
Systematic Management of Variability in UML-based

Software Product Lines

Edson A. Oliveira Junior
(University of São Paulo, ICMC-USP, Brazil

edsonjr@icmc.usp.br)

Itana M. S. Gimenes
(State University of Maringá, DIN-UEM, Brazil

itana@din.uem.br)

José C. Maldonado
(University of São Paulo, ICMC-USP, Brazil

jcmaldon@icmc.usp.br)

Abstract: This paper presents SMarty, a variability management approach for UML-
based software product lines (PL). SMarty is supported by a UML profile, the SMar-
tyProfile, and a process for managing variabilities, the SMartyProcess. SMartyProfile
aims at representing variabilities, variation points, and variants in UML models by
applying a set of stereotypes. SMartyProcess consists of a set of activities that is
systematically executed to trace, identify, and control variabilities in a PL based on
SMarty. It also identifies variability implementation mechanisms and analyzes specific
product configurations. In addition, a more comprehensive application of SMarty is
presented using SEI’s Arcade Game Maker PL. An evaluation of SMarty and related
work are discussed.

Key Words: Profile, Stereotypes, UML-based Software Product Lines, Variability
Management

Category: D.2, D.2.2, D.2.10

1 Introduction

The software product line (PL) engineering approach has gained increasing at-
tention over the last years due to competitiveness in the software development
segment. The economic considerations of software companies, such as cost and
time to market, motivate the transition from single-product development to the
PL approach, in which products are developed in a large-scale reuse perspec-
tive [Linden et al. 07].

The PL approach focuses mainly on a two-life-cycle model [Linden et al. 07]:
domain engineering, where the PL core asset is developed for reuse; and ap-
plication engineering, where the core asset is reused to generate specific prod-
ucts. The success of the PL approach depends on several principles, in partic-
ular variability management [Gomaa 05], [Korherr, List 07], [Linden et al. 07],
[Pohl et al. 05], [Svahnberg et al. 05]. However, most of the existing solutions are

Journal of Universal Computer Science, vol. 16, no. 17 (2010), 2374-2393
submitted: 15/2/10, accepted: 30/8/10, appeared: 1/9/10 © J.UCS

only applied to specific PL approaches. Thus, there is a lack of an overall reason-
ing about variability management applied to more general approaches which take
advantages of widely consolidated standard notations as, for instance, UML and
its profiling extension mechanism [UML 09] for specific domain applications. Al-
though several approaches use this mechanism as a basis to represent variability
[Bragança, Machado 06], [Gomaa 05], [Korherr, List 07], [Ziadi et al. 03], most
of them are not supported by a systematic process that provides guidelines to
instruct the users on how to deal with variability issues in PL UML-based arti-
facts.

Therefore, this paper presents the SMarty approach for variability manage-
ment in UML-based PL. This approach is supported both by a UML profile, the
SMartyProfile, and a systematic variability management process, the SMartyPro-
cess. SMarty makes it easier to deal with variability issues in PL. A complete
example of how to apply SMarty to a PL is presented in section 4.

Section 2 introduces essential concepts of variability management in PL, as
well as presents SMarty. Section 3 performs a comparison between the SMar-
tyProfile and two different variability representation approaches providing some
evidences of the SMartyProfile’s representation effectiveness. Section 4 applies
our approach to the SEI’s Arcade Game Maker PL. Section 5 presents inceptions
and preliminary outcomes from an SMarty evaluation. Section 6 lists the related
work, while Section 7 presents the conclusion, ongoing work, and directions for
future work.

2 SMarty : Managing Variability in UML-based Software
Product Lines

Variability is the general term used to refer to the variable aspects of the products
of a PL. It is described through variation points and variants. A variation point
is the specific place in a PL artifact to which a design decision is connected. Each
variation point is associated with a set of variants that corresponds to design
alternatives to resolve the variability [Linden et al. 07], [Pohl et al. 05]. Accord-
ing to [Pohl et al. 05] and [Linden et al. 07], variability management is related
to every activity of a PL approach and must comprise the following activities:
variability identification, consists of identifying the differences between prod-
ucts and where they take place within PL artifacts; variability delimitation,
defines the binding time and multiplicity of variabilities; variability implemen-
tation, is the selection of implementation mechanisms; variant management,
controls the variants and variation points. These activities and the its related
concepts form the basis of our approach: SMarty.

SMarty is an approach for UML Stereotype-based Management of Variability
in PL. It is composed of a UML 2 profile, the SMartyProfile, and a process, the

2375Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

SMartyProcess. SMartyProfile contains a set of stereotypes and tagged val-
ues to represent variability in PL models (Section 2.1). Basically, SMartyProfile
uses a standard object-oriented notation and its profiling mechanism [UML 09]
both to provide an extension of UML and to allow graphical representation of
variability concepts. Thus, there is no need to change the system design struc-
ture to comply with the PL approach. SMartyProcess is a systematic process
that guides the user through the identification, delimitation, representation, and
tracing of variabilities in PL models (Section 2.2). It is supported by a set of
application guidelines as well as by the SMartyProfile to represent variabilities.

The following subsections present the SMarty profile and process descrip-
tions. Section 4 provides a detailed example of its application.

2.1 The SMartyProfile

The SMartyProfile represents the relationship of major PL concepts with respect
to variability management. There are four main concepts: variability [Bosch 04],
variation point [Pohl et al. 05], variant [Pohl et al. 05], and variant constraints
[Bosch 04].

Based on these variability management concepts, Figure 1 presents the SMar-
tyProfile which is composed of the following stereotypes and respective tagged
values:

�variability� represents the concept of PL variability and is an extension
of the metaclass Comment. This stereotype has the following tagged values: name,
the given name by which a variability is referred to; minSelection, represents
the minimum number of variants to be selected to resolve a variation point or
a variability; maxSelection, represents the maximum number of variants to be
selected in order to resolve a variation point or a variability; bindingTime, the
moment at which a variability must be resolved, represented by the enumeration
class BindingTime; allowsAddingVar, indicates whether it is possible or not to
include new variants in the PL development; variants, represents the collection
of variant instances associated with a variability; and realizes, a collection of
lower-level model variabilities that realize this variability.

�variationPoint� represents the concept of PL variation point and is
an extension of the metaclasses Actor, UseCase, Interface, and Class. This
stereotype has the following tagged values: numberOfVariants, indicates the
number of associated variants that can be selected to resolve this variation point;
bindingTime, the moment at which a variation point must be resolved, repre-
sented by the enumeration class BindingTime; variants, represents the collec-
tion of variant instances associated with this variation point; and variabilities,
represents the collection of associated variabilities.

2376 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

<<
pr

of
ile

>>
S

M
ar

ty
P

ro
fil

e

+n
am

e
: S

tri
ng

+m
in

Se
le

ct
io

n
: I

nt
eg

er
 [1

] =
 1

+m
ax

Se
le

ct
io

n
: I

nt
eg

er
 [1

] =
 1

+b
in

di
ng

Ti
m

e
: B

in
di

ng
Ti

m
e

[1
] =

 D
ES

IG
N_

TI
M

E
+a

llo
w

sA
dd

in
gV

ar
 :

Bo
ol

ea
n

[1
] =

 tr
ue

+v
ar

ia
nt

s
: C

ol
le

ct
io

n
[1

..*
]

+r
ea

liz
es

 :
Co

lle
ct

io
n

[0
..*

]

<<
st

er
eo

ty
pe

>>
va

ri
ab

ili
ty

[C
om

m
en

t]
+n

um
be

rO
fV

ar
ia

nt
s

: I
nt

eg
er

 =
 0

+b
in

di
ng

Ti
m

e
: B

in
di

ng
Ti

m
e

[1
] =

 D
ES

IG
N_

TI
M

E
+v

ar
ia

nt
s

: C
ol

le
ct

io
n

[0
..*

]
+v

ar
ia

bi
liti

es
 :

Co
lle

ct
io

n
[0

..*
]

<<
st

er
eo

ty
pe

>>
va

ri
at

io
nP

oi
nt

[A
ct

or
, C

la
ss

, I
nt

er
fa

ce
, U

se
Ca

se
]

<<
st

er
eo

ty
pe

>>
m

an
da

to
ry

[A
ct

or
, C

la
ss

, I
nt

er
fa

ce
, U

se
Ca

se
]

<<
st

er
eo

ty
pe

>>
op

tio
na

l
[A

ct
or

, C
la

ss
, I

nt
er

fa
ce

, U
se

Ca
se

]

<<
st

er
eo

ty
pe

>>
al

te
rn

at
iv

e_
O

R
[A

ct
or

, C
la

ss
, I

nt
er

fa
ce

, U
se

Ca
se

]

<<
st

er
eo

ty
pe

>>
al

te
rn

at
iv

e_
XO

R
[A

ct
or

, C
la

ss
, I

nt
er

fa
ce

, U
se

Ca
se

]

+r
oo

tV
P

: v
ar

ia
tio

nP
oi

nt
 [1

] =
 n

ul
l

+v
ar

ia
bi

liti
es

 :
Co

lle
ct

io
n

[0
..*

]

<<
st

er
eo

ty
pe

>>
va

ri
an

t
[A

ct
or

, C
la

ss
, I

nt
er

fa
ce

, U
se

Ca
se

]
+c

la
ss

Se
t :

 C
ol

le
ct

io
n

[1
..*

]

<<
st

er
eo

ty
pe

>>
va

ri
ab

le
[C

om
po

ne
nt

]

CO
M

PI
LE

_T
IM

E

DE
SI

G
N_

TI
M

E
LI

NK
_T

IM
E

RU
NT

IM
E

<<
en

um
er

at
io

n>
>

Bi
nd

in
gT

im
e

<<
st

er
eo

ty
pe

>>
m

ut
ex

[D
ep

en
de

nc
y]

<<
st

er
eo

ty
pe

>>
re

qu
ir

es
[D

ep
en

de
nc

y]

U
M

L2
 M

et
am

od
el

<<
m

et
ac

la
ss

>>
C

om
m

en
t

<<
m

et
ac

la
ss

>>
In

te
rf

ac
e

<<
m

et
ac

la
ss

>>
Us

eC
as

e
<<

m
et

ac
la

ss
>>

A
ct

or
<<

m
et

ac
la

ss
>>

De
pe

nd
en

cy
<<

m
et

ac
la

ss
>>

C
la

ss
<<

m
et

ac
la

ss
>>

C
om

po
ne

nt

{r
eq

ui
re

d}
{r

eq
ui

re
d}

{r
eq

ui
re

d}
{r

eq
ui

re
d}

<<
im

po
rt>

>

F
ig

u
re

1:
T

he
SM

ar
ty

P
ro

fil
e

fo
r

V
ar

ia
bi

lit
y

M
an

ag
em

en
t

in
P

L
.

2377Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

�variant� represents the concept of PL variant and is an abstract exten-
sion of the metaclasses Actor, UseCase, Interface, and Class. This stereotype
is specialized in four other non-abstract stereotypes which are: �mandatory�,
�optional�, �alternative OR�, and �alternative XOR�. The stereotype
�variant� has the following tagged values: rootVP, represents the variation
point with which this variant is associated; and variabilities, the collection
of variabilities with which this variant is associated.

�mandatory� represents a compulsory variant that is part of every PL
product.

�optional� represents a variant that may be selected to resolve a variation
point or a variability;

�alternative OR� represents a variant that is part of a group of alter-
native inclusive variants. Different combinations of this kind of variants may
resolve variation points or variabilities in different ways.

�alternative XOR� represents a variant that is part of a group of alter-
native exclusive variants. This means that only one variant of the group can be
selected to resolve a variation point or variability;

�mutex� represents the concept of PL variant constraint and is a mutually
exclusive relationship between two variants. This means that when a variant is
selected another variant must not also be selected;

�requires� represents the concept of PL variant and is a relationship be-
tween two variants in which the selected variant requires the choice of another
specific variant;

�variable� is an extension of the metaclass Component. It indicates that
a component has a set of classes with explicit variabilities. This stereotype has
the tagged value classSet which is the collection of class instances that form a
component.

2.2 The SMartyProcess

The SMartyProcess activities are directly related to a general PL development
process [Linden et al. 07], [Pohl et al. 05]. Figure 2 illustrates the interaction
between this process, represented by the activities vertically aligned on the left
side, and the SMartyProcess, represented by the activities in the rectangle on the
right side. [Oliveira Junior et al. 05] initially proposed a variability management
process as a proof of concept to identify prospective stereotypes and activities for
managing variabilities in PL. In this paper, we incorporate formal definitions of
such stereotypes by proposing SMartyProfile. In addition, SMarty is formalized
by combining SMartyProfile and SMartyProcess in an overall approach driven
by guidelines to systematically manage PL variabilities.

SMartyProcess is iterative and incremental. It runs in parallel with the de-
velopment of a PL. SMartyProcess progressively uses the outputs of the PL

2378 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

Variability Delimitation

Requirements Analysis

Use Case Model Definition

Feature Model Definition

System Specification

Architectural Design

Component Internal Design

Test and Evaluation of
Product Line Architecture

Variability Tracing Definition

Variability Identification

Multiplicity Definition Binding Time Definition

Identification of Mechanisms
for Variability Implementation

Product Configuration Analysis

Variability Tracing
and Control

SMartyProcess
Product Line Development

Figure 2: Interaction Between PL Development Activities and SMartyProcess.

development activities as inputs. Throughout the execution of activities, the
number of variabilities tends to increase.

SMartyProcess is iterative, thus variability updates are allowed from any of
its activities. Its activities and their respective inputs and outputs are presented
in the next paragraphs. SMartyProcess consumes artifacts from the PL core as-
set, as well as providing it with information. The use case and class models,
for instance, feed the SMartyProcess and return to the core asset with the vari-
abilities identified and delimited. However, some models, such as the variability
tracing and implementation ones, are originated in SMartyProcess itself.

Variability Tracing Definition receives as input the use case and the
feature model built in the PL development process. A variability tracing model
is built according to the following guidelines: (i) the captured features of the PL
are listed; (ii) the captured use cases are listed; (iii) the relationship between
features and use cases are re-analyzed; and (iv) crossing relations between use
cases and features are marked with a blob. This model is represented in a tabular
form. The model supports the tracing from the features to all PL UML models.

In each interaction between the PL development and the SMartyProcess,
the Variability Identification activity progressively receives as input the use
case, feature, class, and component models. It aims at progressively identifying

2379Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

the variability associated with the models. The SMartyProfile strongly supports
the development of this activity by applying its stereotypes to the PL models.
Variability identification is a domain-dependent activity which requires abilities
of the PL managers and analysts. Therefore, guidelines are offered in order to
support this activity, which include:

1. elements of use case models related to the extend and extension points mech-
anism1 [UML 09] suggest variation points with associated variants which
might be inclusive or exclusive alternative.

2. in class models, variation points and their variants are identified in the fol-
lowing relationships [UML 09]: generalization, the most general classifiers
are the variation points and the most specific ones are the variants; in-
terface realization, the suppliers (specifications) are variation points and
the implementations (clients) are the variants; aggregation association,
the typed instances with hollow diamonds are the variation points and the
associated typed instances are the variants; and composite aggregation,
the typed instances with filled-in diamonds are the variation points and the
associated typed instances are the variants.

3. elements of use case models related to the include (dependency) or associa-
tion from actors relationships [UML 09] suggest either mandatory or optional
variants. Section 4 gives examples of these elements;

4. elements of class models related to the association relationship in which
the aggregationKind attribute has value none [UML 09], i.e., neither an
aggregation nor a composition suggest either mandatory or optional variants.

5. components, in component models, with variation point or variant classes
are stereotyped as �variable�.

Variability Delimitation aims at defining the following attributes of a
variability: (i) multiplicity; (ii) binding time, and (iii) possibility, or not, of
adding new elements to the associated variant set. The multiplicity of a vari-
ability indicates the minimum (minSelection attribute) and the maximum
(maxSelection attribute) number of elements of its variants attribute (Sec-
tion 2.1) that must be selected to resolve it. The following rules are applied:
(i) variabilities with optional variants have multiplicity minSelection = 0, and
maxSelection = 1; (ii) variabilities with exclusive alternative variants have mul-
tiplicity minSelection = maxSelection = 1; (iii) variabilities with inclusive

1 In our approach, use case generalization is not used to represent variation points and
variants as it does not represent the adding of specific actions from specialized use
cases, as the extend relationship does [Bragança, Machado 06].

2380 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

alternative variants have multiplicity minSelection = 1, and maxSelection =

length(variants).
The definition of the binding time is essential to determine the choice of

implementation mechanisms, described in the next activity.
Identification of Mechanisms for Variability Implementation aims

at selecting mechanisms to be used to implement variabilities. The inputs are
class and component models with their respective variabilities represented and
delimited as a result of the previous activity. The output of this activity is an
implementation model represented as a table. Each row of the table indicates the
name of a variability, the element in which it occurs, the binding time, the imple-
mentation mechanism, and the implementation strategy. The model is based on
the variability implementation techniques proposed by [Jacobson et al. 97] and
[Svahnberg et al. 05]. Among these techniques are generalization, extension, and
parameterization.

Variability Tracing and Control uses a variability metamodel for de-
scribing the relationships between variant artifacts of a PL and their variation
points, variants, binding time, and implementation mechanisms. Together with
the variability tracing model, this metamodel allows the association of a feature
with the related use cases and, therefore, with the elements of class and compo-
nent models. The execution of this activity consists of the instantiation of the
metamodel for a PL.

Configuration Analysis of Specific Products aims at investigating the
impact of selecting possible features of the PL artifacts in order to analyze the
feasibility of the production of specific PL products. The selection of a feature
may imply the selection of a product configuration according to the variation
points described. Moreover, whether the product requires an additional feature,
the introduction of this feature must be analyzed in the PL artifacts.

Next section presents a case of comparison between SMartyProfile and two
well-known approaches to represent variability in PL in order to show evidences
of SMartyProfile’s effectiveness.

3 SMartyProfile and Variability Representation Approaches

In this section we compare the SMarty approach, specifically SMartyProfile rep-
resentation, with the well-known [Halmans, Pohl 03] and [Gomaa 05] variability
representation approaches.

[Halmans, Pohl 03] extend UML by adding the stereotype �variant� to
represent PL variants, as SMartyProfile does. [Halmans, Pohl 03] claim that the
representation of variation points in use case diagrams is not possible, thus they
propose the triangle notation, as showed in Figure 3.

Figure 4 presents an excerpt of a Flight Booking System according to the
approach proposed by [Halmans, Pohl 03].

2381Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

Figure 3: Representation of Variation Points [Halmans, Pohl 03].

Figure 4: Excerpt of a Flight Booking System [Halmans, Pohl 03].

In [Halmans, Pohl 03] representation, the stereotype �variant� does not
indicate the type of variant that we are dealing with. For instance, the use
case Booking by airline comp. might be an optional, inclusive or exclusive
variant. In SMartyProfile, �variant� is an abstract stereotype which is spe-
cialized by the stereotypes �optional�, �mandatory�, �alternative OR�,
and �alternative XOR�, thus making explicit variant modeling in use cases.
In addition, the four stereotypes inherit tagged values from the abstract one.

On the other hand, SMartyProfile uses the stereotype �variationPoint� to
represent a variation point use case or class. A variation point is related to a
UML comment with the stereotype �variability� representing a variability. The
UML comment contains all the tagged values of the �variability� stereotype,
representing essential information to resolve variabilities.

Although the triangle is an interesting notation for variation points, it is

2382 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

not part of the UML metamodel and, consequently, it is not supported by auto-
mated tools that provide XMI file features. SMartyProfile takes advantage of the
UML extension points concept in use cases to represent the relations between
variation point use cases and their variants. Moreover, variants cardinality is
represented as a tagged value. It makes our representation fully compliant to
the UML metamodel, thus it is supported by UML tools. Figure 5 presents the
[Halmans, Pohl 03] example according to SMartyProfile. Note that the triangle
Booking by (Figure 4) is replaced with the variability Booking by (Figure 5)
keeping its original cardinality.

Flight Booking System

<< mandatory >>
Changing a reservation

<< mandatory >>
Paying a booked flight

<< alternative_OR >>
Booking by travel agency

<< alternative_OR >>
Booking by airline comp.

<< mandatory , variationPoint >>
Booking a flight

Extension Points
booking:

<< mandatory >>
Searching a flight

<< extend >>

<< extend >>

<< include >>

<< include >>

<< extend >>

<<variability>>
name="Booking by"
minSelection = 0
maxSelection = 2
bindingTime = DESIGN_TIME
allowsAddingVar = false
variants = {Booking by airline
 comp., Booking by travel
 agency}

<<variability>>
name="card reader"
minSelection = 0
maxSelection = 1
bindingTime =
 DESIGN_TIME
allowsAddingVar = false
variants = {Card
 reader}

<< optional >>

Card reader

<< mandatory >>

Customer

<< mandatory , variationPoint >>

User

Figure 5: The Flight Booking System according to SMartyProfile.

[Gomaa 05] uses the UML extension points concept to represent variation
points and their variants in use case diagrams, as SMartyProfile does. Figure 6
presents an example of [Gomaa 05] representation for a Check Out Customer

feature.
Although [Gomaa 05] representation is fully compliant to the UML meta-

model, it uses only �kernel� and �optional� stereotypes to represent vari-
ants. In addition, it does not make explicit variation points by means of stereo-
types, as well as the information with regard to variation points resolution, as
SMartyProfile does. For example, one might ask: what is the binding time of
Check Out Customer? Thus, Figure 7 presents the Check Out Customer fea-
ture according to SMartyProfile.

We can easily see in Figure 7 which use case is a variation point, and its

2383Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

<< optional >>
Pay by Debit Card

<< kernel >>
Check Out Customer

Extension Points
payment:

<< extend >>

<< kernel >>
Pay by Cash

<< extend >>

<< optional >>
Pay by Credit Card

<< extend >>

Figure 6: Check Out Customer Feature according to [Gomaa 05].

<<variability>>
name="payment"
minSelection = 0
maxSelection = 2
bindingTime =
 DESIGN_TIME
allowsAddingVar = false
variants = {Pay by Credit Card,
 Pay by Debit Card }

<< alternative_OR >>
Pay by Debit Card

<< alternative_OR >>
Pay by Credit Card

<< mandatory >>
Pay by Cash

<< mandatory , variationPoint >>
Check Out Customer

Extension Points
payment:

<< extend >>
<< extend >> << extend >>

Figure 7: Check Out Customer Feature According to SMartyProfile.

information represented in the related variability, as well as the use cases which
are either mandatory or alternative inclusive. In addition, the variation point
Check Out Customer is bound at DESIGN TIME, and it does not allow the
addition of new variants.

These comparisons give us some evidences of the SMarty approach with
relation to its effectiveness of variability representation. However, we understand
that an overall experimental approach should be taken into account to claim such
an effectiveness.

Next section presents a more detailed PL according to the SMartyProfile, its
stereotypes and tagged values, for representing variability, and the SMartyPro-
cess guidelines to identify and delimit variability.

4 The Arcade Game Maker PL According to SMarty

The Arcade Game Maker (AGM) [SEI-AGM 09] is a pedagogical and exemplary
PL created by the SEI to support learning and experimenting based on PL
concepts. It has a complete set of documents and UML models, as well as a set of
tested classes and the source code for three different games: Pong, Bowling, and

2384 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

Brickles. Although AGM is not a commercial PL, it has been used to illustrate
the concepts of several different PL approaches, as well as PL and architecture
evaluation case studies.

The essential AGM UML models are the feature model (Figure 8), the use
case model (Figure 9) and the core asset class model (Figure 10).

The AGM feature model is composed of four main features: services
which defines its sub-features play, pause, and save; rules which defines the
sub-features brickles, pong, and bowling; actionwhich defines its sub-features
movement and collision; and configuration. The sub-features save, brickles,
pong, and bowling are optional.

Arcade Game Maker (AGM)

services rules configuration

bowlingbrickles pongplay pause save movement collision

action

Legend:

Mandatory Feature

Optional Feature

Alternative Feature

Figure 8: AGM Top-Level Feature Model.

The AGM use case model has two actors, GamePlayer and GameInstaller

which trigger several use cases such as Save Game, Exit Game, and Play Se-

lected Game. The use cases Check Previous Best Score and Save Score are
triggered by the GamePlayer actor, whereas Install Game is triggered by Game-

Installer.
The use case Play Selected Game is the most important use case. It has two

extension points: initialization ext point and animation ext point. The
former is responsible for allowing specific actions from the use case Initializa-
tion, whereas the later is responsible for specific actions from Animation Loop

which can be realized by different games.
The AGM core asset class model has several concrete and abstract

classes to generate products from the AGM PL. However, the most important
classes are: GameSprite which represents an element of a game and has an
associated Rectangle composed of a Size and a Point; MovableSprite and
StationarySprite which represent, respectively, moving and non-moving game
elements; GameMenu which represents the menu of a specific game and is com-
posed of a Board.

In order to show how the SMarty approach can be applied, we followed

2385Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

Animation Loop
Initialization

Install Game

Uninstall Game

Check Previous Best Score

Play Bowling
Play Pong

Play Brickles

Play Selected Game

Extension Points
initialization_ext_point:
animation_ext_point:

Exit Game

Save Score

Save Game

GameInstaller

GamePlayer

<< include >><< include >>
<< include >>

<< extend >>

<< include >>

<< extend >>

<< include >>

<< include >>

<< extend >>

Figure 9: AGM Use Case Model.

coreAssets

Menu
(from coreAssets)

Rectangle
(from coreAssets)

Board
(from coreAssets::Wall)

GameSprite
(from coreAssets)

Puck
(from coreAssets)

Paddle
(from coreAssets)

StationarySprite
(from coreAssets)

Wall
(from coreAssets)

SpritePair
(from coreAssets)

GameMenu
(from coreAssets)

MovableSprite
(from coreAssets)

Size
(from coreAssets)

Velocity
(from coreAssets)

second-

board#

app#

first-
s-

v#

r#

board#

Point
(from coreAssets)

p-

Figure 10: AGM Core Asset Class Model.

the SMartyProcess activities to the AGM PL, supported by SMartyProfile, as
follows:

– AGM Variability Tracing Model: we built the AGM tracing model,
presented in Table 1, taking into account the AGM feature and use case
models. As we can see in this table, AGM features and use cases are listed
and their crossing relations are marked with a blob. For instance, the feature
save is related to the use cases Save Score and Save Game. It allows the
tracing from a given feature to its related use cases, whereas feature selection

2386 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

operations are realized during PL product derivation activities. For example,
if the feature save is removed from a certain AGM game, the related use
cases Save Game and Save Score must also be removed.

Feature
services rules action Use Case

play pause save Brickles Pong Bowling movement collision configuration

Check Previous
Best Score

Save Score
Install Game
Save Game
Exit Game

Play Selected
Game

Uninstall Game
Play Brickles

Play Pong
Play Bowling
Initialization

Animation Loop

Table 1: AGM Tracing Model According to SMarty.

– AGM Variability Models: by following the variability identification and
delimitation guidelines, we identified and delimited several variabilities for
the AGM use case and core asset class models. Figures 11 and 12 present
the AGM original use case and class models, respectively, with variabilities
identified and delimited according to respective stereotypes (Section 2.1) and
guidelines (Section 2.2).

The AGM use case variability model, according to Section 2.2, guideline
#1, has a mandatory variation point Play Selected Game which has the ex-
tension points initialization ext point and animation ext point, and
the associated variability named play game. These extension points allow
the inclusive alternative variants Play Brickles, Play Pong, and Play Bow-

ling to add specific initialization and animation loop game actions to the
variation point. In addition, the variability play game indicates that at least
one and at most three variants must be selected, and that it is possible to in-
clude new variants during the design of the PL. The AGM use case model also
has, according to Section 2.2, guideline #3, two optional use cases, Check
Previous Best Score and Save Score, with respective variabilities. The
selection of the former use case forces the selection of the later due to the
requires constraint (Section 2.1). Remaining use cases and the actors are
mandatory variants of the AGM use case model.

The AGM core asset variability model according to Section 2.2, guide-
line #2, has a mandatory variation point, the abstract class GameSprite

2387Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

<<variability>>
name = "play game"
minSelection = 1
maxSelection = 3
bindingTime = DESIGN_TIME
allowsAddingVar = true
variants = {Play Brickels,
 Play Pong, Play Bowling}

<<variability>>
name = "save score"
minSelection = 0
maxSelection = 1
bindingTime =
 DESIGN_TIME
allowsAddingVar = true
variants = {Save Score}

<<variability>>
name = "check score"
minSelection = 0
maxSelection = 1
bindingTime = DESIGN_TIME
allowsAddingVar = true
variants = {Check Previous
Best Score}

<< mandatory >>
Animation Loop

<< mandatory >>
Initialization

<< mandatory >>
Install Game

<< mandatory >>
Uninstall Game

<< optional >>
Check Previous Best Score

<< alternative_OR >>
Play Bowling

<< alternative_OR >>
Play Pong<< alternative_OR >>

Play Brickles

<< mandatory , variationPoint >>
Play Selected Game

Extension Points
initialization_ext_point:
animation_ext_point:

<< mandatory >>
Exit Game

<< optional >>
Save Score

<< mandatory >>
Save Game << mandatory >>

GameInstaller

<< mandatory >>

GamePlayer

<< include >>

<< include >>

<< include >><< include >>

<< include >>

<< include >>

<< extend >> << extend >> << extend >>

<< requires >>

Figure 11: AGM Use Case Variability Model According to SMarty.

coreAssets

<<variability>>
name = "game sprite"
minSelection = 1
maxSelection = 2
bindingTime = DESIGN_TIME
allowsAddingVar = true
variants = {coreAssets.MovableSprite,
coreAssets.StationarySprite}

<<variability>>
name = "wall"
minSelection = 0
maxSelection = 1
bindingTime = DESIGN_TIME
allowsAddingVar = false
variants = {coreAssets.Wall}

<<variability>>
name = "movable sprite"
minSelection = 1
maxSelection = 2
bindingTime = DESIGN_TIME
allowsAddingVar = true
variants = {coreAssets.Paddle,
coreAssets.Puck}

<<variability>>
name = "sprite pair"
minSelection = 0
maxSelection = 1
bindingTime = DESIGN_TIME
allowsAddingVar = false
variants = {coreAssets.SpritePair}

<< mandatory >>
Menu

(from coreAssets)

<< mandatory >>
Rectangle

(from coreAssets)

<< mandatory >>
Board

(from coreAssets::Wall)

<< variationPoint , mandatory >>
GameSprite

(from coreAssets)

<< alternative_OR >>
Puck

(from coreAssets)

<< alternative_OR >>
Paddle

(from coreAssets)

<< alternative_OR >>
StationarySprite
(from coreAssets)

<< optional >>
Wall

(from coreAssets)

<< optional >>
SpritePair

(from coreAssets)

<< mandatory >>
GameMenu

(from coreAssets)

<< alternative_OR , variationPoint >>
MovableSprite

(from coreAssets)

<< mandatory >>
Point

(from coreAssets)

<< mandatory >>
Size

(from coreAssets)

<< mandatory >>
Velocity

(from coreAssets)

second-

board#

app#

first-
s-

v#

r#

p-

board#

Figure 12: AGM Class Variability Model According to SMarty.

which has the alternative inclusive variants MovableSprite and Stationary-

Sprite, and the associated variability game sprite. This variability indi-
cates that at least one and at most two variants must be selected, and that
it is possible to include new variants at design time. The former variant is
also a variation point which has the alternative variants Puck, and Paddle,
and the associated variability named movable sprite, indicating that at
least one and at most two variants must be selected, and it is possible to

2388 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

include new variants at design time. The AGM core asset class model accord-
ing to Section 2.2, guideline #4, also has two optional variants, Wall and
SpritePair, with respective variabilities. The other classes are mandatory
variants of the AGM core asset class model.

All classes from the AGM class variability model form, according to Section
2.2, guideline #5, the variable component Game.

– AGM Mechanisms for Variability Implementation: the definition of
the variability implementation model can be done based on variability im-
plementation mechanisms and strategies proposed by [Svahnberg et al. 05].
Thus, Table 2 presents the variability mechanisms defined for the AGM
PL. For instance, the variability wall occurs in the class Wall and it is
bound at design time via Variant Class Specialization, implemented
using Strategy and Template patterns.

Variability
Name

Level
Class / Component

Binding
Time

Implementation
Mechanism

Implementation
Strategy

movable
sprite MovableSprite Design

Time
Variant Class
Specialization

Strategy and
Template Patterns

wall Wall Design
Time

Variant Class
Specialization

Strategy and
Template Patterns

game sprite GameSprite Design
Time

Variant Class
Specialization

Strategy and
Template Patterns

sprite pair SpritePair Design
Time

Variant Class
Specialization

Strategy and
Template Patterns

Table 2: AGM Variability Implementation Model.

We are currently developing an automated environment for PL architecture
evaluation which will comprise a module to allow the tracing and control of
variabilities of a certain PL. In addition, such a tool will provide a feature for
configuration analysis of specific products derived from a PL. Thus, the SMar-
tyProcess ’ activities Variability Tracing and Control and Configuration
Analysis of Specific Products are not showed in this paper.

5 Initial Evaluation of SMarty

This section presents insights and outcomes of an initial evaluation of the SMarty
approach.

The key issue of a PL is the way it articulates and manages its variable as-
pects. A variability management approach must coexist with any PL core asset
development and product development in order to support the clear specification,
tracing, and control of variabilities. Our initial studies, [Oliveira Junior et al. 05]
and [Oliveira Junior et al. 08], as well as Section 3 provide evidences that SMarty

2389Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

enables better representation and, therefore, better control of variabilities, com-
pared to existing PL approaches. Moreover, it makes explicit the most important
decisions, such as the number of variants associated with a variation point and
the type of choices allowed, the binding time, and the implementation mecha-
nisms.

An initial evaluation of SMarty was carried out based on an empirical study
in the form of a quantitative case study [Oliveira Junior et al. 05] which enabled
the demonstration of the need of a complete UML-based variability management
approach. The case study controlled the following variables: (i) the number of
artifacts in each activity of the PL process; (ii) the number of variabilities in
each artifact, determined by the sum of variable elements in each artifact; and,
(iii) the variability types associated with each variation point. The SMartyPro-
file representation allowed a more precise estimation of the number of products
that can be derived from a PL, thus offering a better support for PL configura-
tion analysis. However, investigations have to proceed in order to increase the
volume of data available for formal experiments. Ongoing work aims at building
an experimental basis for UML-based PLs that allows the inference of quality
attributes of both the PL itself and potential products.

SMarty introduces the idea of using UML comments to make explicit vari-
ability meta-attribute values such as multiplicity and binding time. One of the
advantages of using comments is that they belong to the UML standard meta-
model and, thus, can be read from any commercial tool that supports UML
modeling.

6 Related Work

The SMarty approach takes into account previous work on PL approaches mainly
related to the following issues: management activities, artifact notation, variabil-
ity attributes, metadata modeling, and experimental software engineering. The
management activities defined for SMartyProcess are aligned with the essential
PL engineering activities [Linden et al. 07]. Variability management is consid-
ered a subprocess of the PL management activity, thus it has a close interaction
with domain and application engineering activities.

The activities defined in our approach were initially based on [Linden et al. 07]
and [Pohl et al. 05] suggestions of variability management activities. However,
their work only lists the activities within the context of a well-defined process
with roles, inputs, and outputs. Our SMartyProcess activities and their associ-
ated roles and artifacts are fully specified.

SMarty uses the SMartyProfile as its basis to represent the PL artifacts in
terms of variability concepts and its attributes. It takes into consideration similar
approaches such as [Bragança, Machado 06], [Gomaa 05], [Korherr, List 07], and

2390 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

[Ziadi et al. 03]. [Chen et al. 09] presents a systematic review with respect to
chronological variability background which includes most of related work of this
paper.

[Bragança, Machado 06] offer an extension of the UML metamodel for the
extend relationship in use case models and its formalization using activity dia-
grams. The extension occurs at the description level of the use case steps and is
concerned with the type of sequence of steps. To represent this type sequence,
the authors propose a set of new metaclasses and stereotypes, such as: Lo-
cation, Rejoin, ExtensionFragment, and InclusionPoint, �before�, �after�,
�rejoin point�, and �inclusion point�. Although SMarty also takes into ac-
count use case extend relationships to represent variability, it does not do it at
the use case steps description level as all the information needed is represented
graphically using stereotypes and UML comments. The advantage of SMarty is
that it does not require variability information at description level of use case
steps.

[Ziadi et al. 03] propose a UML profile for representing variability in class
diagrams. The stereotypes defined for class diagrams are: �optional� to spec-
ify optionality, �variation� to specify variation points as abstract classes, and
�variant� for subclasses. SMartyProfile also defines the �optional� stereo-
type. In our approach, however, we consider the use of the �variationPoint�
stereotype not only for abstract classes, but also for interfaces as they both rep-
resent the concept of polymorphism. In addition, because there are many kinds
of relationships between variants and variation points, our approach defines sev-
eral different stereotypes to represent variants in class diagrams. As a result, the
user has a set of choices to solve its variability modeling issues. [Ziadi et al. 03]
proposed stereotypes, however, do not have tagged values which makes it dif-
ficult to understand the relationships/constraints between variability, variation
point, and variant.

[Korherr, List 07] propose a UML profile for representing variability in class
models and a mapping between its stereotypes and activity diagrams. The fol-
lowing stereotypes are part of this profile: �variation point� for superclasses,
�variant� for subclasses, �mandatory� for compulsory variants,�optional�,
and �alternative choice�. Although this profile resembles our profile, the SMar-
tyProfile allows to explicitly represent inclusive and exclusive alternative variants
by means of different stereotypes, making variability modeling more precise and
intuitive. Furthermore, SMartyProfile is also concerned with representing vari-
ability in use case and component models.

[Clauß 01] presents an approach for modeling variability using UML. Al-
though SMartyProfile is partially based on this work, Clauss’ approach defines
two different stereotypes for alternative variants - inclusive and exclusive alter-
native variants - and uses UML comments to distinguish between them. SMar-

2391Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

tyProfile takes advantage of the comments to represent variability and its at-
tributes, such as binding time and multiplicity. Furthermore, SMartyProfile is
not defined only at the class level, but also at the use case and component levels.

7 Conclusion and Future Work

The SMarty approach presented in this paper: (i) defines a UML profile with
stereotypes, tagged values, and relationships/constraints among its elements to
better represent variability issues in PL models, making explicit variability at-
tributes, such as multiplicity and binding time; (ii) defines a process composed of
activities, artifacts, and roles necessary to control variability in UML-based PLs,
supported by guidelines for identifying variabilities in PL models; (iii) makes ex-
plicit important design decisions, such as the alternatives for variation points,
binding times and implementation mechanisms; and (iv) allows a clear relation-
ship between features and PL architecture through the use of variability tracing
models.

SMarty brings out advantages to the PL engineer, such as: (i) graphical iden-
tification of variabilities in PL models; (ii) better management of variabilities as
they are identified, represented, and organized in a systematic way allowing more
effective PL documentation; (iii) facilitate the generation of PL products by au-
tomated tools that provide support for UML metamodels; and (iv) decrease the
time to market by dealing with less complex variabilities as consequence of a
systematic approach. However, we understand that the major difficult in apply-
ing SMarty is to establish an automated environment to support the SMarty
activities and their generated data.

We are currently investigating how to extend our SMartyProfile to represent
variability in sequence and activity diagrams, as well as proposing guidelines to
give directions to the user. We are also working on improving our variability rep-
resentation in component models and extracting metrics to measure, via formal
experiments, the effectiveness of this representation. We have already proposed
metrics to evaluate PL architectures [Oliveira Junior et al. 08] by means of mea-
suring use case, class, and component models according to SMartyProfile. These
support the definition of a systematic evaluation method for PL architectures.
In addition, we are working on an automated PL architecture evaluation en-
vironment which will support the application of SMarty and its SMartyProfile
and SMartyProcess, as well as the collection of metrics and the execution of
experiments.

Further work includes the design and implementation of a support tool to
make automated product configuration analysis possible, thus providing organi-
zations with mechanisms to evaluate the adoption and evolution of PLs. Further-
more, we plan to conduct experiments to validate empirically the SMartyProfile
by applying it to several different PL.

2392 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

Acknowledgments

The authors would like to thank CAPES-Brazil for funding Edson’s visiting
scholar term at the University of Waterloo, Ontario, Canada.

References

[Bosch 04] Bosch, J.: Preface. In: Proceedings of the 2nd Groningen Workshop on Soft-
ware Variability Management: Software Product Families and Populations, Gronin-
gen, The Netherlands (2004)

[Bragança, Machado 06] Bragança, A., Machado, R. J.: Extending UML 2.0 Meta-
model for Complementary Usages of the �extend� Relationship within Use Case
Variability Specification. In: Proceedings of the 10th International Software Product
Line Conference, pp. 123–130. (2006)

[Chen et al. 09] Chen, L., Babar, M. A. and Ali, N.: Variability Management in Soft-
ware Product Lines: A Systematic Review. In: Proceedings of the XIII Software
Product Line International Conference, pp. 81–90. (2009)

[Clauß 01] Clauß, M.: Generic Modeling Using UML Extensions for Variability. In:
Proceedings of Workshop on Domain Specific Visual Languages, pp. 11–18. Tampa
Bay (2001)

[Gomaa 05] Gomaa, H.: Designing Software Product Lines with UML: from Use Cases
to Pattern-based Software Architectures. Addison-Wesley, (2005)

[Halmans, Pohl 03] Halmans, G., Pohl, K.: Communicating the Variability of a
Software-Product Family to Customers. Springer-Verlag, New York (2003)

[Jacobson et al. 97] Jacobson, I., Griss, M. L., Jonsson, P.: Software Reuse: Architec-
ture, Process and Organization for Business Success. Addison-Wesley, (1997)

[Korherr, List 07] Korherr, B., List, B.: A UML 2 Profile for Variability Models and
their Dependency to Business Processes. In: Proceedings of the 18th International
Conference on Database and Expert Systems Applications, pp. 829–834 (2007)

[Linden et al. 07] Linden, F. J. van der, Schmid, K., Rommes, E.: Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer-
Verlag, New York (2007)

[Oliveira Junior et al. 05] Oliveira Junior, E. A., Gimenes. I. M. S., Huzita, E. H. M.,
Maldonado, J. C.: A Variability Management Process for Software Product Lines.
In: Proceedings of the 2005 Conference of the Centre for Advanced Studies on
Collaborative Research, pp. 225–241. IBM Press, Toronto, Ontario, Canada (2005)

[Oliveira Junior et al. 08] Oliveira Junior, E. A., Gimenes, I. M. S., Maldonado, J.
C.: A Metric Suite to Support Software Product Line Architecture Evaluation. In:
Proceedings of the 34th Conferencia Latinoamericana de Informática, pp. 489–498.
Santa Fé, Argentina (2008)

[Pohl et al. 05] Pohl, K., Böckle, G., Linden, F. J. van der: Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, New York
(2005)

[SEI-AGM 09] SEI - Arcade Game Maker Pedagogical Product Line, http://www.sei.
cmu.edu/productlines/ppl

[Svahnberg et al. 05] Svahnberg, M., van Gurp, J., Bosch, Jan: A Taxonomy of Vari-
ability Realization Techniques: Research Articles. Software Practice and Experience.
v.35, n.8, pp. 705–754 (2005)

[UML 09] OMG - UML Specification - Superstructure v2.2, http://www.omg.org/
cgi-bin/doc?formal/09-02-02

[Ziadi et al. 03] Ziadi, T., Hélouët, L., Jézéquel, J. M.: Towards a UML Profile for
Software Product Lines. In: Proceedings of the Product Family Engineering, pp.
129–139. (2003)

2393Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C.: Systematic Management ...

