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Abstract: We introduce the notion of quasi-zero-dimensionality as a substitute for
the notion of zero-dimensionality, motivated by the fact that the latter behaves badly
in the realm of qcb-spaces. We prove that the category QZ of quasi-zero-dimensional
qcb0-spaces is cartesian closed. Prominent examples of spaces in QZ are the spaces
of the Kleene-Kreisel continuous functionals equipped with the respective sequential
topology. Moreover, we characterise some types of closed subsets of QZ-spaces in terms
of their ability to allow extendability of continuous functions. These results are related
to a problem in Computable Analysis.
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1 Introduction

The category QCB of quotients of countably based spaces [Simpson 03] has ex-

cellent closure properties. For example, it is cartesian closed, in contrast to the

category Top of all topological spaces, see [Escardó et al. 04, Schröder 03]. This

means that QCB allows us to form products and function spaces with the usual

transposing properties. Qcb-spaces are known to form exactly the class of topo-

logical spaces which can be handled appropriately by the representation based

approach to Computable Analysis, the Type Two Model of Effectivity (TTE)

[Weihrauch 00].

Unfortunately, exponentiation in QCB behaves badly in terms of preservation

of classical topological notions like regularity, normality and zero-dimensionality.

For example, the function space N(NN) formed in QCB is not zero-dimensional and

not even normal (see [Schröder 09a]) despite the fact that both the exponent NN

and the basis N are zero-dimensional Polish spaces. In [Schröder 09b] the notion

of quasi-normality is introduced as a substitute for normality in the realm of

qcb-spaces [see Section 2.7]. This notion has the advantage of being preserved

by exponentiation in QCB, while admitting an Extension Theorem for continuous

real-valued functions similar to the classical Tietze-Urysohn Extension Theorem

for normal topological spaces.

In an analogous way we introduce the notion of a quasi-zero-dimensional

qcb-space [see Section 3]. The category QZ of quasi-zero-dimensional qcb-spaces
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turns out to be an exponential ideal of QCB. In [Section 4] we investigate ex-

tendability of continuous functions that have as target space either a quasi-zero-

dimensional qcb-space or the real numbers. We prove that a subspace X of a

QZ-space Y admits continuous extendability of all continuous functions from X

to N if, and only if, X is closed in the zero-dimensional reflection of Y. Analo-

gously, we characterise functionally closed subspaces of a quasi-normal qcb-space

as those subspaces that admit continuous extendability of all continuous real-

valued functions defined on them.

In [Section 5] we discuss the relationship of our results with a question in

Computable Analysis. The question is whether two hierarchies of functionals

over the reals coincide, see [Bauer et al. 02].

2 Preliminaries

We recall some notions and basic facts about sequential spaces, qcb-spaces, pseu-

dobases, and quasi-normal spaces. Moreover, we remind the reader of the defi-

nition of the completely regular reflection and of the zero-dimensional reflection

of a sequential space.

2.1 Notations

We use sans-serif letters like X,Y etc. to denote topological spaces. We write

O(X) for the topology of a topological space X and A(X) for the family of closed

sets of X. In abuse of notation, we will denote the carrier set of a space X by the

same symbol X.

We use the following symbols for relevant topological spaces: R for the space

of real numbers endowed with the Euclidean topology, I for the unit interval [0, 1]

endowed with the Euclidean subspace topology, N for the discrete topological

space of natural numbers {0, 1, 2, . . .}, J for the one-point compactification of N

with carrier set N∪{∞}, and the symbol 2 for the two-point discrete space with

points 0 and 1.

2.2 Sequential spaces, sequential coreflections

A subset A of a topological space X is called sequentially closed, if A contains

any limit of any convergent sequence of points in A. Complements of sequentially

closed sets are called sequentially open. For a given topology τ , we denote the

topology of sequentially open sets by seq(τ). Spaces such that every sequentially

open set is open are called sequential. The sequential coreflection (or sequential-

isation) seq(X) of X is the topological space that carries the topology seq(O(X))
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consisting of all sequentially open sets of X. The operator seq is idempotent. Im-

portantly, a function between two sequential spaces is topologically continuous

if, and only if, it is sequentially continuous.

For more information about sequential spaces we refer to [Engelking 89,

Willard 70].

2.3 Qcb-spaces

A qcb-space [Simpson 03] is a topological quotient of a countably-based topo-

logical space. Qcb0-spaces, i.e. qcb-spaces that satisfy the T0-property, are well-

established to be exactly the class of sequential spaces which can be handled by

the Type Two Model of Effectivity [Weihrauch 00].

Qcb-spaces are hereditarily Lindelöf (i.e. any open cover of any subset has a

countable subcover) and sequential. The category QCB of qcb-spaces as objects

and of continuous functions as morphisms is cartesian closed. Moreover, QCB

has all countable limits and all countable colimits. For two qcb-spaces A and B

we denote by A × B their product, by A + B their coproduct, and by BA their

function space formed in QCB. These spaces agree with their counterparts formed

in the category of sequential spaces and, in the case that A,B are Hausdorff

spaces, with their counterparts formed in the category of Hausdorff k-spaces

[Escardó et al. 04]. QCB-subspaces carry the subsequential topology: this is the

sequentialisation of the usual subspace topology. Note that the subsequential

topology and the subspace topology agree, if the underlying set of the subspace is

closed in the superspace. This is due to the fact that closed topological subspaces

of sequential spaces are sequential [Engelking 89].

More information can be found in [Escardó et al. 04, Schröder 02,

Schröder 03, Simpson 03, Simpson et al. 07].

2.4 Pseudobases and pseudo-open decompositions

Given a topological space X, we say that a family A of subsets of X is a pseudo-

open decomposition of a subset M , if M =
⋃A holds and for every sequence

(xn)n that converges to some element x∞ ∈ M there is some set B ∈ A and

some n0 ∈ N such that {xn, x∞ |n ≥ n0} ⊆ B ⊆ M holds. Clearly, a set has a

pseudo-open decomposition if, and only if, it is sequentially open.

A (sequential) pseudobase for X is a family B of subsets such that ev-

ery open set has a pseudo-open decomposition into members of B. Any base

of topological space is a pseudobase, but not vice versa. Pseudobases charac-

terise qcb-spaces: a sequential space is a qcb-space if, and only if, it has a

countable pseudobase. Any countably pseudobased space is hereditarily Lin-

delöf and its sequential coreflection is a qcb-space. In this paper we will only

deal with spaces having a countable pseudobase. More information can be found

in [Escardó et al. 04, Schröder 03, Simpson 03].
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2.5 Completely regular reflections, functionally open sets

Let X be a sequential space. The completely regular reflection of X is defined to

carry the topology that is induced by the base

B :=
{
h−1(0, 1]

∣∣h : X → I is continuous
}
.

We denote this topological space by R(X). It has the property that every real-

valued function f on X is continuous w.r.t. the original topology O(X) if, and

only if, f is continuous w.r.t. the topology O(R(X)). If R(X) is a T0-space, then

R(X) is a Tychonoff space.

A subset A of X is called functionally closed, if there is a continuous function

h from X to the unit interval I = [0, 1] such that h−1{0} = A. Complements of

functionally closed sets are called functionally open. A common term for “func-

tionally closed set” is zero-set, and for “functionally open set” is cozero-set.

We denote the family of functionally closed sets of X by FA(X) and the fam-

ily of functionally open sets by FO(X). If X is a hereditarily Lindelöf space,

then FO(X) forms the topology of the completely regular reflection R(X) of X.

Otherwise FO(X) need not be a topology.

Regularity, normality and perfect normality1 are equivalent for hereditarily

Lindelöf spaces, thus for countably pseudobased spaces and for qcb-spaces.

2.6 Zero-dimensional spaces, zero-dimensional reflections

A zero-dimensional space is a topological space that has a base consisting of

clopen (= closed-and-open) sets. Any zero-dimensional T0-space is regular. Zero-

dimensional hereditarily Lindelöf spaces X are even strongly zero-dimensional,

meaning that any pair of disjoint closed sets A,B can be separated by a clopen

set C (i.e. A ⊆ C ⊆ X \ B). Strongly zero-dimensional T1-spaces are zero-

dimensional and normal (see [Engelking 89]).

A topological space is called totally disconnected, if every singleton is an in-

tersection of clopen sets, and hereditarily disconnected, if each of its components

contains at most one point. Zero-dimensionality implies total disconnectedness

which in turn implies hereditary disconnectedness (see [Engelking 89]).

The zero-dimensional reflection of a topological space X is defined to be the

space that carries the topology induced by the base

B :=
{
h−1{1} ∣∣h : X → 2 is continuous

}
.

We denote this space by Z(X). Clearly, Z(X) is zero-dimensional. If X is heredi-

tarily Lindelöf, then the zero-dimensional reflection Z(X) is hereditarily Lindelöf

as well and thus strongly zero-dimensional.

1 A normal space is a T1-space such that for a pair of disjoint closed sets (A,B) there
exists a pair of disjoint open sets (U, V ) such that A ⊆ U and B ⊆ V . A perfectly
normal space is a T1-space in which every closed set is functionally closed. Note that
some authors omit the T1-condition.
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2.7 Quasi-normal spaces and the category QN

A quasi-normal space is defined to be the sequential coreflection of some normal

space [Schröder 09b]. The category of quasi-normal qcb-spaces, which we denote

by QN, is cartesian closed and inherits finite products and exponentials from

its supercategory QCB. By contrast, the category of normal qcb-spaces is not

cartesian closed. Any continuous function f : X → R from a functionally closed

subspace X of a space Y ∈ QN can be extended to a continuous function F : Y →
R. Details can be found in [Schröder 09b].

3 Quasi-zero-dimensional Qcb-Spaces

In this section we introduce and investigate the notion of a quasi-zero-

dimensional qcb-space.

The category QCB of qcb-spaces is known to be cartesian closed. How-

ever, forming function spaces in QCB does not preserve classical topological

notions like regularity, normality and zero-dimensionality. For example, the func-

tion space N(NN) formed in QCB is neither zero-dimensional nor normal (see

[Schröder 09a]), although both N and NN are zero-dimensional and normal.

Hence the final topology of the natural TTE-representation for N(NN), which is

equal to the topology of N(NN), is not zero-dimensional. By contrast, the compact-

open topology on N(NN) is even strongly zero-dimensional.

This fact motivates the introduction of an appropriate substitute for the

property of zero-dimensionality in the realm of qcb-spaces. We use the same

idea as in [Schröder 09b], where the notion of quasi-normality is defined as a

replacement for normality. The idea behind the following definition is the fact

that finite products and function spaces in the category QCB are constructed

as the sequential coreflection of their counterparts in classical topology, which

enjoy the property of preserving zero-dimensionality.

Definition 1. A qcb-space X is called quasi-zero-dimensional, if X is the sequen-

tial coreflection of a zero-dimensional T0-space.

So a qcb-space is quasi-zero-dimensional if, and only if, its convergence re-

lation is induced by some zero-dimensional T0-topology. Simple examples of

quasi-zero-dimensional spaces are zero-dimensional separable metrisable spaces,

because they are equal to their own sequentialisation. By QZ we denote the full

subcategory of QCB consisting of all quasi-zero-dimensional qcb-spaces.

Since zero-dimensional T0-spaces are totally disconnected Hausdorff spaces

[see Section 2.6], we have:

Lemma2. Any quasi-zero-dimensional qcb-space is a totally disconnected and

hereditarily disconnected Hausdorff space.
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Recall that a quasi-normal space is defined to be the sequential coreflection of

a normal space [Schröder 09b]. From the fact that zero-dimensional hereditarily

Lindelöf T0-spaces are normal, we obtain:

Lemma3. Any QZ-space is a QN-space.

3.1 Characterisation of quasi-zero-dimensionality

We will give now several characterisations of QZ-spaces. They are analogous to

characterisations of quasi-normality given in [Schröder 09b]. We begin with the

following observation.

Lemma4. A qcb0-space X is quasi-zero-dimensional if, and only if, it is the

sequential coreflection of its zero-dimensional reflection Z(X).

Proof. If X′ is a zero-dimensional T0-space with seq(X′) = X, then we have

O(X′) ⊆ O(Z(X)) ⊆ O(X). Hence X has the same sequentially open sets as Z(X)

implying that X is the sequential coreflection of Z(X).

Conversely, if a qcb0-space X is the sequential coreflection of Z(X), then Z(X)

has the T0-property as well. Clearly, Z(X) is zero-dimensional. �

For the second characterisation, we define two families of (respectively, closed

and open) subsets of a topological space X by

ZA(X) :=
{
h−1{∞} ∣∣h : X → J is continuous

}
,

ZO(X) :=
{
h−1[N]

∣∣ h : X → J is continuous
}
.

Here J denotes the one-point compactification of N. Obviously, every set in

ZA(X) is closed in the zero-dimensional reflection of X. We will sometimes use

the term Z-closed for the members of ZA(X) and Z-open for the members of

ZO(X). If X is hereditarily Lindelöf, then ZO(X) is a topology.

Lemma5. Let X be a hereditarily Lindelöf space. Then ZO(X) is the family of

all open sets of Z(X). Dually, ZA(X) is the family of all closed sets of Z(X).

Proof. Let U be an open set in Z(X). As Z(X) is zero-dimensional and heredi-

tarily Lindelöf, there is a sequence of clopen sets (Ci)i in X with U =
⋃

i∈N
Ci.

Clearly, the function g : X → J defined by g(x) := min
{∞, i ∈ N

∣∣x ∈ Ci

}
is

continuous satifying g−1[N] = U . Hence U ∈ ZO(X).

Conversely, if h : X → J is a continuous function, then h−1{a} is clopen for

every a ∈ N. Thus h−1[N] is open in Z(X) by being equal to
⋃

a∈N
h−1{a}. �

Lemma 5 implies the following reformulation of Lemma 4.
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Corollary 6. A qcb0-space X is quasi-zero-dimensional if, and only if, its con-

vergence relation is induced by the topology ZO(X).

Every Z-closed subset of a quasi-zero-dimensional space is functionally

closed, because J is homeomorphic to the closed subspace {0, 2−n |n ∈ N} of I.

It is unknown for which QZ-spaces the converse is true as well.

We now characterise quasi-zero-dimensionality in terms of pseudobases. Re-

call that qcb-spaces are known to be those sequential spaces that have a count-

able pseudobase [see Section 2.4].

Proposition7. A qcb0-space X is quasi-zero-dimensional if, and only if, it has

a countable pseudobase consisting of sets in ZA(X).

Note that quasi-normal qcb-spaces are characterised in a similar way, namely

via the existence of a countable pseudobase consisting of functionally closed sets

(see Proposition 4 in [Schröder 09b]). The proof of Proposition 7 is based on a

series of lemmas. We start with the following observation.

Lemma8. Let X be a T0-space equipped with a countable pseudobase consisting

of sets in ZA(X). Then the singleton {x} is a Z-closed set for every x ∈ X.

Moreover, X is a totally disconnected Hausdorff space.

Proof. For a given point x ∈ X, we define the set A to be the countable inter-

section of all pseudobase sets containing x and show that A = {x}. Since X is

a T0-space, for any y �= x there is an open set V such that either x ∈ V �	 y or

x /∈ V 	 y. In the first case there exists a pseudobase set B with x ∈ B ⊆ V ,

hence y /∈ A. In the second case, there are, as the complements of the pseudobase

sets are open, pseudobase sets B,D with y ∈ B ⊆ V and x ∈ D ⊆ X\B ⊆ X\{y}.
We conclude A = {x}. Hence {x} is Z-closed. Since for any y �= x there is a

clopen set C with x ∈ C �	 y, X is a totally disconnected Hausdorff space.

Disjoint Z-closed subsets satisfy the following separation lemma.

Lemma9. Let X be a hereditarily Lindelöf space, and let A,B be disjoint closed

subsets of Z(X). Then there is a continuous function h : X → J with h−1{∞} = A

and B ⊆ h−1{0}.

Proof. By Lemma 5 there are continuous functions f, g : X → J with f−1{∞} =

A and g−1{∞} = B. One easily verifies that the function h : X → J defined by

h(x) :=

{
f(x) if f(x) ≥ g(x)

0 otherwise

has the required properties. �
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This lemma is instrumental in proving the following lemma about sequen-

tially open sets that are Gδ-sets in the zero-dimensional reflection of a QZ-space.

Lemma10. Let X be a qcb-space equipped with a countable pseudobase consist-

ing of sets in ZA(X). Then every open set V ∈ O(X) that is a Gδ-set in Z(X) is

open in Z(X). Dually, every closed set A ∈ A(X) that is an Fσ-set in Z(X) is

closed in Z(X).

Proof. Let G0, G1, . . . be a sequence of sets in ZO(X) such that V :=
⋂∞

j=0 Gj is

open in X. Let (βi)i be a pseudo-open decomposition of V [see Section 2.4] into

pseudobase sets. Since
⋃n

i=0 βi is closed in Z(X) and contained in Gn, there is a

continuous function hn : X → J with h−1
n {∞} = X \ Gn and

⋃n
i=0 βi ⊆ h−1

n {0}
by Lemma 9. We define a function f : X → J by f(x) := supn∈N hn(x) and show

that f is sequentially continuous with f−1{∞} = X \ V .

Let (xn)n be a sequence converging in X to some x∞.

(1) Let x∞ ∈ V . Then there is some i0, n0 ∈ N such that {xn|n ≥ n0} ⊆ βi0 .

Thus for all j ≥ i0 and n ≥ n0 (including n = ∞) we have hj(xn) = 0 and

f(xn) = max{h0(xn), . . . , hi0(xn)}. This implies that (f(xn))n converges to

f(x∞). Moreover, since hj(x∞) �= ∞ for all j ≤ i0, f(x∞) �= ∞.

(2) Let x∞ /∈ V . Then there is some j ∈ N with x∞ /∈ Gj , hence f(x∞) =

hj(x∞) = ∞. Since (hj(xn))n converges to hj(x∞) = ∞, (f(xn))n converges

to ∞ as well.

Hence f is sequentially continuous and therefore topologically continuous, be-

cause X is sequential. So f is a witness for V ∈ ZO(X). �

Now we are ready to prove our characterisation of quasi-zero-dimensionality

via pseudobases.

Proof of Proposition 7. First, assume X ∈ QZ. By Corollary 6, X is equal to the

sequential coreflection of Z(X). Moreover, X has some countable pseudobase B
by being a qcb-space. We define B′ to be the family of the closures of all sets

in B formed in the strongly zero-dimensional space Z(X) and show that B′ is a
pseudobase of Z(X).

Let U ∈ ZO(X) = O(Z(X)) and let (xn)n be a sequence converging to some

element x∞ ∈ U . By zero-dimensionality of Z(X), there is a clopen set C and a

pseudobase element B ∈ B with x∞ ∈ B ⊆ C ⊆ U and xn ∈ B for almost all

n ∈ N. The closure of B formed in Z(X) is a subset of C and hence of U . Thus

B′ is a pseudobase for Z(X). By Lemma 10 in [Schröder 02], the family A of all

finite intersections of sets in B′ yields a countable pseudobase for the sequential

coreflection of the space Z(X), which is equal to X by Lemma 4. Since the sets

in B′ are Z-closed, A consists of sets in ZA(X).
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Conversely, let X be qcb0-space with a countable pseudobase consisting of

sets in ZA(X). In order to show that ZO(X) induces the sequence convergence

of X, let x ∈ X and (an)n be a sequence that does not converge in X to x. Then

(an)n has a subsequence (bn)n such that no subsequence of (bn)n converges in

X to x and x does not occur in (bn)n. We consider two cases:

(1) Assume that (bn)n has a subsequence (cn)n that converges in X to some

point y. By Lemma 8, there is clopen set C with x ∈ C �	 y. As (cn)n is

eventually in X \ C, there are infinitely many n with bn ∈ X \ C. Therefore

neither (bn)n nor (an)n converge to x in Z(X).

(2) Now assume that (bn)n has no subsequence that converges in X. Since X is

a Hausdorff space by Lemma 8, this implies that the set A := {bn |n ∈ N} is

sequentially closed. By Lemmas 8 and 10, A is closed in Z(X). Since X \ A
contains x, but no element of (bn)n, neither (bn)n nor (an)n converge to x

in Z(X).

This shows that convergence in Z(X) implies convergence in X. The reverse

implication follows from ZO(X) ⊆ O(X). So X and Z(X) induce the same con-

vergence relation for sequences, implying seq(Z(X)) = X. We conclude that X is

quasi-zero-dimensional by Corollary 6. �

We give a further characterisation of quasi-zero-dimensional qcb-spaces in

terms of embeddability into function spaces of the form 2Z. A continuous function

e : X → Y between sequential spaces X,Y is said to reflect convergent sequences,

if, for any sequence (xn)n in X and any point x∞ ∈ X, (xn)n converges to x∞ in

X whenever (e(xn))n converges to e(x∞) in Y.

Proposition11. A qcb-space X is quasi-zero-dimensional if, and only if, there

exist a qcb-space Z and a continuous injection e : X → 2Z that reflects convergent

sequences.

Proof. Let Z be a qcb-space and e : X → 2Z be a continuous function reflect-

ing convergent sequences. By Lemma 4.2.2 in [Schröder 03], the compact-open

topology τco on the set 2Z induces the convergence relation of continuous con-

vergence, which is known to be the convergence relation of QCB-exponentials.

Since 2 is zero-dimensional, τco is zero-dimensional. Hence 2Z is a QZ-space.

Now let (xn)n be a sequence that does not converge to x∞ in X. Then (e(xn))n
does not converge to e(x∞) in 2Z, because e reflects convergent sequences. So

there is a set D which is clopen w.r.t. τco and satisfies e(x∞) ∈ D and e(xn) /∈
D for infinitely many n. Since e is continuous, e−1(D) is a clopen set in the

sequential space X. Hence (xn)n does not converge to x∞ in ZO(X), because the

clopen sets of X form a base for ZO(X). We conclude that ZO(X) induces the
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sequence convergence relation of X. By embedding into a Hausdorff space, X has

the T0-property. Corollary 6 implies that X is quasi-zero-dimensional.

For the only-if-part, let X ∈ QZ. We set Z := 2X. By the above proof, 2Z

is a QZ-space. Cartesian closedness of QCB yields continuity of the function

e : X → 2Z defined by e(x)(f) := f(x). Let (xn)n be a sequence in X and x∞
be a point in X such that (e(xn))n converges to e(x∞). Moreover, let C be a

clopen set in X containing x∞. Then the function h : X → 2 uniquely defined by

h−1{1} = C is an element of 2X. Since e(x∞)(h) = 1, we have e(xn)(h) = 1 and

thus xn ∈ C for almost all n. As the clopen sets form a base of the topology

ZO(X) and, by Corollary 6, ZO(X) induces the sequence convergence relation of

X, (xn)n converges to x∞ in X. Hence e reflects converging sequences. �

3.2 Constructing quasi-zero-dimensional spaces

The category QZ of quasi-zero-dimensional qcb-spaces enjoys excellent closure

properties. Like quasi-normality, QZ is an exponential ideal of QCB and hence

inherits the cartesian closed structure of QCB.

Theorem 12. The category QZ of quasi-zero-dimensional qcb-spaces is carte-

sian closed and has all countable limits and all countable colimits. Moreover, QZ

is an exponential ideal of QCB and its countable limits are inherited from QCB.

Proof. Similar to the proof of Theorem 6 in [Schröder 09b]. Alternatively, one

can apply Proposition 11 and techniques from category theory.

So quasi-zero-dimensionality is preserved by forming in the category QCB of

qcb-spaces (i) countable products, (ii) subspaces, (iii) countable coproducts, and

(iv) function spaces.

Obviously, all zero-dimensional metrisable spaces are in QZ. Theorem 12 im-

plies that all Kleene-Kreisel spaces [Escardó 09] of the form NZ belong to QZ.

Furthermore, for all k ∈ N the space N〈k〉 of Kleene-Kreisel continuous functional

of order k (see [Kleene 59, Kreisel 59, Normann 05]) is a quasi-zero-dimensional

space. The hierarchy (N〈k〉)k is recursively defined by the formulae N〈0〉 := N

and N〈k + 1〉 := NN〈k〉. On the other hand, the Euclidean space R is not quasi-

zero-dimensional by being connected.

Remark. One can show that there is a cartesian closed embedding of QZ into the

cartesian closed category k20dim considered by G. Lukács in [Lukács 08]. This

category is itself equivalent to a full reflective sub-ccc of the category of Hausdorff

k-spaces. The embedding functor maps a space X ∈ QZ to its zero-dimensional

reflection Z(X).
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4 Extendability of continuous functions

In this section we investigate extendability of continuous functions defined on

subspaces of quasi-zero-dimensional spaces. Moreover, we classify subspaces in

terms of their ability to admit extendability of continuous functions.

4.1 A transitivity property for Z-closed sets

It is well-known that the subspace operator on topological spaces has the follow-

ing transitivity property: Any closed subset of a closed subspace is closed in the

original space. However, the analogous statement for functionally closed sets is

false in general (see Ex. 2.1.B in [Engelking 89]).

In [Schröder 09b] it is shown that functionally closed sets in quasi-normal

qcb-spaces do have the transitivity property. Recall that functionally closed sets

of a QN-space Y are exactly the closed sets of the completely regular reflection

of Y. In Proposition 7 and Lemma 5 we have seen that Z-closed sets play a

similar role for QZ-spaces as functionally closed sets do for QN-spaces.

Validity of the transitivity property for Z-closed sets is related to extend-

ability of continuous functions with zero-dimensional codomains as follows: Let

X be a Z-closed subspace of a sequential space Y. If any continuous function

from X to J (the one-point compactification of N) is extendable onto Y, then any

subset A ⊆ X that is closed in Z(X) is also closed in Z(Y): Choose continuous

functions f : X → J and g : Y → J with f−1{∞} = A, g−1{∞} = X and extend

f to a continuous function F : Y → J. Then the function h : Y → J defined by

h(y) := min{F (y), g(y)} is a continuous function witnessing that A is closed in

Z(Y).

Fortunately, the transitivity property for Z-closed sets is valid in the realm

of QZ-spaces. So the zero-dimensional reflection of any Z-closed subspace is a

subspace of the zero-dimensional reflection of its QZ-superspace.

Proposition13. Let Y ∈ QZ. Let X be a subspace of Y such that X is closed in

Z(Y). Then every set that is closed in Z(X) is closed in Z(Y). Moreover, Z(X)

is a topological subspace of Z(Y).

Proof. Since the preimage of a clopen set under a continuous function is clopen,

the subspace topology τsub induced by Z(Y) on X is contained in ZO(X).

Let A ∈ ZA(X). Then the set U := Y \ A = (X \A) ∪ (Y \ X) is sequentially
open. Let B ∈ ZA(Y) be a subset of U . Since B ∩ X and A are disjoint closed

sets in the strongly zero-dimensional space Z(X), there is a clopen set D in X

such that B ∩ X ⊆ D ⊆ X \A ⊆ U .

Let V := D ∪ (Y \X). Then V is sequentially open and satisfies B ⊆ V ⊆ U . As

Y has a pseudobase consisting of sets closed in Z(Y) and D is the complement
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of an sequentially open set, D and thus V are Gδ-set in Z(Y). Lemma 10 yields

V ∈ ZO(Y). So U is a union of sets in ZO(Y). As ZO(Y) is a topology, this

implies U ∈ ZO(Y) and A ∈ ZA(Y).

The second statement follows from the first statement. �

4.2 Extendability of continuous functions into QZ-spaces

Now we study extendability of continuous functions defined on subspaces of

QZ-spaces. It turns out that extendability is guaranteed, if the subspace is a

Z-closed subspace (i.e. an intersection of clopen sets) and the target space is

a zero-dimensional Polish space. We start by showing that clopens of Z-closed

subspaces extend to clopens of the whole space, provided that the latter is in QZ.

Lemma14. Let Y ∈ QZ, and let X be a subspace of Y with X ∈ ZA(Y). Then

for every set D that is clopen in X there is a clopen C in Y with D = C ∩ X.

Proof. By Proposition 13, both D and X \D are closed sets in Z(Y). By strong

zero-dimensionality of Z(Y), there is a clopen set C in Y with D ⊆ C ⊆ X \D.

Clearly, C ∩ X = D. �

Lemma 14 can be reformulated by stating that any continuous function from

a Z-closed subset into the two-point discrete space 2 has a continuous extension.

We now investigate the full subcategory ZEXT of QCB consisting of those

spaces Z ∈ QZ that have the following property: For all spaces Y ∈ QZ, for

all Z-closed subspaces X of Y and for all continuous functions f : X → Z there

exists a continuous function F : Y → Z extending f . By Lemma 14 the two point

discrete space 2 is an object of ZEXT.

Given two qcb-spaces Y and B, we say that a subspace X of Y admits a contin-

uous extension operator for B, if there exists a continuous function E : BX → BY

satisfying E(f)(x) = f(x) for all x ∈ X and all continuous functions f : X → B.

Cartesian closedness of QZ (see Theorem 12) yields the following characterisa-

tion of the objects in ZEXT.

Proposition15. A space Z ∈ QZ is an object of ZEXT if, and only if, any Z-

closed subspace X of any space Y ∈ QZ admits a continuous extension operator

E : ZX → ZY for Z.

Proof. The if-part is obvious. For the only-if-part, let Z ∈ ZEXT and let X be a

Z-closed subspace of a QZ-space Y. By Theorem 12, the space ZX×Y formed in

QCB is in QZ. Moreover, the set ZX×X is a Z-closed subset of ZX×Y, because for

a given continuous function g : Y → J with g−1{∞} = X the continuous function

G : ZX × Y → J defined by G(h, y) := g(y) satisfies G−1{∞} = ZX × X. Since
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Z ∈ ZEXT, the continuous evaluation function ev : ZX ×X → Z can be extended

to a continuous function EV : ZX × Y → Z. Using cartesian closedness of QCB,

we define the function EZ : Z
X → ZY as the continuous transpose of EV . Then

all continuous functions h : X → Z and all x ∈ X satisfy EZ(h)(x) = EV (h, x) =

ev(h, x) = h(x). So EZ(h) extends h. �

The category ZEXT enjoys excellent closure properties. It is an exponential

ideal of QCB closed under forming sums, retracts and open subspaces.

Proposition16.

1. If A,B ∈ ZEXT, then A× B ∈ ZEXT.

2. If B ∈ ZEXT and A ∈ QCB, then BA ∈ ZEXT.

3. If A,B ∈ ZEXT, then A+ B ∈ ZEXT.

4. If B ∈ ZEXT and A is a QCB-retract of B, then A ∈ ZEXT.

5. If B ∈ ZEXT and A is a Z-open subspace of B, then A ∈ ZEXT.

Proof. Let X be a Z-closed subspace of a space Y ∈ QZ. By Proposition 15 there

is a continuous extension operator EB : B
X → BY for any space B ∈ ZEXT.

1. Let f : X → A×B be continuous. Let pr1 : A×B → A and pr2 : A×B → B

denote the respective projection functions. Then the continuous functions

pr1 ◦ f and pr2 ◦ f can be extended to continuous functions G : Y → A and

H : Y → B, respectively. The function F : Y → A × B defined by F (y) :=(
G(y), H(y)

)
is continuous and extends f . Therefore A× B ∈ ZEXT.

2. By cartesian closedness of QCB, the function T : (BA)X×A → BX defined by

T (f, a)(x) := f(x)(a) is continuous. We define EBA : (BA)X → (BA)Y by

EBA(f)(y)(a) := EB

(
T (f, a)

)
(y)

for all f ∈ (BA)X, y ∈ Y and a ∈ A. Then EBA is sequentially continuous.

Moreover, EBA(f)(x) = f(x) holds for all continuous functions f : X → BA

and all x ∈ X. Hence BA ∈ ZEXT.

3. Let f : X → A + B be continuous. The carrier set of the coproduct A + B

of A and B can be assumed to be ({1} × A) ∪ ({2} × B). We choose two

points a0 ∈ A and b0 ∈ B and define functions g2 : X → 2, gA : X → A and

gB : X → B by

g2(x) :=

{
1 if f(x) ∈ {1} × A

0 otherwise
, gA(x) :=

{
a0 if g2(x) = 0

a if f(x) = (1, a)
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and

gB(x) :=

{
b0 if g2(x) = 1

b if f(x) = (2, b).

Since {1} × A and {2} × B are clopen subsets of A + B, these functions are

continuous. As 2,A,B ∈ ZEXT, the functions g2, gA, gB extend to continuous

functions G2 : Y → 2, GA : Y → A and GB : Y → B, respectively. It is not

difficult to verify that the function F : Y → A+ B defined by

F (y) :=

{(
1, GA(y)

)
if G2(y) = 1(

2, GB(y)
)

otherwise

is a continuous function extending f .

4. There are continuous functions s : A → B and r : B → A with r ◦s = idA. Let

f : X → A be continuous. Then sf : X → B can be extended to a continuous

function G : Y → B. It is easy to verify that F := r ◦ G is a continuous

function extending f . Thus A ∈ ZEXT.

5. There exist continuous functions g : Y → J and h : B → J with g−1{∞} = X

and h−1{∞} = B\A. Let f : X → A be continuous. Then there is a continuous

function FB : Y → B with FB(x) = f(x) for all x ∈ X. We choose some point

a0 ∈ A and define FA : Y → A by

FA(y) :=

{
FB(y) if g(y) ≥ h

(
FB(y)

)
a0 otherwise.

Since at least one of the values g(y) and h
(
FB(y)

)
is different from ∞, FA

is sequentially continuous and hence continuous. Obviously, FA extends f .

Therefore A ∈ ZEXT. �

In the category of sequential spaces and hence in QCB the discrete space N

is homeomorphic to the function space 22
N

by Proposition 3 in [Bauer et al. 02].

Moreover, by Theorem 7.8 in [Kechris 95] every zero-dimensional Polish space

is homeomorphic to a closed subset of the Baire space NN. In turn, this closed

subspace is a retract of NN by Proposition 2 in [Bauer et al. 02]. We obtain by

Proposition 16 and Lemma 14:

Example 1. The following spaces are objects of ZEXT:

(a) the discrete space N,

(b) the Baire space NN,

(c) any zero-dimensional Polish space,

(d) hence the one-point compactification J of N,

(e) for any k ∈ N the space N〈k〉 of all Kleene-Kreisel continuous functionals of

order k equipped with the sequential topology [see Section 3.2].
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4.3 Subspaces that admit continuous extendability

Now we study under which conditions a subspace admits continuous extendabil-

ity of continuous functions. We start with the following simple observation.

Lemma17. Let Y ∈ QZ and let X be a QCB-subspace of Y such that for every

subset D ⊆ X that is clopen in X there exists a clopen C in Y with D = C ∩ X.

Then X is sequentially closed.

Proof. Suppose that (xn)n were a sequence in X converging to an element y ∈
Y\X. Since Y is a Hausdorff space, (xn)n does not contain any subsequence that

converges to an element inside X. Hence (xn)n contains an injective subsequence

(an)n. Furthermore, A := {an |n ∈ N} forms a sequentially closed subspace of X.

As X is a QZ-space by Theorem 12, Lemma 10 implies A ∈ ZA(X). Moreover,

the set E := {a2n |n ∈ N} is clopen in A. An application of Lemma 14 to the

QZ-space X, its Z-closed subspace A and the clopen set E yields a clopen set D

in X with D∩A = E. But D cannot be extended to a clopen set C in Y, because

y is in the closure of both D and Y \D, as (a2n)n and (a2n+1)n converge to y.

This yields the contradiction. �

We have already seen that the property of X being closed in ZA(Y) is suf-

ficient to guarantee extendability of all continuous N-valued functions defined

on X. We show that this condition is also necessary.

Lemma18. Let Y ∈ QZ, and let X be a QCB-subspace of Y. If every continuous

function h : X → N can be extended to a continuous function H : Y → N, then

X ∈ ZA(Y).

Proof. Let y ∈ Y \X. By Lemma 8 there is a continuous function G : Y → J with

G−1{∞} = {y}. The formula h(x) := G(x) defines a total continuous function h

from X to N. By assumption, h has a continuous extension H : Y → N. It is easy

to verify that

C :=
{
z ∈ Y

∣∣H(z) = H(y) and G(z) > H(y)
}

is a clopen set in Y with y ∈ C ⊆ Y \X. Hence the set Y \X is a union of clopen

sets of Y. Lemma 5 yields X ∈ ZA(Y). �

We obtain as an easy consequence:

Corollary 19. Let A be a retract of a space Y ∈ QZ. Then A is homeomorphic

to a Z-closed subspace of Y.

Lemma 18 generalises to all non-compact QZ-spaces replacing N as target

space.
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Proposition20. Let Z ∈ QZ such that Z is not compact. Let X be a QCB-

subspace of a space Y ∈ QZ such that every continuous function f : X → Z can

be extended to a continuous function F : Y → Z. Then X ∈ ZA(Y).

Proposition 20 is a consequence of Lemma 18 and the following equivalence.

Lemma21. A space X ∈ QZ is not compact if, and only if, N is a retract of X.

Proof. First, let N be a retract of X, and let r : X → N be the retraction map.

Since r is surjective, N is a continuous image of X. Because N is not compact,

neither is X.

Now assume that X is not compact. Since X is hereditarily Lindelöf, X is

neither countably compact nor sequentially compact. So there exists a sequence

(xn)n that does not have any convergent subsequence. Since each member of the

sequence only occurs finitely often, (xn)n has an injective subsequence (an)n.

We define A to be the subspace of X with carrier set {an |n ∈ N}. Since X

is a Hausdorff space and (an)n does not have convergent subsequences, A is

a countable, discrete, sequentially closed subspace of X. Hence the bijection

s : N → A defined by s(n) := an and its inverse are continuous. As the set A

the countable union of the singletons {an}, A is closed in Z(X) by Lemmas 8

and 10. Since N ∈ ZEXT, there exists a continuous extension r : X → N of the

continuous inverse of s. Clearly, r(s(n)) = n for all n ∈ N. Hence N is a retract

of X. �

We do not know whether Lemma 18 is valid for the two-point discrete space 2

replacing N. However, the (possibly) stronger condition on a subspace X to admit

a continuous extension operator for the continuous functions with codomain 2

is enough to ensure that X is Z-closed.

Proposition22. Let Y ∈ QZ. Let X be a QCB-subspace of Y that admits a

continuous extension operator E : 2X → 2Y. Then X ∈ ZA(Y).

Proof. We show that for any element y ∈ Y \ X there is a clopen set C with

y ∈ C ⊆ Y \ X. By Proposition 7, Y has a countable pseudobase A consisting of

Z-closed sets. Let (αi)i be a sequence with {αi | i ∈ N} = {A ∈ A | y /∈ A}. By
zero-dimensionality of Z(Y), there is a continuous function Hn : Y → 2 satisfying

Hn(y) = 1 and
⋃

i≤n αi ⊆ H−1
n {0}. Let hn : X → 2 be the continuous restriction

of Hn to X, and let 0 : X → 2 be the constant zero-function.

To prove that (hn)n converges continuously to 0, let (xn)n be a sequence that

converges in X to some x∞. Since A is a pseudobase of Y and Y \ {y} is sequen-

tially open, there are some i, n0 ∈ N such that xn ∈ αi for all n ≥ n0. Hence

hn(xn) = 0 for all n ≥ max{i, n0} implying that (hn(xn))n converges to 0(x∞).

We conclude that (hn)n converges in 2X to 0. By continuity of E, (E(hn))n
converges to E(0) in 2Y. We consider two cases:
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(1) There is some i ∈ N with E(hi)(y) �= 1. Then C :=
{
z ∈ Y

∣∣E(hi)(z) �=
Hi(z)

}
is a clopen set with y ∈ C ⊆ Y \ X.

(2) For all i ∈ N, E(hi)(y) = 1. Then E(0)(y) = 1. For all x ∈ X , E(hn)(x) =

hn(x) = Hn(x) is equal to 0 for almost all n, because x is contained in some

αi; hence E(0)(x) = 0. Therefore the set C := (E(0))−1{1} is a clopen set

with y ∈ C ⊆ Y \ X.
This shows that Y \ X is a union of clopens. Lemma 5 implies X ∈ ZA(Y). �

We obtain a characterisation of ZEXT which parallels Proposition 11.

Proposition23. A qcb-space X is an object of ZEXT if, and only if, there is a

qcb-space Z such that X is a retract of 2Z.

Proof. The if-part follows from Proposition 16(2) and (4).

For the only-if-part, let X ∈ ZEXT. We set Z := 2X and Y := 2Z. From the

proof of Proposition 11 we know that the transpose e : X → Y of the evaluation

function ev : 2X × X → 2 defined by e(x)(g) := g(x) is a continuous injection

reflecting convergent sequences. Hence its inverse f : e(X) → X is sequentially

continuous. Let X′ be the QCB-subspace of Y with underlying set e(X). We define

E : 2(X
′) → 2Y by E(h)(y) := y(h ◦ e). Then E is sequentially continuous and

satisfies E(h)(a) = h(a) for all a ∈ e(X) and all continuous functions h : X′ → 2.

By Proposition 22, X′ is a Z-closed subspace of Y. Since X ∈ ZEXT, f can be

extended to a continuous function r : Y → X. As r(e(x)) = f(e(x)) = x holds for

all x ∈ X, the space X is a retract of 22
X

. �

We summerise some of the above results in a characterisation theorem for

sets that are closed in the zero-dimensional reflection.

Theorem 24 (Characterisation of Z-closed subsets). Let Y be a quasi-

zero-dimensional qcb-space, and let X be a QCB-subspace of Y. Then the fol-

lowing statements are equivalent:

(a) The set X is closed in the zero-dimensional reflection Z(Y) of Y.

(b) The set X is Z-closed (i.e. X ∈ ZA(Y)).

(c) The subspace X admits a continuous extension operator E : 2X → 2Y.

(d) The subspace X admits a continuous extension operator E : NX → NY.

(e) Any continuous function f : X → N can be extended to a continuous function

F : Y → N.

(f) There is a non-compact quasi-zero-dimensional qcb-space Z such that any

continuous function f : X → Z can be extended to a continuous function

F : Y → Z.
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4.4 Characterisation of functionally closed subsets

In this section we present a characterisation of all functionally closed subsets of

quasi-normal spaces that is similar to Theorem 24.

In [Schröder 09b] it is shown that real-valued functions defined on a function-

ally closed subspace can be extended to the whole space, provided the latter is

a quasi-normal qcb-space. The cartesian closedness of QN implies the following

uniform versions of this extendability result.

Proposition25. Let X be a functionally closed subspace of a space Y ∈ QN.

Then X admits continuous extension operators EI : I
X → IY and ER : R

X → RY.

Proof. By Theorem 6 in [Schröder 09b] the space Y′ := RX×Y formed in QCB is

quasi-normal. As the subset RX ×X is functionally closed in Y′, the sequentially

continuous evaluation function ev : RX×X → R can be extended to a sequentially

continuous function EV : RX × Y → R. Using the cartesian closedness of QCB,

we define the function ER : R
X → RY as the continuous transpose of EV . One

easily verifies that ER is indeed an extension operator. A continuous extension

operator EI : I
X → IY is constructed analogously. �

Now we investigate under which condition a subspace admits continuous

extendability of continuous real-valued functions. We begin with the following

simple observation which is analogous to Lemma 17.

Lemma26. Let Y ∈ QN. Let X be a QCB-subspace of Y such that every con-

tinuous function f : X → I can be extended to a continuous function F : Y → I.

Then X is sequentially closed.

Proof. Suppose for contradiction that (xn)n is a sequence in X converging to an

element y ∈ Y \ X. Since Y is a Hausdorff space, (xn)n does not contain any

subsequence that converges to an element inside X. Hence (xn)n contains an

injective subsequence (an)n. We define A := {an |n ∈ N}. Since A is a sequen-

tially closed subspace of the quasi-normal space X and is a countable union of

functionally closed sets, A is functionally closed by Lemma 5 in [Schröder 09b].

Moreover, the set E := {a2n
∣∣n ∈ N} is clopen in A. So the function g : A → I

defined by

g(an) :=

{
1 if n is odd

0 otherwise

is continuous and can be extended to a continuous function f : X → I by The-

orem 13 in [Schröder 09b]. But f does not extend to a continuous function

F : Y → I, because y is the limit of a sequence in f−1{0} and of a sequence

in f−1{1}, a contradiction. �
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The following observation follows basically from the fact that the completely

regular reflection of a quasi-normal qcb-space is realcompact by being a regular

Lindelöf space.

Lemma27. Let Y ∈ QN. Let X be a QCB-subspace of Y such that every contin-

uous function f : X → R can be extended to a continuous function F : Y → R.

Then the set X is functionally closed in Y.

Proof. At first we show that for any element y ∈ Y \ X there is a continuous

function hy : Y → I with hy(y) �= 0 and X ⊆ h−1{0}. By Proposition 4 in

[Schröder 09b], Y has a countable pseudobase A consisting of functionally closed

sets. The singleton {y} is functionally closed by being the intersection of all

pseudobase sets containing y. So there is a continuous function g : Y → I with

g−1{0} = {y}. We define the total continuous function f : X → R by f(x) :=

1/g(x). By assumption, f can be extended to a continuous function F : Y → R

with F (x) = f(x) for all x ∈ X. We define hy : Y → I by

hy(z) :=
∣∣ 1

max{1, F (z)} − g(z)
∣∣ for all z ∈ Y.

Then hy is a continuous function with hy(y) �= 0 and hy(x) = 0 for all x ∈ X.

Since Y is a hereditarily Lindelöf, there is a sequence (yi)i of elements in

Y \ X with
⋃

i∈N
h−1
yi

(0, 1] = Y \ X. Clearly, the function h : Y → I defined by

h(z) := sup
{
hyi(z)/2

i
∣∣ i ∈ N

}
is continuous and satisfies X = h−1{0}. �

We obtain the following consequence which parallels Corollary 19.

Corollary 28. Let A be a retract of a space Y ∈ QN. Then A is homeomorphic

to a functionally closed subspace of Y.

We do not know whether non-uniform extendability of all continuous func-

tions on X into the unit interval I = [0, 1] implies that X is functionally closed.

However, if X admits a continuous extension operator for I as target space, then

X must be functionally closed. This result resembles Proposition 22.

Proposition29. Let Y be a quasi-normal qcb-space. Let X be a QCB-subspace

of Y that admits a continuous extension operator E : IX → IY. Then X is func-

tionally closed in Y.

Proof. With the same argument as in the proof of Lemma 27, it suffices to show

that for any element y ∈ Y \ X there is a continuous function hy : Y → I with

hy(y) �= 0 and X ⊆ h−1
y {0}. By Proposition 4 in [Schröder 09b], Y has a countable

pseudobase A consisting of functionally closed sets. Let (αi)i be a sequence with
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{αi | i ∈ N} = {A ∈ A | y /∈ A}. Since ⋃
i≤n αi is functionally closed, there is a

continuous function Gn : Y → I satisfying

Gn(y) = 1 and
⋃
i≤n

αi = G−1
n {0} .

Let gn : X → I be the continuous restriction of Gn to X. Moreover, let 0 : X → I

the constant zero-function.

To prove that (gn)n converges continuously to 0, let (xn)n be a sequence that

converges in X to some x∞. Since A is a pseudobase of Y and Y \ {y} is an open

neighbourhood of x∞, there are some i, n0 ∈ N such that xn ∈ αi for all n ≥ n0.

Hence gn(xn) = 0 for all n ≥ max{i, n0} implying that (gn(xn))n converges

to 0(x∞). Therefore (gn)n converges in IX to 0. By continuity of E, (E(gn))n
converges to E(0) in IY. We consider two cases:

(1) There is some i ∈ N with E(gi)(y) �= 1. Then hy : Y → I defined by hy(z) :=∣∣Gi(z)−E(gi)(z)
∣∣ is a continuous function with hy(y) �= 0 and X ⊆ h−1

y {0}.
(2) For all i ∈ N, E(gi)(y) = 1. Then E(0)(y) = 1. For all x ∈ X, E(gn)(x)

is equal to 0 for almost all n, because x is contained in some αi; hence

E(0)(x) = 0. Therefore hy := E(0) is a continuous function with X ⊆ h−1
y {0}

and hy(y) = 1.

So in both cases there is a continuous function hy : Y → I separating y from the

set X. �

We summerise the above results in a characterisation theorem for functionally

closed subsets of quasi-normal qcb-spaces.

Theorem 30 (Characterisation of functionally closed subsets).

Let Y be a quasi-normal qcb-space, and let X be a QCB-subspace of Y. Then the

following statements are equivalent:

(a) The set X is functionally closed in Y (i.e. X ∈ FA(Y)).

(b) The set X is closed the completely regular reflection R(Y) of Y.

(c) The subspace X admits a continuous extension operator E : IX → IY.

(d) The subspace X admits a continuous extension operator E : RX → RY.

(e) Any continuous function f : X → R can be extended to a continuous function

F : Y → R.
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5 Discussion

We have seen that the category QZ of quasi-zero-dimensional qcb-spaces and

the category QN of quasi-normal qcb-spaces enjoy several similarities, for ex-

ample they are exponential ideals of QCB. Moreover, both classes of topological

spaces possess a distinguished family of closed subsets (Z-closed subsets in the

case of QZ and functionally closed subsets in the case of QN) with the following

property: each of both classes is characterised by the existence of a countable

pseudobase consisting of sets in the respective family of closed subsets. Func-

tionally closed subspaces of QN-spaces are characterised as those subspaces that

admit continuous extendability of real-valued functions, while Z-closed subsets

are exactly the class of sets which allow the extension of continuous functions

defined on them with a Kleene-Kreisel space of the form NZ as codomain.

The question which QZ-spaces have the property that all their function-

ally closed sets are Z-closed is related to a problem in Computable Analysis,

namely whether or not two natural hierarchies of continuous functionals over

the reals (called the intensional hierarchy and the extensional hierarchy, see

[Bauer et al. 02]) coincide. D. Normann proved in [Normann 05] that the two

hierarchies agree if, and only if, for all k ≥ 2 the space N〈k〉 of Kleene-Kreisel

continuous functionals of type k (which is a QZ-space [see Section 3.2]) has the

property that every functionally closed subsets is Z-closed, i.e., an intersection

of clopen sets.
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