notions, originated proposed in the pioneer works [Grzegorczyk 1955,

Grzegorczyk 1957], form the basis of computable mathematics; see, e.g.,

[Pour-El and Richards 1989], [Ko 1991], [Edalat and Heckmann 1998],

[Weihrauch 2000] and references therein. The notions of computable sets (and

computable compact sets) are also known; see, e.g., [Weihrauch 2000] and

[Brattka and Presser 2003].

As mentioned in [Weihrauch 2000], there are different approaches to com-

putable mathematics, but all these approaches are (largely) equivalent. In this

paper, we will mainly use notations from [Pour-El and Richards 1989] and re-

sults from [Pour-El and Richards 1989] and [Weihrauch 2000].

For example, we call a real number x computable if there exists an algorithmic

sequence of rational numbers rn for which |rn − x| ≤ 2−n.

A function f(x1, . . . , xm) from a box [x1, x1]× . . .× [xn, xm] with computable

endpoints xi and xi is called computable if:

– there is an algorithm that, given a rational-valued tuple r = (r1, . . . , rm)

from the given box and an integer n, computes an 2−n-approximation to

f(r), i.e., a rational number s for which |s− f(r)| ≤ 2−n, and

– there exists an algorithm transforming every integer k into an integer � for

which d(x, x′) ≤ 2−� implies |f(x)− f(x′)| ≤ 2−k.

Once we have these two algorithms, then, for every tuple x = (x1, . . . , xm) of

computable real numbers xi, we can compute f(x) with a given accuracy 2−n.

First, we use the second algorithm to find an integer � for which d(x, x′) ≤ 2−�

implies |f(x)−f(x′)| ≤ 2−(n+1). Since the values x1, . . . , xm are computable real

numbers, we can algorithmically find rational approximations r = (r1, . . . , rm)

for which d(r, x) ≤ 2−� – and thus, for which |f(r) − f(x)| ≤ 2−(n+1). Now, we

use the first algorithm to compute the rational number s for which |s− f(r)| ≤
2−(n+1). For this rational number, we have

|s− f(x)| ≤ |s− f(r)|+ |f(r)− f(x)| ≤ 2−(n+1) + 2−(n+1) = 2−n;

thus s is the desired 2−n-approximation to f(x).

Alternatively, instead of an algorithm transforming k into �, we can require

that there is an algorithm for computing the corresponding modulus of conti-

nuity, i.e., an algorithm that transforms every real number ε > 0 into a number

δ = ωf (ε) > 0 for which d (x, x′) ≤ δ implies |f (x)− f (x′) | ≤ ε.
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As we have mentioned earlier, all standard computer-implemented functions

such as
√
, exp, sin, ln, etc., are computable in this sense. In particular, the

possibility to find δ from ε is based on the fact that most of these functions

have a Lipschitz property |f (x)− f (x′) | ≤ L · d (x, x′) for a known L. It is also

known that a composition of computable functions is also computable. Thus, all

practical objective functions are computable in this sense.

Computable metric spaces and computable sets: motivation. Which

definition of a computable set is the most appropriate for our applied problems?

In a computer, at any given moment of time, we can only represent finitely many

objects, and we can only represent them approximately – e.g., to produce the

exact real number, we need to describe infinitely many digits, and a computer

can only produce finitely many digits in any given time interval. As we increase

the memory size, we can get more and more accurate representations of each

object.

Thus, it is reasonable to require that for each approximation accuracy ε =

2−k, we have a finite set X(k) of elements that can approximate any element x

from the universal set X with this accuracy, i.e., for which, for every x ∈ X ,

there exists an element z ∈ X(k) for which d(x, z) ≤ 2−k.

The elements z corresponding to all possible k’s form a sequence whose ele-

ments can approximate an arbitrary element x ∈ X with an arbitrary accuracy,

i.e., sequence which is dense in X .

In metric spaces, a finite list X(k) with the above ε-approximation property is

called a ε-net, and a metric space that has a finite ε-net for every ε > 0 is called

totally bounded. This notion is closely related to the more well-known notion of

compactness: namely, a metric space is compact if and only if it is complete and

totally bounded. Thus, what we need are effectively totally bounded computable

metric spaces.

Similarly, when we say that we want to generate a set S (e.g., the set of

all ε-optimal points), what we want is to be able to generate the corresponding

approximations S(k) for this set – i.e., we want a set which is also effectively

totally bounded.

We will therefore use the notion of effectively totally bounded sets and met-

ric spaces that has indeed been introduced in computable analysis; see, e.g.,

[Yasugi et al. 1999, Iljazovic 2009].

Comment 1. From the approximation viewpoint, a limit point x = limxn is

indistinguishable from the points xn in the following sense: whatever accuracy

ε > 0 we select, there exists an n for which d(x, xn) ≤ ε, i.e., for which, within

the given accuracy, x and xn are indistinguishable. Thus, without changing any

observable properties, we can assume that the metric space X contains all its

limit points, i.e., that it is complete.
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Since we have already assumed that X is totally bounded, we can therefore

conclude that X is a compact metric space.

Comment 2. The notion of an ε-net can be reformulated in terms of the Haus-

dorff distance dH(A,B)
def
= max

(
max
a∈A

d(a,B),max
b∈B

d(b, A)

)
, where d(a,B)

def
=

min
b∈B

d(a, b). Namely, a set S is an ε-net for a space X if and only if dH(S,X) ≤
2−k.

Computable metric spaces, computable sets, and computable func-

tions on computable sets: resulting definitions. Let (X, d) be a metric

space. A tuple (X, d, {x1, . . . , xn, . . .}), where xi ∈ X , is called a computable

metric space if the sequence x is dense in X and the corresponding distance

function i, j → d(xi, xj) is computable. An element x ∈ X is called computable

if there is an algorithm that, given k, return � for which d(x, x�) ≤ 2−k.

According to [Yasugi et al. 1999, Iljazovic 2009], a computable metric space

is called effectively totally bounded if there exists an algorithm that, given a

natural number k, returns a finite set X(k) ⊆ X which is a 2−k-net for X . One

can easily prove that this definition is equivalent to the requirement that there

is an algorithm that transform every k into a finite list of computable elements

that forms a 2−k-net for the space X . In this paper, we will consider effectively

totally bounded spaces which are complete – and hence compact.

For short, we will call effectively totally bounded computable compact metric

spaces effectively compact.

Similarly, we say that a compact set S ⊆ X in an effectively compact metric

space is effectively compact if there exists an algorithm that, given a natural

number k, returns a finite list S(k) ⊆ S of computable elements that forms a

2−k-net for the set S.

A function f : X → R from an effectively compact metric space x to real

numbers is called computable if we have two algorithms:

– an algorithm that, given n, computes f(xn), i.e., more precisely, an algorithm

that, given integers n and k, computes a rational number r which is 2−k-close

to f(xn): |r − f(xn)| ≤ 2−k, and

– an algorithm that computes the modulus of continuity, i.e., an algorithm

that transforms every real number ε > 0 into a number δ = ωf (ε) > 0 for

which d (x, x′) ≤ δ implies |f (x) − f (x′) | ≤ ε.

Comments. One can easily check that an interval [a, a] with computable end-

points are effectively compact subsets of R: as S(k), we can take, e.g., points

a +
i

q(k)
· (a − a), i = 0, . . . , q(k), for a sufficiently large q(k). Similarly, a

multi-D box [a1, a1]× . . .× [am, am] with computable endpoints ai and ai is an

effectively compact subset of Rm.
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One can also easily check that a Cartesian product X = X1 × . . . × Xm of

effectively compact sets, with a metric d(x, y) = maxi d(xi, yi), is also effectively

compact: if X
(k)
i are 2−k-nets for the space Xi, then the finite set X(k) = X

(k)
1 ×

. . .×X
(k)
m is a 2−k-net for X .

Operations on computable functions. In the proof of our main result, we

will need the following properties of computable functions:

– if f (x) is a computable function and c is a computable number, then the

function c · f (x) is also computable;

– if f (x) and g (x) are computable functions, then the difference f (x)− g (x),

the minimum min (f (x) , g (x)) and max (f (x) , g (x)) are also computable.

These results are proven, e.g., in [Pour-El and Richards 1989] and in

[Weihrauch 2000] (Theorems 6.2.1, 6.2.4, 6.2.7, and 6.2.9 and Corollary 6.2.5).

Comment. Strictly speaking, in [Weihrauch 2000], these results are only proven

for functions on R
n, but the proofs can be almost verbatim applied to the more

general case of effectively compact metric spaces; see, e.g., Section 8.1 from

[Weihrauch 2000], see also [Bridges and Popa 2003] and

[Weihrauch and Grubba 2009].

Minimum and maximum over an effectively compact set. We will also

need an auxiliary result that if f : X × Y → R is a computable function and X

and Y are effectively compact metric spaces, then the functions min
x∈X

f (x, y) and

max
x∈X

f (x, y) are also computable. Let us prove this result.

Minimum over an effectively compact set: computability. To compute

the value

h (y) = min
x∈X

f (x, y)

with a given accuracy ε > 0, we:

– take δ = ωf

(ε
2

)
,

– find a δ-net x(1), . . . , x(m) for the constructive set X ,

– compute the values f
(
x(i), y

)
with accuracy

ε

2
, resulting in approximate

values f̃
(
x(1), y

)
, . . . , f̃

(
x(m), y

)
, and

– compute h̃ (y)
def
= min

(
f̃
(
x(1), y

)
, . . . , f̃

(
x(m), y

))
.

Let us show that this value is indeed an ε-approximation to h (y).

Indeed, from the fact that each value f̃
(
x(i), y

)
is an (ε/2)-approximation

to f
(
x(i), y

)
, we conclude that f

(
x(i), y

) ≤ f̃
(
x(i), y

)
+

ε

2
for all i = 1, . . . ,m.
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Thus, the smallest of the left-hand sides is smaller than or equal to the smallest

of the right-hand sides:

min
i

(
f
(
x(i), y

))
≤ min

i

(
f̃
(
x(i), y

)
+

ε

2

)
= min

i
f̃
(
x(i), y

)
+

ε

2
= h̃ (y) +

ε

2
.

Since min
i

(
f
(
x(i), y

)) ≥ min
x∈X

f (x, y) = h (y), we thus conclude that

h (y) ≤ h̃ (y) +
ε

2
< h̃ (y) + ε. (13)

Vice versa, since X is a compact, the minimum h (y) = min
x∈X

f (x, y) of the

function f (x, y) is attained for some x0 ∈ X : f (x0, y) = h (y). Since the values

x(1), . . . , x(m) form a δ-net, there exists an i for which d
(
x0, x

(i)
) ≤ δ. Due to

the choice of δ = ωf

(ε
2

)
, this implies |f (x0, y)− f

(
x(i), y

) | ≤ ε

2
, hence

f
(
x(i), y

)
≤ f (x0, y) +

ε

2
= h (y) +

ε

2
.

Since f̃
(
x(i), y

)
is an (ε/2)-approximation to f

(
x(i), y

)
, we conclude that

f̃
(
x(i), y

)
≤ f

(
x(i), y

)
+

ε

2

hence

f̃
(
x(i), y

)
≤

(
h (y) +

ε

2

)
+

ε

2
= h (y) + ε.

Since one of the values f̃
(
x(i), y

)
does not exceed h (y) + ε, the smallest h̃ (y)

of these values also does not exceed h (y) + ε: h̃ (y) ≤ h (y) + ε. Together with

(13), this implies that |h̃ (y)− h (y) | ≤ ε.

Minimum over an effectively compact set: modulus of continuity. Let

us show that for h (y) = min
x∈X

f (x, y), we can take ωh (ε) = ωf (ε).

Let us show that if d (y, y′) ≤ δ = ωf (ε), then h (y) ≤ h (y′) + ε. Indeed,

since X is a compact set and f is a continuous function, there exists a value x0

for which h (y′) = min
x∈X

f (x, y′) = f (x0, y
′). Here,

d ((x0, y) , (x0, y
′)) = max (0, d (y, y′)) = d (y, y′) ≤ δ.

Due to our choice of δ = ωf (ε), we have hence |f (x0, y)− f (x0, y
′) | ≤ ε, hence

f (x0, y) ≤ f (x0, y
′) + ε = h (y′) + ε. Since h (y) = min

x∈X
f (x, y) ≤ f (x0, y), we

thus conclude that h (y) ≤ h (y′) + ε.

Similarly, we can prove that h (y′) ≤ h (y)+ ε, so indeed |h (y)−h (y′) | ≤ ε.

Maximum over an effectively compact set. The value h(y) = max
x∈X

f(x, y)

can be written as h(y) = −min
x∈X

(−f(x, y)) and can thus be approximated using

the above algorithm for the minimum over an effectively compact set.
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Towards the main result. Now, we have listed all the desired definitions and

the auxiliary results, so we are ready to start the formulation and the analysis

of our problem – of computing different types of sets.

4 Definitions and the main result

Discussion. All above definitions of decision-related properties were formed

in a similar manner: we had basic expressions of the type a ≥ b or a > b or

a = b, and we combined them by using logical connectives ∨, &, ¬ (“not”), →,

and quantifiers ∃t and ∀t. An additional restriction is that the basic expressions

contained one unknown function: we had expressions of the type fi (. . .) ≥ fi (. . .)

or fi (. . .) ≥ 0 – but not, e.g., expressions of the type fi ≥ fj for i �= j.

To analyze such expressions, let us perform some simplifications. First, we

can eliminate equalities by replacing each equality a = b with an equivalent

combination of two inequalities (a ≥ b) & (b ≥ a).

Second, we can replace each implication A → B with an equivalent logical

formula B ∨ ¬A, thus eliminating all implication symbols too.

Third, we can move negations inside the formulas, so that negations appear

only in front of basic expressions:

– we replace ¬ (A&B) with an equivalent formula ¬A ∨ ¬B;

– we replace ¬ (A ∨B) with an equivalent formula ¬A&¬B;

– we replace ¬ (∃t A (t)) with an equivalent formula ∀t (¬A (t)); and

– we replace ¬ (∀t A (t)) with an equivalent formula ∃t (¬A (t)).

Now, when negations are only at basic inequality expressions:

– we replace ¬ (a ≥ b) with b > a and

– we replace ¬ (a > b) with b ≥ a.

Thus, we eliminate all the negation symbols as well.

Thus, we have basic expressions of the type a ≥ b and a > b, and a general

formula can be obtained by using ∨, &, and quantifiers. Finally, as we have

mentioned in Section 1, when we have a strict inequality, we replace it with a

non-strict one anyway. Thus, we arrive at the following definition.

Definition 1. Let X1, . . . , Xm be effectively compact sets, and let fi, i =

1, . . . , n, be computable functions from X = X1 × . . . × Xm to the set R of

real numbers.
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– By a fi-expression, we mean a formula of the type fi (x1, . . . , xm) ≥ 0 or

of the type fi (x1, . . . , xm) ≥ fi (x
′
1, . . . , x

′
m), where xi and x′

i are variables

(possibly coinciding).

– By a decision-related property, we mean an expression that is obtained from

fi-expressions by using ∨, &, and quantifiers ∀tt∈Xi and ∃tt∈Xi .

– For each decision-related property P with free variables z = (z1, . . .), by a

decision-related set S(P ), we mean the set of all the tuples z that satisfy the

property P .

Comment. One can easily check that all the above examples are particular cases

of this general definition.

Definition 2. Let X1, . . . , Xm be effectively compact sets, let fi, i = 1, . . . , n,

be computable functions from X = X1 × . . .×Xm to the set R of real numbers,

and let ε = (ε1, . . . , εn) be a tuple of positive real numbers.

– By an ε-version of a decision-related property P , we mean the formula Pε

in which

• each fi-expression of the type fi (x1, . . . , xm) ≥ 0 is replaced by

fi (x1, . . . , xm) ≥ −εi; and

• each fi-expression of the type fi (x1, . . . , xm) ≥ fi (x
′
1, . . . , x

′
m) is re-

placed by fi (x1, . . . , xm) ≥ fi (x
′
1, . . . , x

′
m)− 2 · εi.

– We say that a tuple z ε-satisfies the property P if it satisfies the formula Pε.

– The set of all the tuples that ε-satisfy the property P will be denoted by

Sε(P ).

Example: inequality. In particular, an inequality fi ≥ 0 is transformed into

fi ≥ −εi. For the constraint example, the ε-modification can be justified by the

following simple result:

Definition 3. Let ε = (ε1, . . . , εn) be a tuple of positive real numbers.

– We say that the functions fi (x) and gi (x) are εi-close if |fi (x)−gi (x) | ≤ εi
for all x.

– We say that a tuple of functions f (x) = (f1 (x) , . . . , fn (x)) is ε-close to a

tuple g (x) = (g1 (x) , . . . , gn (x)) if |fi (x)− gi (x) | ≤ εi for all x and i.
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Proposition 4. Let fi (x) be a function, εi > 0 be a number, and x∗ be a value.

Then, the following two conditions are equivalent to each other:

– the inequality fi (x
∗) ≥ −εi holds for a given function fi (x);

– the inequality gi (x
∗) ≥ 0 holds for some function gi which is εi-close

to fi (x).

Example: equality. The original equality fi = 0 is first represented as two

inequalities fi ≥ 0 and fj ≥ 0, where fj
def
= −fi. For the computable function

fj = −fi, the accuracy εj with which we know fj is the same as the accuracy

εi with which we know fi: indeed, |fj − f̃j| = | − fi −
(
−f̃i

)
| = |fi − f̃i|. Thus,

the two inequalities get replaced with two modified inequalities fi ≥ −εi and

−fi ≥ −εi. The second modified inequality is equivalent to fi ≤ ε and thus, this

system of two modified inequalities is equivalent to |fi| ≤ εi. This is a reasonable

εi-approximate analogue of the original equality fi = 0.

Proposition 5. Let fi (x) be a function, εi > 0 be a number, and x∗ be a value.

Then, the following two conditions are equivalent to each other:

– the inequality |fi (x∗) | ≤ εi holds for a given function fi (x);

– the equality gi (x
∗) = 0 holds for some function gi which is εi-close to fi (x).

Equalities can be safely added. In general, our main theorem (see below)

remains true if we allow equalities fi (·) = fi (·) and fi (·) = 0 as fi-expressions,

and say that these equalities are εi-satisfied if, correspondingly, |fi (·)− fi (·) | ≤
2 · εi and |fi (·) | ≤ εi.

Examples: optimality, Pareto optimality, and Nash equilibrium. For

optimality and Pareto optimality, results similar to Propositions 4 and 5 have

been proven in [G.-Toth and Kreinovich 2009]. A similar result holds for the

Nash equilibrium:

Proposition 6. Let f : X1 × . . . × Xm → R be a tuple of functions, ε be a

tuple of numbers, and x0 = (x1, . . . , xm) ∈ X1 × . . .×Xm be a value. Then, the

following two conditions are equivalent to each other:

– the value x∗ is a ε-Nash equilibrium, i.e., for every i and for every xi ∈ Xi,

we have

fi
(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

) ≥
fi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)− 2 · εi; (14)
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– for some tuple of functions g (x) which is ε-close to f (x), the value x∗ is a

Nash equilibrium, i.e., for every i and for every xi ∈ Xi, we have:

gi
(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

) ≥ gi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)
. (15)

In general, negation cannot be safely added. In the original transformation

of general formulas, we eliminated equality and we eliminated negation. Let us

show that while equality can be easily added to this formulation, it is not possible

to consistently add negation. Indeed, let us consider a condition ¬ (fi > 0).

– According to the current methodology, we replace ¬ (fi > 0) with −fi ≥ 0

and then replace it with a modified inequality −fi ≥ −εi, i.e., fi ≤ ε.

– On the other hand, if we could simply allow negations in the above definition,

then, to modify the above formula, we would replace fi > 0 with fi ≥ −ε.

Then, the original formula ¬ (fi > 0) would be replaced with a modified

formula ¬ (fi ≥ −ε), i.e., fi < −ε.

One can see that the resulting formulas fi ≤ ε and fi < −ε are indeed different.

Moreover, the second formula fi < −ε does not allow the possibility fi = 0

which is perfectly in line with the original formula ¬ (fi > 0).

Because of the difficulty with negation, the ε-modification is not al-

ways meaningful. In Section 1, we gave examples of several problems for which

ε-modifications make sense. It should be mentioned, however, that because of the

above difficulty with negation, not all formulas get a meaningful modification.

As an example, let us take the requirement ∀x (fi (x) = 0 → fj (x) = 0) .

Intuitively, if fi(x) is known only up to some precision, then it is always con-

sistent to assume fi(x) �= 0. Thus, in the ε-approximation, the given implication,

the antecedent can always be assumed as false, so the implication is always true.

This intuitive conclusion can be confirmed if we follow the above methodol-

ogy. First, we eliminate equality and transform this requirement into

∀x ((fi (x) ≥ 0& − fi (x) ≥ 0) → (fj (x) ≥ 0& − fj (x) ≥ 0)) .

Second, we eliminate implication, resulting in

∀x (¬ (fi (x) ≥ 0& − fi (x) ≥ 0) ∨ (fj (x) ≥ 0& − fj (x) ≥ 0)) .

Third, we move negations inside, resulting in

∀x (¬ (fi (x) ≥ 0) ∨ ¬ (−fi (x) ≥ 0) ∨ (fj (x) ≥ 0& − fj (x) ≥ 0))

and in

∀x ((−fi (x) > 0) ∨ (fi (x) > 0) ∨ (fj (x) ≥ 0& − fj (x) ≥ 0)) .
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The corresponding ε-modification has the form

∀x ((−fi (x) ≥ −εi) ∨ (fi (x) ≥ −εi) ∨ (fj (x) ≥ −εj & − fj (x) ≥ −εj)) .

This modified condition is, however, meaningless because it is satisfied for all

possible values x. Indeed:

– If fi (x) ≥ −εi, then the second condition fi (x) ≥ −εi from the disjunction

is satisfied.

– Otherwise, if fi (x) < −εi, then −fi (x) > εi and since εi > −εi, the first

condition −fi (x) ≥ −εi from the disjunction is satisfied.

Monotonicity of ε-satisfaction. In our proofs and algorithms, we will use the

fact that if εi ≤ εi for each i, then:

– the inequality fi (x1, . . . , xm) ≥ −εi implies fi (x1, . . . , xm) ≥ −εi, and

– the inequality fi (x1, . . . , xm) ≥ fi (x
′
1, . . . , x

′
m) − 2 · εi implies

fi (x1, . . . , xm) ≥ fi (x
′
1, . . . , x

′
m)− 2 · εi.

Logical operations ∨, &, ∀tt∈Xi , and ∃tt∈Xi are monotonic in terms of implica-

tion: e.g., if A implies A′ and B implies B′, then A ∨B implies A′ ∨B′.
We can therefore conclude that Pε implies Pε, i.e., that Sε(P ) ⊆ Sε(P ).

As usual, by Bδ (�)
def
= {z : d (�, z) ≤ δ}, we denote the ball of radius δ with

a center at the point �.

Theorem 7. There exists an algorithm that, given a decision-related property

P and two tuples ε and ε of rational numbers for which 0 < εi < εi, produces

a finite list of elements L and a rational number δ > 0 with the following three

properties:

– Every tuple z∗ that ε-satisfies the property P is δ-close to some element from

the list L.

– Every tuple that is δ-close to some element of the list L ε-satisfies the prop-

erty P .

– The set
⋃
�∈L

Bδ (�) of all tuples which are δ-close to some element of the list

L is an effectively compact set that satisfies the property

Sε(P ) ⊆
⋃
�∈L

Bδ (�) ⊆ Sε(P ).
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Comment 1. The list L and the accuracy δ provide a description of the desired

decision-related set S – as the set of all the elements which are δ-close to one

of the elements from the given list, i.e., as the union of the corresponding balls

Bδ (�).

It is worth mentioning that while in some decision-related problems like op-

timization, the solution always exists, in other problems – such as constraint

satisfaction – it is possible that there are no solutions. In such cases, the above

algorithm will produce an empty list L = ∅.
Comment 2. In this paper, we mainly followed notations from

[Pour-El and Richards 1989], because one of our main objectives is to provide

algorithms of use to people working in optimization or game theory, and we

believe that these notations are the easiest to explain to these people. Alterna-

tively, we could use the toolkit of TTE as described in [Weihrauch 2000]. This

would have allowed us to simplify the proofs by using known theorems about

computable metric spaces and computably compact sets.

5 Proofs

Proof of Proposition 4. If gi (x
∗) ≥ 0 and gi is fi is εi-close to fi, then

|fi (x∗)− gi (x
∗) | ≤ εi hence fi (x

∗) ≥ gi (x
∗)− εi and so fi (x

∗) ≥ −εi.

Vice versa, if fi (x
∗) ≥ −εi, then for gi (x)

def
= fi (x) + εi, we have gi (x

∗) ≥ 0

and at the same time |fi (x)− gi (x) | = εi ≤ εi, so gi and fi are indeed εi-close.

Proof of Proposition 5. If gi (x
∗) = 0 and gi is fi is εi-close to fi, then

|fi (x∗)− gi (x
∗) | ≤ εi hence |fi (x∗) | ≤ εi.

Vice versa, if |fi (x∗) | ≤ εi, then for gi (x)
def
= fi (x)−fi (x

∗), we have gi (x∗) =
0 and at the same time |fi (x) − gi (x) | = |fi (x∗) | ≤ εi, so gi and fi are indeed

εi-close.

Proof of Proposition 6. Let us first assume that f and g are ε-close and the

condition (15) holds, i.e.,

gi
(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

) ≥ gi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)
.

Then, due to |fi (·)− gi (·) | ≤ εi, we have

fi
(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

) ≥ gi
(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

)− εi ≥

gi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)−εi ≥ fi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)−2 ·εi,
i.e., the desired inequality (14).

Vice versa, let us assume that the inequality (14) holds. Let us define the

new functions gi as follows:
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– for the given x∗, we take gi (x
∗) = fi (x

∗) + εi;

– for all x �= x∗, we take gi (x) = fi (x) − εi.

Then, every condition of the type

fi (x
∗) = fi

(
x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m

) ≥
fi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)− 2 · εi
with xi �= x∗

i implies

gi (x
∗) = fi (x

∗) + εi ≥
(
fi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)− 2 · εi
)
+ εi =

fi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)− εi = gi
(
x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m

)
.

Thus, for the tuple of functions g(x), the value x∗ is indeed a Nash equilibrium.

The proposition is proven.

Comment. Please note that the functions gi (x) defined in the above proof are

not continuous and thus, not computable. This is OK since the formulation of

the proposition does not require computability of the functions gi (x).

Proof of Theorem 7.

1◦. Let us denote α0
def
= maxi

(
εi
εi

)
. Then, for every i, we have

εi
εi

≤ α0 hence

εi ≤ α0 · εi. Due to the monotonicity property of the set Sε(P ), we thus have

Sε(P ) ⊆ Sα0·ε(P ). (16)

We will show how to compute a finite set L and two rational values δ < δ for

which

Sα0·ε(P ) ⊆
⋃
�∈L

Bδ (�) ⊆
⋃
�∈L

Bδ (�) ⊆ Sε(P ). (17)

Due to (16), this implies that

Sε(P ) ⊆
⋃
�∈L

Bδ (�) ⊆
⋃
�∈L

Bδ (�) ⊆ Sε(P ). (18)

2◦. The sets Sα0·ε(P ) and Sε(P ) are particular cases of the general set Sα·ε(P )

corresponding to α = α0 < 1 and to α = 1. Let us therefore find a general

description of the set Sα·ε(P ). We will do it by following the structure of the

properties: we start with the basic statements, and we show how this descrip-

tion can be extended to statements obtained by using logical connectives and

quantifiers.

2678 Kreinovich V., Kubica B.J.: From Computing Sets of Optima, Pareta Sets ...



2.1◦. A basic statement fi (x1, . . . , xm) ≥ −α·εi can be equivalently reformulated

as gi (x1, . . . , xm) ≥ −α, where

gi (x1, . . . , xm)
def
=

fi (x1, . . . , xm)

ε
.

Since fi is a computable function and ε is a computable number, the function

gi (x1, . . . , xm) is also computable.

2.2◦. A basic statement fi (x1, . . . , xm) − f (x′
1, . . . , x

′
m) ≥ −2 · α · εi can be

equivalently reformulated as hi (x1, . . . , xm) ≥ −α, where

hi (x1, . . . , xm)
def
=

fi (x1, . . . , xm)− f (x′
1, . . . , x

′
m)

2 · ε .

Since fi is a computable function and ε is a computable number, the function

hi (x1, . . . , xm) is also computable.

2.3◦. Let us assume that we have a property P &P ′, where properties P and

P ′ have already been represented in the form f (z) ≥ −α and f ′ (z) ≥ −α

for computable functions f (z) and f ′ (z). Then, the property P &P ′ can be

represented as g (z) ≥ −α, where g (z)
def
= min (f (z) , f ′ (z)).

Since both functions f (z) and f ′ (z) are computable, we can use a result from

the previous section to conclude that the new function g (z) is also computable.

2.4◦. Let us assume that we have a property P ∨ P ′, where properties P and

P ′ have already been represented in the form f (z) ≥ −α and f ′ (z) ≥ −α

for computable functions f (z) and f ′ (z). Then, the property P &P ′ can be

represented as g (z) ≥ −α, where g (z)
def
= max (f (z) , f ′ (z)).

Since both functions f (z) and f ′ (z) are computable, we can use a result from

the previous section to conclude that the new function g (z) is also computable.

2.5◦. Let us assume that we have a property ∃tt∈XiP (t, z), where the property

P (t, z) has already been represented in the form f (t, z) ≥ −α for a computable

function f (t, z). Then, the property ∃tt∈XiP (t, z) can be represented as g (z) ≥
−α, where g (z)

def
= max

t∈Xi

f (t, z).

Since the function f (t, z) is computable, we can use a result from the previous

section to conclude that the new function g (z) is also computable.

2.6◦. Let us assume that we have a property ∀tt∈XiP (t, z), where the property

P (t, z) has already been represented in the form f (t, z) ≥ −α for a computable

function f (t, z). Then, the property ∀tt∈XiP (t, z) can be represented as g (z) ≥
−α, where g (z)

def
= min

t∈Xi

f (t, z).

Since the function f (t, z) is computable, we can use a result from the previous

section to conclude that the new function g (z) is also computable.
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2.7◦. Thus, an (α · ε)-version of each decision-related property can be reformu-

lated in the equivalent form f (z) ≥ −α for an appropriate computable function

f (z). Thus, Sα·ε(P ) = {z : f (z) ≥ −α}.
3◦. Since the function f (z) corresponding to the desired decision-related prop-

erty P is computable, there exists a corresponding algorithm for computing a

modulus of continuity ω (ε).

Let us take, as ε, the rational number ε =
1− α0

4
, and let us take δ = ωf (ε),

and δ =
δ

2
.

Each z is a tuple of elements from computable (compact) sets Xi. Thus, the

set Z of all possible values z is a Cartesian product of effectively compact sets

and thus, an effectively compact set itself. In particular, this means that we can

algorithmically compute a δ-net z(1), . . . , z(M) for the set Z.

Since the function f (z) is computable, we can compute all the values f
(
z(i)

)
with arbitrary accuracy. Let us denote the rational number resulting from com-

puting f
(
z(i)

)
with accuracy ε by f̃

(
z(i)

)
. As the desired set L, we will now

take

L =
{
z(i) : f̃

(
z(i)

)
≥ −α0 − 2 · ε

}
. (19)

(Both compared values f̃
(
z(i)

)
and −α0 − 2 · ε are rational, so we can algorith-

mically check the above inequality.)

Let us prove that for these δ, δ, and L, we indeed have the property (17).

3.1◦. Let us first prove that Sα0·ε(P ) ⊆ ⋃
�∈L

Bδ (�), i.e., that if f (z) ≥ −α0, then

there exists an z(i) ∈ L for which d
(
z, z(i)

) ≤ δ.

Indeed, since the values z(i) form a δ-net for the set Z, there exists an i for

which d
(
z, z(i)

) ≤ δ. All we need to prove now is that z(i) ∈ L, i.e., by definition

of the set L, that f̃
(
z(i)

) ≥ −α0 − 2 · ε.
Indeed, because of our choice of δ as

1

2
· ωf (ε), the condition d

(
z, z(i)

) ≤
δ =

1

2
· ωf (ε) implies that d

(
z, z(i)

) ≤ ωf (ε). By definition of the modulus of

continuity, this implies that |f (z)− f
(
z(i)

) | ≤ ε. Thus, f
(
z(i)

) ≥ f (z)− ε and

since f (z) ≥ −α0, we conclude that f
(
z(i)

) ≥ −α0 − ε.

Now, by definition of f̃
(
z(i)

)
, we have |f̃ (

z(i)
)−f

(
z(i)

) | ≤ ε hence f̃
(
z(i)

) ≥
f
(
z(i)

) − ε. We already know that f
(
z(i)

) ≥ −α0 − ε, so we conclude that

f̃
(
z(i)

) ≥ −α0 − 2 · ε hence z(i) ∈ L. The statement is proven.

3.2◦. Let us now prove that
⋃
�∈L

Bδ (�) ⊆ Sε(P ), i.e., that if for some z ∈ Z and

i for which z(i) ∈ L, we have d
(
z, z(i)

) ≤ δ, then f (z) ≥ −1.
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Indeed, z(i) ∈ L means that f̃
(
z(i)

) ≥ −α0 − 2 · ε. Since f̃
(
z(i)

)
is an ε-

approximation to f
(
z(i)

)
, we have f

(
z(i)

) ≥ f̃
(
z(i)

)−ε and therefore, f̃
(
z(i)

) ≥
−α0 − 3 · ε.

Due to d
(
z, z(i)

) ≤ δ = ωf (ε), we have |f (z)− f
(
z(i)

) | ≤ ε hence f (z) ≥
f
(
z(i)

) − ε and thus, f (z) ≥ −α0 − 4 · ε. By definition of ε, this means that

f (z) ≥ −1, i.e., that indeed
⋃
�∈L

Bδ (�) ⊆ Sε(P )

The property (17) is proven.

4◦. To complete the proof, we must show that there exists a δ for which δ ≤ δ ≤ δ

– and for which therefore⋃
�∈L

Bδ (�) ⊆
⋃
�∈L

Bδ (�) ⊆
⋃
�∈L

Bδ (�) ,

for which the union
⋃
�∈L

Bδ (�) is an effectively compact set.

Indeed, for an arbitrary δ, the condition that z ∈ ⋃
�∈L

Bδ (�) means that there

exists � ∈ L for which d (z, �) ≤ δ. This condition is equivalent to g (z) ≤ δ,

where g (z)
def
= min

�∈L
d (z, �). Thus,

⋃
�∈L

Bδ (�) = {z : g (z) ≤ δ}.
According to the properties of the minima of computable functions, the func-

tion g (z) is also a computable function on an effectively compact set. To com-

plete our proof, it is now sufficient to show that for every computable function

g (z) and for every two computable numbers δ < δ, we can algorithmically find

a value δ ∈ (
δ, δ

)
for which the set {z : g (z) ≤ δ} is an effectively compact set.

This result is, in effect, proven in [Bishop and Bridges 1985]. To be more

precise, the result from [Bishop and Bridges 1985] is formulated in terms of a

constructive function, i.e., a function which is defined only for computable inputs

x, but one can easily check that the proof is applicable to computable functions

as well.

For thus found value δ, the set
⋃
�∈L

Bδ (�) = {z : g (z) ≤ δ} is effectively

compact. The theorem is proven.

6 Computational complexity and feasibility of the resulting
algorithms

Computational complexity: general case. Once we established that the

algorithms exist, the natural next question is: how efficient are these algorithms?

According to the proofs, the above algorithms require that we consider all the

elements of the corresponding ε-net, its number of steps grows as the number of

these elements. For an m-dimensional box this number is ≈ V/εm, so it grows

exponentially with the dimension m of the box.
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This is, however, acceptable, since in general, the optimization problems are

NP-hard [Kreinovich et al. 1998], and therefore, the worst-case exponential time

is inevitable (unless, of course, it turns out that, contrary to the expectations of

most computer scientists, P = NP and thus, all such problems can be solved in

feasible (polynomial) time).

Implementation of the above algorithms: interval computations. The

usual implementation of the above algorithms involve interval computations; see,

e.g., [Jaulin et el. 2001, Moore at al. 2009].

Interval computations were originally designed to estimate the uncertainty

of the result of data processing in situations in which we only know the upper

bounds Δ on the measurement errors. In this case, based on the measurement

result x̃, we can only conclude that the actual (unknown) value x of the desired

quantity is in the interval [x̃−Δ, x̃+Δ].

In interval computations, at each intermediate stage of the computation, we

have intervals of possible values of the corresponding quantities.

From interval computations to more sophisticated set computations.

In interval computations, at every intermediate stage of the computations, we

only keep the intervals of possible values of each quantity, but we do not keep

the information about the relations between these quantities. As a result, we

often have bounds with excess width.

To remedy this problem, in [Ceberio et al. 2006], [Ceberio et al. 2007], and

[Kreinovich 2009], we proposed an extension of interval technique to set compu-

tations, where on each stage, in addition to intervals of possible values of the

quantities, we also keep sets of possible values of pairs (triples, etc.). As a result,

in several practical problems, such as

– estimating statistics (variance, correlation, etc.) under interval uncertainty,

and

– solutions to ordinary differential equations (ODEs) with given accuracy,

this new formalism enables us to find estimates in feasible (polynomial) time;

see [Ceberio et al. 2007] and [Kreinovich 2009].

Comment. The idea of using a grid to describe and compute sets is well known;

see, e.g., [Weihrauch 2000] (Section 7.4), [Rettinger and Weihrauch 2003], and

[Weihrauch 2003]. In particular, for the analysis of computational complexity,

real numbers can be represented as
∑

an · 2−n, with digits an from {−1, 0, 1}
(signed digit representation [Weihrauch 2000], Section 7.2). According to

[Escardó 2009], sets can be described in terms of possible values of an.

Alternative approaches to efficient set representation and set computations

can be found, e.g., in [Collins 2007] and [Collins 2007a].
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