

UML Support for Designing Software Product Lines:
The Package Merge Mechanism

Miguel A. Laguna
(Department of Computer Science, University of Valladolid, Spain

mlaguna@infor.uva.es)

José M. Marqués
(Department of Computer Science, University of Valladolid, Spain

jmcc@infor.uva.es)

Abstract: Software product lines have become a successful but challenging approach to
software reuse. Some of the problems that hinder the adoption of this development paradigm
are the conceptual gap between the variability and design models, as well as the complexity of
the traceability management between them. Most current development methods use UML
stereotypes or modify UML to face variability and traceability issues. Commercial tools focus
mainly on code management, at a fine-grained level. However, the use of specialized
techniques and tools represent additional barriers for the widespread introduction of product
lines in software companies. In this paper, we propose an alternative based on the UML
package merge mechanisms to reflect the structure of the variability models in product line
package architecture, thus making the traceability of the configuration decisions
straightforward. This package architecture and the configuration of the concrete products are
automatically generated (using Model Driven Engineering techniques) from the variability
models. As an additional advantage, the package merge mechanism can be directly
implemented at code level using partial classes (present in languages such as C#). To support
the proposal, we have developed a tool incorporated into MS Visual Studio. This tool permits
the product line variability to be modeled and the required transformations to be automated,
including the final compilation of concrete products. A case study of a successful experience is
described in the article as an example of applying these techniques and tools. The proposed
approach, a combination of UML techniques and conventional IDE tools, can make the
development of product lines easier for an organization as it removes the need for specialized
tools and personnel.

Keywords: UML, Merge Relationship, Software Product Line, Variability, Traceability.
Categories: D.2.2, D.2.13

1 Introduction

Software product lines (SPL) are probably the most successful approach in the field of
industrial software reuse, due to the combination of a systematic development and the
reuse of coarse-grained components [Bosch, 00], [Clements, 01]. However, the
approach is complex and requires a great effort for the companies that address it
[Bosch, 00]. Our approach tries to adhere to de facto industrial standards whenever
possible. For example, we incorporate specific techniques of Product Line
Engineering in a process parallel to the conventional Application Engineering

Journal of Universal Computer Science, vol. 16, no. 17 (2010), 2313-2332
submitted: 15/2/10, accepted: 30/8/10, appeared: 1/9/10 © J.UCS

[Laguna, 03]. This article focuses on the way that standard UML can be used to deal
with the particularities of SPL design.

The distinctive characteristics of SPL development are variability and traceability
management. There is wide agreement about expressing SPL variability (and
commonality) by means of a feature model in some of their multiple versions such as
FODA [Kang, 90], FORM [Kang, 98], or that proposed in [Czarnecki, 05b], which is
the one used in this paper. A feature is defined as a characteristic relevant for a
stakeholder that represents a common or variable aspect of a product [Kang, 90]. The
technique is used to capture an SPL domain analysis (with mandatory, optional and
alternative features) and to configure each SPL specific product.

The SPL is usually designed using UML models, taking into account the
variability and commonality requirements. Feature and UML models must be used in
combination: we must connect the variable (i.e., optional or alternative) features,
through traceability links, with the related variation points of the design models that
implement the product line. The explicit connection between feature and UML
models allows the instantiation of the product line in each specific product to be
automated. However, this apparently simple activity is far from trivial due to the
complexity of the SPL variability and traceability management in the design/code
levels [Sochos, 04]. The usual solutions found in the literature introduce
modifications in the UML meta-model or add specific stereotypes (see the Related
Work Section for a more detailed discussion). Contrary to these options, we propose
to maintain the SPL design models within the standards, using the package merge
mechanism of UML 2 [OMG, 03]. We describe the common and variable parts of the
SPL (logical or physical) architecture using a UML package diagram [Hofmeister,
99], the SPL package architecture, with the packages connected by merge
relationships. Two transformations generate the SPL package architecture (including
the traceability links), and the configuration of the concrete products. Figure 1 shows
schematically the relations between the SPL models (SPL feature model and SPL
package architecture) and the derived product models (feature configuration and
derived product architecture). Note that the instantiation of a specific product is
achieved in two steps: feature model configuration and the automatic config2product
transformation. The package merge concept is language neutral and can be
implemented using C# partial classes or similar Java mechanisms. The C# option is
supported by a tool for SPL modeling and configuration, integrated in MS Visual
Studio. The tool implements the transformations that generate the SPL package
architecture and the compiler instructions for each SPL product configuration.

The rest of the article is organized as follows: Section 2 presents the proposal: the
requirements that define the problem, the details of the solution, based on the UML
package merge mechanism, and the definition of the transformations that generate the
structure of the SPL design and the package configuration of the SPL concrete
products, starting from the feature models. Section 3 introduces the Feature Modeling
Tool (FMT), designed to support the proposed techniques and transformations, and
incorporated natively into the MS Visual Studio development platform. Section 4
describes a case study of an e-Commerce SPL where the proposal has been applied. In
Section 5, the related work is analyzed and, finally, Sections 6 and 7 conclude the
article and outline future work.

2314 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

Product

Product Line

SPL Package
Architecture

(UML & Partial classes)

Product Feature
configuration

Product
Architecture

Feature
Model

feature2SPL

Configuration Instantiation

conf2product

Figure 1: A global vision of the proposed integration of UML with feature models and
transformation techniques to manage SPL variability

2 Design of Software Product Lines and Standard UML

The design of a software product line must reflect the common and variable parts of
the diverse products that can be derived from the SPL generic solution. This
derivation basically consists of two steps: a) select the desired features of a concrete
product and, b) follow the traceability links to automatically instantiate that product.
Before presenting our proposal, Subsection 2.1 states the problems that must be
solved to apply step b. Then, Subsection 2.2 shows how the package merge
mechanism of UML 2 provides an efficient technique to model the common and
variable aspects of the SPL design. Finally, Section 2.3 explains how that SPL model
and the associated traceability links can be automatically generated from the feature
models.

2.1 Statement of the Problem: UML Variability and Feature Traceability

The UML diagrams have several mechanisms to express variability but these variants
refer to specific products and not to product lines. For example, the use cases
<<extend>> relationship allows different payment types to be modeled in a typical
sales system. All the payment types can be valid in execution time and will therefore
be present in each specific solution or, maybe, different applications of the product
line will only admit some subsets of payment types. We need different mechanisms to
express the variability in the specific product and in the product line levels. However,
in the seminal work of Jacobson [Jacobson, 97], there was no fundamental difference
between the representation of the variability at either level and the <<extend>>
relationship is one of the pillars which supports his method. This approach lacks any
separation between the representation of the variants of the product line and the
specific variability of each final product (see Figure 2: an SPL use case diagram has
no difference with a conventional one).

2315Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

Registration

Credit Card

Other Features....Type of Payment

Transfer

1..3
Cash

Actor

Register

Pay by Credit Card

<<extend>>

Pay by Transfer

<<extend>>
Pay Cash<<extend>>

Figure 2: A fragment of a typical SPL feature model (hollow circles represent
optional features while filled circles represent mandatory ones), and a use case

diagram that applies the extend use case mechanism to represent SPL variability

Similar considerations can be made about the rest of the static or dynamic UML
models. In a class diagram, a specialization of the concept payment can suppose
several valid payment types at the moment of the execution of a system or the
superset of all the possibilities contemplated in a sales domain corresponding to the
whole product line. Figure 3 depicts a fragment of an SPL class diagram and two
possible products. To deal with this problem, several solutions based on UML
stereotypes to differentiate SPL from product models have been proposed (see Section
5 for examples as in [Gomaa, 04]).

Payment

CreditCardPayment

TransferPayment

Payment

CashPaymentCreditCardPayment

Product Line
Product b

Product a

Payment

CashPaymentCreditCardPayment

TransferPayment

Figure 3: A fragment of an SPL class diagram and two possible derived products

2316 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

On the other hand, the variants in UML models can be distributed between
several modeling elements. The problem is due to the fact that a variable feature can
correspond to several elements in a UML model. For example, selecting a feature
“Credit Card” implies that, at least one class CreditCardPayment (with attributes
cardNumber, validityDate, authorizationNumber, etc.), and a set of associations with
other involved classes (Bank, Customer, Receipt…), will appear in the static model, in
addition to several use cases and the related sequence diagrams). We must therefore
assign the traceability relationship between elements of the two levels with a “one-to-
many” multiplicity, involving many diverse UML elements in several models. This
problem is not well addressed by the simple solutions based on stereotypes where an
optional feature is expected to relate to a <<variant>> stereotyped class or method. A
more detailed discussion about these problems and the different proposed solutions
was previously presented in [Laguna, 07]. As a result of that study, we established a
minimum set of requirements that a useful technique of representation, selection and
management of the variability in the design level must accomplish:

1. The technique must allow all the variations associated to each variable feature
to be located in one part of the model in order to facilitate the management of
the traceability. For example, a feature that originates two classes and one
association relationship that should be in the same package (the UML
grouping construct).

2. The technique must discriminate between the variability of the product line
and the intrinsic variability of the specific products.

3. The technique must maintain unchanged the UML meta-model, removing the
entry barrier to this development approach for the majority of engineers, and
additionally allowing the use of conventional CASE tools.

Related with these requirements, it would be a remarkable enhancement if the

selected mechanism could have continuity from requirements (including feature
models) until the implementation models, shifting toward the scheme of “seamless
development” of the object-oriented principles. In the following Subsections, a
solution that fulfills the previous requirements, based on the package merge
mechanism of UML 2, is explained in detail.

2.2 The Package Merge Mechanism and SPL Design

To solve the problems set out in the previous Subsection, we aim to represent the
variability in UML models using the package merge mechanism, defined in the UML
2 infrastructure meta-model and used exhaustively in the definition of UML 2 [OMG,
03]. The package merge mechanism basically consists of adding details to the models
in an incremental way. According to the specification of UML 2, <<merge>>> is
defined as a relationship between two packages that indicates that the contents of both
are combined. It is very similar to the generalization and is used when elements in
different packages have the same name and represent the same concept, beginning
with a common base. The concept is extended incrementally in each separate
package. Selecting the desired packages, it is possible to obtain a tailored definition
from all the possible ones. Though we focus on class diagrams in this work, the
mechanism can be extended to UML behavior models (in particular use cases, state
charts, and sequence diagrams). Evidently, the rules that establish the specification of

2317Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

UML 2 are strict so as to avoid inconsistencies. For example, cycles are not allowed,
the resulting multiplicity ranges are the least restrictive possible, the operations
should conform in number, order and type of parameters, etc.

The application of this mechanism to our problem consists of establishing an
initial package for each UML model that embodies the common part of the product
line. Then, associated to each variable feature, a new package with the same name is
added, so that all the necessary changes in the model remain located in it, fulfilling
one of the requirements of the previous Subsection. This package is connected
through a <<merge>> relationship with its base package, that is, the package
associated with the parent feature. The sense of the relationship expresses the
dependence between packages: the base or merged package can always be included in
a specific product, the receiving package is an extension of the base package and can
only be included if the base package is also selected. This is exactly how the expert
decides which features are included during the configuration process.

Each package can be organized in the ordinary way (using package composition
and <<import>> or <<access>> relationships) and can contain the packages that
reflect the interface and persistence layers, the details of a tiered architecture, or
dynamic UML models. The result is a specific model, the SPL package architecture,
which shows the global organization of the product line artifacts.

In the example of the use case packages of Figure 4 (depicting an oversimplified
product catalog SPL), one or two packages could be added to the base package,
obtaining three possible products in the product line. Notice that mandatory features
do not generate additional packages. As they are always included in the product
configuration with their parents, the associated UML elements are included in the
existing package.

CatalogStructure

Categories

Browse Catalog

Select Category

Browse Catalog

Customer

CategoriesMultilevel

Select Category

Select
SubCategory

«merge»

«extend»

«merge»

«extend»

CatalogStructure

Categories ProductInformation

Description Multilevel

Figure 4: Example of the package merge mechanism applied to use case packages

2318 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

Though use cases are very useful to describe the product line requirements, the
static models are the preferred artifacts, since they represent the most useful views of
SPL design and implementation. In Figure 5, the connection between the structure of
the feature model and the corresponding structure of the packages can be appreciated.
Each variability point detected in the feature model originates a package that may or
may not be combined in product development time, according to the selected
configuration. In Figure 5 it can be seen how a mandatory catalog feature in the
product line has, optionally, a basic categories structure (package Categories). If
present, each category has at least a description and each product has a zero or one
associated category (a new class Category, an attribute and two associations are
needed). To add the CategoriesMultilevel optional feature, it is necessary to add a
reflexive association to the class Category, as shown in the corresponding package.
Here, we can see how an optional feature is translated, not into a specialized class, as
the stereotype approaches suggested, but simply into an association. In our approach,
if (during the selection/configuration process) the Categories and the
CategoriesMultilevel features are selected for a specific product, the traceability links
add the corresponding packages to the design model of the product. The ordered
merge of these packages originates the final solution. This approach solves the
requirements 1, 2, and 3, stated in Subsection 2.1:

1. The technique allows all the variations associated to each variable feature to
be located in one package.

2. The technique separates the variability of the product line (by means of the
package merge) from the intrinsic variability of the specific products.

3. The technique maintains the UML meta-model unchanged.

name: String
price: float

ProductCatalog

CatalogStructure

Image2D Product

Image2D

Image3D

Catalog

description: String

Category Product

Categories

Category

CategoriesMultilevel Category

Product

MultipleClasification

 + product

*

 + catalog

0..1

 + image2D

0..1

- subCategores

*

 + category *

 + catalog

1

 + prod

*

 + cat

0..1

 + prod

* + cat *

<<merge>> <<merge>>

<<merge>>

<<merge>>

<<merge>>

CatalogStructure

Categories ProductInformation

Description

Multilevel

MultipleClasif ication

BaseDescription

Image2D

AssociatedAssets

Image3D

Figure 5: A partial Feature Model and a possible UML design

2319Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

To achieve the goal of seamless development, the traceability links must include
the implementation models. For this, we propose to split the code into fragments
included in the SPL packages. The use of mixins (defined as fragments of classes that
are intended to be composed with others), represents an alternative to multiple
inheritance for handling variability. In our development process we use the related
concept of partial class to implement the product lines. In languages such as C#, it is
possible to split the definition of a class or interface over two or more source files
(that can be in different packages). Each source file contains a section of the class
definition, and all parts are combined when the application is compiled to form the
final class. Using C#, if the project that implements the product line is organized in
packages with partial classes (common and variants), for deriving a given specific
product, it is enough to reference the packages that correspond directly with the
selected configuration of the feature model. This technique connects feature models
with the final code through the intermediate design models, thus solving the
additional requirement of Subsection 2.1.

Though the use of these techniques is enough to organize the common and
variable aspects of the SPL design in packages, the traceability management requires
careful attention. For this reason, an automated approach to obtain the traceability
links complete our approach and is presented in Subsection 2.3.

2.3 Automatic Generation of the SPL Package Architecture

To facilitate the work of the software engineers, it is possible to transform the feature
models (and sub-models) into the SPL package architecture using a model driven
based strategy, thus obtaining as a result the traceability links between the variable
features and the design packages.

The definition of these transformations is based on OMG standard QVT [OMG,
05]. The target meta-model is UML 2. The feature meta-model proposed by
[Czarnecki, 05b] has been selected as source, since it is powerful enough to represent
the SPL variability and the simplicity of the related transformations. In this approach,
the distinctive property of the relationships is the cardinality of the features and group
of features, which distinguishes mandatory from variable features and guides the
transformations. The features are characterized as Solitary or Grouped (following the
mentioned meta-model). The SPL package architecture generation implies
transforming:

• The Feature model into a UML model
• Each Root Feature into a Package
• Each variable Feature (Grouped or Solitary) into a package merged with its

base package.

The strategy is based on the three subtypes of Feature defined in the cited meta-
model. The root of every tree in a feature model (RootFeature) is transformed into a
package. Then, a recursive transformation of solitary features and feature groups is
carried out. Additionally, the presence of a group implies a new package per
alternative GroupedFeature.

Figure 6 shows, graphically expressed, two of the QVT partial transformations.
Initially, a feature model is transformed into a UML model and a general package that
will contain all the variants. The transformation of each root feature into a base

2320 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

package is the next step. An optional solitary feature is transformed into a new
package merged with the previous package (the lower limit of featureCardinality is
zero) (Figure 6a). If the minimal cardinality of the feature is not zero, the feature is
always present and is not a variation point. Therefore, it is unnecessary to create a
new package, and the related design elements will be included in the previous
package. In both cases, the children (Solitary or FeatureGroup) features are
recursively considered using the last package as reference (represented in the where
clause). The rest of QVT definitions related to FeatureGroup (See Figure 6b) and
GroupedFeature elements are similar. The key idea is that each variable feature
(optional or alternative) requires an optional package in the SPL design. To generate
the package configuration of each final product a similar strategy was used, starting
this time from the corresponding feature sub model (i.e. the set of selected features
that represent a concrete product of the SPL).

where
FeatureToPackage (sf,pp);
FeatureGroupToPackage (sf,pp);

FeatureToPackage

f:Feature
<<domain>>

sf:SolitaryFeature

<<domain>>

uml, efm, c

name=sn
featureCardinality=fc

p:Package

pp:Package
name=sn

pm:PackageMerge

sf.featureCardinality.min = 0

(a)

where
FeatureToPackage (f f ,gp);

FeatureGroupToPackage

sf:Feature
<<domain>>

ff :FeatureGroup

<<domain>>

uml, efm, c

name=fg
groupCardinality=fc

p:Package

gp:Package
name=fg

pm:PackageMerge

f f .groupCardinality.min = 0

(b)

Figure 6: Graphical definition of two QVT transformations into UML packages

2321Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

An implementation of these transformations was initially achieved starting from
the XML files generated by the fmp eclipse plug-in [Antkiewicz, 04] using XSLT
style sheets, and generating UML models in XMI format [Laguna, 07]. These models
can be imported by UML CASE tools, yielding the SPL package architecture. These
solutions, assuming a careful manipulation of the interchange files, permit the
generation of the package configuration of final products following an independent
language approach. However, a more practical solution is missed if we want to
smoothly incorporate these techniques and transformations into the current software
engineering tool box. The next Section presents a platform oriented implementation,
integrated with MS Visual Studio, the reference tool for C# developers.

3 Feature Modeling Tool: Integration with Developer Tools

To make our proposal readily accessible to software engineers, we have developed a
tool (and incorporated it into MS Visual Studio) that permits feature models to be
created and the SPL package architecture and configurations to be generated,
following the defined transformations. There are some open and commercial tools to
manage and configure software product lines. The mentioned fmp plug-in is one of
the best known. Commercial tools such as pure::variants1 have a similar functionality
for managing product lines. However, none of them includes the UML merge
mechanism or integrates with existing C# tools. The aim was to manage a product line
as a native project type provided by the development platform, including
import/export capabilities, and facilities for model transformation and final product
generation. Thus, this Feature Modeling Tool (FMT) makes the automation of many
of the activities of the SPL development process possible (Figure 7).

IDE tool (MS Visual Studio)

Application Engineering

FAMA framework

import fmp

[FMT model]

export XMI
model Generate PL

packages

Configure SPL

[PL IDE packages]

[Product packages
configuration]

UML Case Tool

[UML model]
[fmp Model] [XMI model]

Compile product

FAMA validation

export to FAMA

[FAMA model]

import XMI

Generate C# code Design

[Product]

Feature
Analysis

Package
Implementation

Figure 7: FMT functions as automated and manual activities in a generic SPL
development process

1 http://www.pure-systems.com/

2322 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

Figure 7 depicts a global view of the FMT interfaces and functionalities. These
functions support the activities of the Product Line Engineering and Application
Engineering processes [Laguna, 03]. The manual intervention of the SPL expert
engineer is needed to define the feature model (Feature Analysis activity) and the
detailed design (Package implementation activity) of the SPL. The validation and
package structure generation (in UML and IDE formats) are fully automated. Once
the FMT and UML models of the SPL are defined, and the package implementation
details completed, the application engineer can configure (selecting the desired
featured) and compile each concrete product. This sub-process is fully automatic
thanks to the integration of FMT in Visual Studio as shown in Figure 7 (the shadowed
set of activities).

To implement FMT, we have used the Microsoft DSL tools [Cook, 07], part of
the Microsoft Visual Studio SDK, intended for defining domain specific languages
(DSL), and for creating the associated editors and utilities for these languages. The
interface of FMT is mainly visual (Figure 8) but incorporates auxiliary tools, similar
to the familiar fmp plug-in interface, and is compatible with it, allowing the direct
import of fmp models.

Figure 8: Feature Modeling Tool (graphical, native Solution Explorer, Configuration
and Model Explorer views)

2323Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

Figure 8 shows a general picture where the Design (graphical), Solution Explorer
(the native Visual Studio package view), Configuration, and Model Explorer (the fmp
style view) windows are shown. The advantages of FMT as compared with fmp are
the direct integration in the Visual Studio IDE and the possibility of visual. The SPL
package structure and the configuration files for the compiler can be automatically
generated inside the conventional IDE. As additional benefits, import/export facilities
allow communication with the FAMA validation framework [Trinidad, 08], export in
XMI format to UML CASE tools, and import of fmp models. The tool and its
documentation are available from the GIRO web2.

4 Case Study: e-Commerce

In order to validate the proposed techniques and tool in a realistic situation, a case
study has been carried out using a domain analysis described in [Lau, 06]. Using
model superimposition, an SPL detailed design was proposed (concretely, class and
activity diagrams were used), providing us with a very interesting starting point to
contrast our techniques, since the packages that we must implement are imposed by
an external independent study.

Our aim was not to implement dozens of packages, but to reach a result with
enough variability to show that it is possible to develop a functional product line
using a conventional development platform. At this moment, the common part of the
product line and a dozen packages have been developed. Therefore, we can already
generate hundreds of e-Commerce systems, from a minimal combination (the simplest
purchase process) to a typical portal with registered users, shopping cart, credit card
secure payment, multiple categories catalogs, search criteria, etc. The completed
packages form a basic product family, though the variability can grow with the
packages that are currently being developed. Figure 9 shows the developed features of
the product line using the FMT Model Explorer view.

4.1 Product Line Design

The design adheres to the basic ideas of the design proposed by [Lau, 06], but
organizing it in packages as generated by FMT. This has allowed us to focus our
efforts on solving the practical problems of handling the web interface and the data
access variability at the design and implementation levels. The SPL package
architecture is shown in Figure 10. This structure is automatically generated (in XMI
format) from the Feature Modeling Tool, using the incorporated transformations. The
number of included features (near 40) is noticeably greater than the number of
generated packages, as the design elements linked with mandatory features are
included in pre-existing packages. We have completed the development of the
common and optional packages of Figure 10.

Most packages are optional and mutually independent. However, more complex
situations have also appeared: for instance, the Electronic and Physical Product
packages correspond to an OR (1..2) structure in the feature model. This implies that

2 http://giro.infor.uva.es/FeatureTool.html

2324 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

at least one product type must be chosen. Another special situation is that the Physical
Product package always requires the Shipping Address package to enable the
effective shipment of the physical items. Though these restrictions are not shown in
the package model, they are contemplated during the feature configuration process
and automatically reflected (thanks to the traceability support) as valid or invalid
feature (and thus package) combinations.

Figure 9: FMT Model Explorer view of the e-Commerce SPL case study

4.2 Product Line Implementation

The actual implementation of the e-commerce SPL has been done using the .NET/
ASP as platform, C# as language, and Microsoft Visual Studio as IDE tool. Variations
in user interfaces cannot be implemented directly using packages and the partial class
mechanism. To solve this problem, we have used a combination of templates, cascade
style sheet files, and dynamic containers. In ASP.NET, it is possible to create master

2325Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

pages that (combined with .css files) serve as templates to the web system. Each
concrete product in the SPL will possibly have a different main page from the view
point of the final users. The variability mechanism of the template is achieved by
using dynamic containers (ContentPlaceHolder) that will be filled in a dynamic way
as specified in the code of each concrete product.

Registration

Credit Card Information

Shipping Address

<<merge>>

<<merge>>

Quick Checkout Profile

<<merge>>

Billing Address

<<merge>>

Base

<<merge>>

DirectDownload

CategoriesMultilevel

Search<<merge>>

<<merge>>

<<merge>>

Electronic Product Physical Product

ShoppingCart

<<merge>>

<<merge>>

Figure 10: Packages of the electronic commerce product line

At the time of the configuration of each concrete product of the SPL, the compiler
must recognize the necessary packages and the corresponding dynamic controls. To
achieve this, Visual Studio uses a set of XML based configuration files which are
used to indicate paths, packages, etc. In addition to these default configuration files,
provided by the platform, other specific files have been added to each package. Thus,
each page builds itself in a systematic way, using a name convention and the
information about the necessary controls. The packages are organized and configured
inside the IDE platform, using the FMT configuration view and this selection is
automatically reflected through traceability links in the Visual Studio solution
explorer. Once selected and validated, the compiler reads the project configuration
files and generates the final specific product that can be deployed and installed in
minutes in the production server. In Figure 11, two examples of final products with
different degrees of complexity can be appreciated.

The results up till now include the generation of several hundred variants, by
simply configuring and recompiling the generic SPL project into a concrete product.
All the products include the basic purchase process. Also, several products have been
instantiated and tested: Registered users, electronic or physical products, search
facilities, credit card or PayPal secure payment methods, etc. The details of how to
install and to configure a product can be consulted in the web of the GIRO group.

4.3 Lessons Learned

To summarize, a realistic e-commerce product line has been developed, using a
seamless approach from the feature model to final implementation. At the same time,

2326 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

the necessary implementation techniques to handle variability at code level have been
established. The advantages provided by seamless development are complemented
with the use of conventional tools (with the indispensable feature tool, also
incorporated into the IDE). This combination of benefits can ease the adoption of the
product line paradigm for the development of web systems by non specialist
engineers and small companies in general.

The SPL development was planned by the authors and accomplished with the
collaboration of graduate and last year students. The experience with these students
has been satisfactory as they have reached the objectives with a reasonable effort
(three to four months, four students working part time). Other similar web based
product lines are in the development process. In particular, the feature model for the
domain of associations has been established and the design completed (one student
working six months). An unconnected approach is focused on mobile applications,
where the interface and physical constraints impose new challenges to the SPL
adoption (more effort in the interface variability design was necessary). In all the
cases, the results are analogous and no insurmountable problems have been found by
these novice developers. The experiences with these product lines were documented
and made available in the GIRO web site.

Figure 11: Two variants of the electronic commerce product line as seen in a web
browser

2327Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

Comparing these techniques with the original Lau work, our approach allows a
better organization of the SPL design. In [Lau, 06] different details are mixed in a
unique class diagram, forcing each fine detail to be marked with a stereotyped label,
while we keep these details in separate packages, avoiding the need to label each
element. When the product line grows, the number of labels increases exponentially
(each variable feature forces the insertion of an undetermined number of stereotyped
elements). Furthermore, alternative elements (several associations between two
classes with different multiplicities) must be simultaneously present in the same
diagram, obscuring the models and compelling the reinterpretation of the UML
semantics. Using the package merge mechanism, each variable feature originates
only a new package which contains all the details of each model increment. Each
package is a valid UML model without inconsistencies. The complexity is delegated
to the partial class mechanism and managed by the C# compiler.

5 Related Work

Though there are many projects that describe variability management mechanisms in
terms of requirements and designs, few include implementation details. Different
authors have proposed explicitly representing the variation points by adding
annotations or changing the essence of UML. In the less intrusive approaches, either
the mechanisms of UML are used directly (through the specialization relationship, the
association multiplicity, etc.) or the models are explicitly annotated using stereotypes.
For example, [John, 02] suggested the application of use case templates to represent
the variability in product lines using stereotypes, although the authors do not
distinguish between optional, alternative or obligatory variants. Concerning structural
models, [Clauß, 01] proposes a set of stereotypes to express the variability in the
design models: <<optional>>, <<variationPoint>> and <<variant>> stereotypes
designate, respectively, optional, variation points (and their sub-classes), and variant
classes. Gomaa makes extensive use of this approach, extending the use of
stereotypes to all the UML models. He uses the stereotypes <<kernel>>,
<<optional>> and <<variant>> (corresponding to obligatory, optional, and variant
classes) [Gomaa, 00], [Gomaa, 04]. The advantage of these approaches is that
conventional UML tools can be used to describe the SPL models, permitting the
variability to be traced at the different levels, though the traces must be manually
maintained. However, on many occasions, an optional feature can require a
combination of attributes and/or methods in an existing kernel class. Neither do they
solve either the requirement of a one-to-one correspondence between the different
models.

Alternatively, other authors modify the original UML meta-model to adapt it to
the SPL requirements. [Von der Maßen, 02] proposed using new relationships
("option" and "alternative") and the consequent extension of the UML meta-model.
On the other hand, [Halman, 03] defends the modification of use case models to
orthogonally represent the variation points (using a triangle symbol with different
annotations). Another solution, proposed by [Czarnecki, 05a], consists of annotating
the UML models with presence conditions, so that each variable feature is reflected in
one or, more realistically, several parts of a diagram (perhaps a class, an association,
an attribute, etc. or a combination of elements). This technique does not artificially

2328 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

limit the representation of a variant with a unique element and even the color code
helps to emphasize the implications of choosing a certain option. However, this visual
help is not scalable when more than a dozen variants are handled. On the other hand,
it is necessary to introduce auxiliary elements in the UML meta-model and CASE
tools.

With a similar intention, FeatureMapper [Heidenreich, 08] is a tool that uses a
“recording” mechanism to manually register the links between features and portions
of the design UML diagrams. In these approaches, no automatic transformation
facilities are provided.

Recent work in the AMPLE project proposes a variability modeling language
(VML) inspired by the mentioned work of Halman, which supports first-class
representation of different forms of design variability [Loughran, 08]. The language
provides mechanisms to reference variation points in multiple design views and to
define compositions, using fine-grained primitives such as connect, add, remove, etc
and coarse-grained primitives, such as package merge. This last primitive is similar to
our original proposal [Laguna, 07] but uses a package per features (the authors do not
differentiate common from variable features, creating models that are necessarily
bigger). VML include require and exclude dependencies that can be managed directly
by the feature models. The result is a new domain specific language that manipulates
UML elements, but using them from outside the standard UML.

A completely different approach, focused on implementation instead of
requirements or design, is the Feature Oriented Programming (FOP) paradigm
[Batory, 04]. The variable features are implemented as increments (refinements) in a
java-like language. Starting from a base class, these increments are combined using a
set of tools, provided with the AHEAD3 tool suite. Other commercial tools, such as
Big-Lever Gears or pure::variants offer similar functionalities. These approaches have
in common the absence of high level models that show the SPL global organization.

As a general observation, though many of these solutions are valid, the learning
of new modeling or implementation techniques and the need for specialized CASE
and IDE tools represent barriers for the adoption of the SPL approach in many
organizations.

Concerning the tool support aspect, there are several UML modelling tools that
include merge facilities. Although their original intention is to help analysts to solve
conflicts between two versions of the same model, these tools can be used to trivially
merge SPL packages (that cannot have conflicts between compatible packages if the
SPL is well designed). IBM Rational Software Architect4 uses the concept of model
fragment. The Magicdraw merge plug-in5 and Enterprise Architect6 (that supports
integration with a version control system such as CVS operating with XMI files) offer
a similar functionality. In all cases, the fragments are necessarily stored in physically
separate files and must be merged using a wizard or plug-in. This constraint is logical
for the original intention of the merge facilities but complicates the management of
the SPL. Naturally, no support for feature models and its transformation into package

3 http://www.cs.utexas.edu/users/schwartz/ATS.html
4 http://www-01.ibm.com/software/rational/
5 http://www.magicdraw.com/merge
6 http://www.sparxsystems.com

2329Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

models are provided. FMT include the merge facility into the development IDE,
managing all the packages in a unique SPL model and making the merge details
transparent for the application engineer during the configuration process.

6 Conclusions

In this work, the viability of package merge and partial class mechanisms as
variability support in product line development has been shown. The use of the
proposed mechanisms, combined with model driven transformations, enable the
automated generation of each product from the features configuration and the
structure of the product line itself. Furthermore, the use of conventional CASE and
IDE tools can simplify the adoption of this paradigm, avoiding the necessity of
specific tools and techniques as in the alternatives mentioned in Section 5.

As a part of this work, a Feature Modeling Tool has been developed and
incorporated into the Visual Studio IDE. This direct integration allows the UML
package model structure to be automatically generated and the final products to be
configured from the Feature Modeling Tool. Therefore, the configuration process is
more transparent and straightforward for the application engineers.

The approach has been successfully applied to the design and implementation of a
product line in the web applications domain. The case study was based on a previous
feature analysis on e-commerce domain, published in the literature, avoiding any
possible bias in the feature model. The main goal was achieved: to develop a product
line from beginning to end, defining the specific domain techniques to handle the
variability at the implementation level. Finally, the presence of a plug-in that can be
directly used by the application engineer from its conventional developing IDE,
avoids the need of specific formation in new tools for these software engineers as the
experience with recent graduates has shown.

7 Future Work

Current work includes the completion of other product lines with industrial or social
interest, and the enrichment of the e-commerce case study. In this case, the objective
is to evaluate the scalability of the proposal as the variable features increase (which
implies an exponential increase in the number of final products). FMT is being used
in these projects and some enhancements are being tested. In particular, the automatic
generation of user interfaces by combining XML partial files (based on the XForms
W3C standard7) and translating them into the HTML specific version of the interface
for each final product.

The implementation of this approach with other programming languages different
from C# is a pending work, to allow UML (language neutral) modeling/design tools
to be connected with alternative IDEs. The Java language and the AHEAD suite are
being adapted to our needs in alternative SPL projects with promising results, as the
structure organization of Java directories can be seen as an implementation of the SPL
package architecture (though AHEAD does not use that concept), and the suite

7 http://www.w3.org/MarkUp/Forms/

2330 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

utilities permit a final Java class to be obtained from several jakarta files (an extended
version of Java), applying the AHEAD composition tools.

Acknowledgements

This work has been funded by the Spanish Ministerio de Ciencia e Innovación
(TIN2008-05675).

References

[Antkiewicz, 04] Antkiewicz, M., Czarnecki, K.: Feature modeling plugin for Eclipse, In
OOPSLA’04 Eclipse technology exchange workshop (2004).

[Batory, 04] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement, IEEE
TSE, June 2004.

[Bosch, 00] Bosch, J.: Design & Use of Software Architectures. Adopting and Evolving a
Product-Line Approach. Addison-Wesley. 2000.

[Chung, 00] Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishers, 2000.

[Clauß, 01] Clauß, M.: Generic modeling using Uml extensions for variability,. In Workshop
on Domain Specific Visual Languages at OOPSLA, 2001.

[Clements, 01] Clements, Paul C., Northrop, L.: Software Product Lines: Practices and
Patterns, SEI Series in Software Engineering, Addison-Wesley, 2001.

[Cook, 07] Cook, S., Jones, G., Kent, S., Wills, A. C.: Domain-Specific Development with
Visual Studio DSL Tools (Microsoft .NET Development Series), Addison-Wesley
Professional, 2007.

[Czarnecki, 05a] Czarnecki, K., Antkiewicz, M.: Mapping Features to models: a template
approach based on superimposed variants, In proc. of GPCE’05, LNCS 3676, Springer, 2005,
pp. 422-437.

[Czarnecki, 05b] Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based
feature models and their specialization, In Software Process Improvement and Practice, Vol.
10, No. 1, 2005, pp.7-29.

[Gomaa, 00] Gomaa, H.: Object Oriented Analysis and Modeling for Families of Systems with
UML. InW. B. Frakes, editor, IEEE International Conference for Software Reuse (ICSR6),
June 2000, pages 89–99.

[Gomaa, 04] Gomaa, H.: Designing Software Product Lines with UML, Addison Wesley, 2004.

[Halmans, 03] Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product
Family to Customers, Journal of Software and Systems Modeling 2:1, 2003, pp. 15-36.

[Heidenreich, 08] Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features
to Models, In Companion Proceedings of the 30th International Conference on Software
Engineering (ICSE'08), Leipzig, Germany, May 2008.

[Hofmeister, 99] Hofmeister, C., Nord, R.L., Soni, D.: Describing Software Architecture with
UML. WICSA 1999, pages 145-160.

2331Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

[Jacobson, 97] Jacobson I., Griss M. and Jonsson P.: Software Reuse. Architecture, Process and
Organization for Business Success. ACM Press. Addison Wesley Longman. 1997.

[John, 02] John, I., Muthig, D.: Tailoring Use Cases for Product Line Modeling, Proceedings of
the International Workshop on Requirements Engineering for Product Lines 2002 (REPL’02).
Technical Report: ALR-2002-033, AVAYA labs, 2002.

[Kang, 98] Kang, K. C., Kim, S., Lee, J. y Kim, K.: FORM: A Feature-Oriented Reuse Method
with Domain-Specific Reference Architectures, Annals of Software Engineering, 1998, 5:143-
168.

[Kang, 90] Kang, K. C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study, Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute (Carnegie Mellon), Pittsburgh, PA 15213, 1990.

[Laguna, 03] Laguna, M.A., González, B., López, O., García, F. J.: Introducing Systematic
Reuse in Mainstream Software Process, IEEE Proceedings of EUROMICRO, 2003, pp: 351-
358.

[Laguna, 07] Laguna, M.A., González-Baixauli, B., Marqués, J.M.: Seamless Development of
Software Product Lines: Feature Models to UML Traceability, GPCE 07. Salzburg, Austria,
2007

[Lau, 06] Lau, S.: Domain Analysis of E-Commerce Systems Using Feature-Based Model
Templates, MSc Thesis, ECE Department, University of Waterloo, Canada, 2006.

[Loughran, 08] Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language Support for
Managing Variability in Architectural Models, in Software Composition, Springer LNCS 4954,
pp. 36--51, 2008.

[OMG, 03] Object Management Group, OMG: Unified modeling language specification
version 2.0: Infrastructure, Technical Report ptc/03-09-15, OMG, 2003.

[OMG, 05] Object Management Group and QVT-Merge Group: Revised submission for MOF
2.0 Query/View/Transformation version 2.0, Object Management Group doc. ad/2005-03-02,
2005.

[Sochos, 04] Sochos, P., Philippow, I., Riebish, M.: Feature-oriented development of software
product lines: mapping feature models to the architecture, Springer, LNCS 3263, pp. 138-152,
2004.

[Trinidad, 08] Trinidad, P., Benavides, D., Ruiz Cortés, A., Segura, S., Jimenez, A., FAMA
Framework, SPLC, 2008, pp. 359.

[von der Maßen, 02] von der Maßen, T., Lichter, H.: Modeling Variability by UML Use Case
Diagrams, Proceedings of the International Workshop on Requirements Engineering for
Product Lines 2002 (REPL’02). Technical Report: ALR-2002-033, AVAYA labs, 2002.

2332 Laguna M.A., Marques J.M.: UML Support for Designing Software Product ...

