
Linking UML and MDD through UML Profiles: a
Practical Approach based on the UML Association

Giovanni Giachetti, Manuela Albert, Beatriz Marín, Oscar Pastor
(Centro de Investigación en Métodos de Producción de Software

Universidad Politécnica de Valencia,
Camino de Vera s/n 46022 Valencia, Spain

{ggiachetti, malbert, bmarin, opastor}@pros.upv.es)

Abstract: In a model-driven development context, the definition (or selection) of an
appropriate modeling language is a crucial task. OMG, in the model-driven architecture
specification, recommends the use of UML for model-driven developments. However, the lack
of semantic precision in UML has led to different model-driven approaches proposing their
own domain-specific modeling languages in order to introduce their modeling needs. This
paper focuses on customizing the UML association in order to facilitate its application in
model-driven development environments. To do this, a well-defined process is defined to
integrate the abstract syntax of a domain-specific modeling language that supports a precise
semantics for the association construct in UML by means of the automatic generation of a
UML profile. Finally, a brief example shows how the results obtained by the application of the
proposed process can generate software products through a real model compilation tool.

Keywords: UML, Association, Profile, MDD, MDA, DSML
Categories: D.2.2, D.2.12, D.3.3, H.1.1, I.6.5

1 Introduction

The Model Driven Development (MDD) approach has achieved great relevance in the
software industry, improving the software development process and reducing the cost
of the developed applications [Völter, 07]. In this context, one of the most widely
used approaches is the Model Driven Architecture (MDA) [Booch, 04] [OMG, 03],
defined by OMG [OMG, 10b]. The MDA approach recommends the use of UML to
define the conceptual models involved in MDD processes. However, UML is defined
as a general purpose language with a flexible semantics that does not provide enough
precision to define models that can be automatically transformed into complete
software representations.

The association is one of the key constructs in UML for which a fully
unambiguous semantics still does not exist [Milicev, 07]. In early versions of UML,
many authors have reported this issue [Graham, 97] [Snoeck, 01]. In the most recent
versions of UML (UML 2.0 and above), this semantics has been somewhat improved,
but some precision problems still persist [Albert, 03] [Gueheneuc, 04]. For instance,
the behavior related to creation, deletion, or update of association instances, or a
complete semantics for the aggregation relationships are not clearly specified
[France, 06].

Journal of Universal Computer Science, vol. 16, no. 17 (2010), 2353-2373
submitted: 15/2/10, accepted: 30/8/10, appeared: 1/9/10 © J.UCS

In order to provide an effective solution for linking UML and MDD processes,
this paper presents a proposal that allows the UML syntax (proposed in the UML
specification) to be adapted to the modeling needs of specific MDD approaches. In
particular, we advocate showing how to extend (customize) the abstract syntax of the
UML constructs that are related to specifying association relationships among classes.
This UML extension is carried out using a UML profile generated by applying a well-
defined process, which is based on the definition of a particular metamodel that
describes the abstract syntax required by the models of the reference MDD approach
[Giachetti, 08]. To present our proposal, we have inherited the modeling aspects
related to a specific MDD approach, the OO-Method approach [Pastor, 01]. We use
this approach, since OO-Method is an object-oriented MDD method that has been
successfully applied to the software industry1.

This paper makes a twofold contribution: (1) it presents an industrially-tested
semantics that can be used as a reference for the application of the UML association
in MDD environments, and (2) it shows how a correct integration of the syntax that
supports the proposed semantics can be performed by the application of a well-
defined process [Giachetti, 09c], which is based on the standard UML extension
mechanism, the UML profile. The paper also presents a brief example of how to
obtain a final software product from a UML model that has been extended with the
generated UML profile. This model compilation is performed using the industrial
solution that implements the OO-Method approach [Gomez, 98].

The rest of the article is organized as follows: Section 2 presents a background of
the concepts and technologies involved. Section 3 introduces the semantics adopted in
this paper to improve the UML association. Section 4 shows how the customization of
the UML association is performed. Section 5 presents a model compilation example
related to a UML model that has been extended with the proposed semantics. Finally,
Section 6 presents some conclusions and further work.

2 Background

This section is centered on the need to customize the UML specification for its
appropriate application in MDD processes. Specifically, we show why the UML
association must be adapted for this purpose. Additionally, a brief introduction about
the OO-Method approach and UML profiles is also presented.

2.1 The UML Association

UML specifications include association definitions that do not achieve a consensus
for a unified semantic definition. Several works [Diskin, 06] [Genova, 04]
[Henderson-Sellers, 99b] [Milicev, 07] have appeared highlighting the drawbacks of
the language and trying to answer many important questions concerning associations.
With regard to the UML1.4 specification [OMG, 05], Henderson-Sellers has
presented different works [Henderson-Sellers, 99a] [Henderson-Sellers, 99b] [Opdahl,

1 OO-Method has been implemented in an industrial MDD suite called Olivanova [Pastor, 04], which has
been developed by CARE-Technologies [CARE, 10] and applied in several companies such as Toshiba,
Daimler-Chrysler, and Repsol.

2354 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

01] searching for answers to some relevant questions, such as the directionality of
associations or the special meaning of aggregation and composition. Special attention
to the whole-part properties of the association has been given in [Barbier, 03] and
[Belloir, 03]. Also, in [Stevens, 02], the author tries to clarify some confusing
concepts regarding associations (without using formalizations), such as the use of
tuple for defining links, some complex questions of the multiplicity definition, or the
static and dynamic notion of associations. This last concept is also discussed in
[Genova, 04], where the authors propose a new classification for associations. With
regard to most recent versions of the UML specification [OMG, 09b], it is recognized
that the association definition has been improved, but some problems still persist
[Albert, 03] [Gueheneuc, 04]. For instance, [Diskin, 06] presents a framework to
formally explain several confusing notions of associations and detects some flaws in
the association part of the UML metamodel. In [Graham, 97], the author centers on
newer concepts that are related to association ends in order to improve the
expressiveness of the UML association. In addition, there exists a well-known gap
between the conceptual representation of the UML association and its correct
implementation in final software products [France, 06], which is a relevant issue for
the correct application of UML in MDD processes. This situation is also present in
some implementation proposals for the UML association such as [Akehurst, 06]
[Gessenharter, 08], where elements represented at the implementation level have no
correspondence at the conceptual level. In our proposal, we have centered our
attention on a MDD approach called OO-Method.

The OO-Method approach puts into practice most of the ideas presented in the
analyzed works. However, unlike most of the works that just focus on specific parts
of the association definition, OO-Method provides a holistic view of the association.
For instance, some works just face the composition definition, which is a subtype of
the association; others focus on the notation for specifying associations; and others on
the alternatives to implement associations. Instead, OO-Method integrates all these
aspects to obtain a complete association specification. Moreover, even though some
of the analyzed proposals have a certain level of technology support, they are mostly
applied at the theoretical and academic levels. In contrast, the OO-Method approach
has been successfully applied to the software industry, which demonstrates the
effectiveness of this approach to support real software development projects. Thus,
the rigorous semantics of the OO-Method association encourages the use of this
approach to explain how this relevant UML construct can be customized for effective
MDD application.

2.2 The OO-Method Approach

OO-Method is an MDD approach that separates the application and business logic
from the platform technology, allowing automatic code generation from the
conceptual representation of the software systems [Pastor, 01]. The OO-Method
production process (Figure 1) is comprised of three models: the Conceptual Model,
the Execution Model, and the Implementation Model.

The OO-Method Conceptual Model provides the expressiveness and precision
required to correctly specify Management Information Systems (MIS). It captures the
static and dynamic properties of the system in a Class Model, a Dynamic Model, and a
Functional Model. The conceptual model also allows the specification of the user

2355Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

interfaces in an abstract way through the Presentation Model. These four models
represent the different conceptual views of the intended system, which has all the
details needed for the generation of the corresponding software application. The
complete definition of the OO-Method Conceptual Model is presented in [Pastor, 07].

Functional
Model

Dynamic
Model

Class
Model

Persistence Tier (SQL Server, ORACLE, DB2, MySQL)
Business Logic Tier (EJB, COM, .NET)

Graphical User Interface Tier (JSP, ASP .NET, VB, .NET)

Model to Code
Transformation

Mode- to-Model
Transformation

Presentation
Model

Conceptual Model

Execution
Model

Model Compiler Implementation ModelFunctional
Model

Dynamic
Model

Class
Model

Persistence Tier (SQL Server, ORACLE, DB2, MySQL)
Business Logic Tier (EJB, COM, .NET)

Graphical User Interface Tier (JSP, ASP .NET, VB, .NET)

Model to Code
Transformation

Mode- to-Model
Transformation

Presentation
Model

Conceptual Model

Execution
Model

Model Compiler Implementation Model

Figure 1: OO-Method software production process

The class model is the core of the OO-Method conceptual model; the rest of the
models involved are defined starting from elements of the class model. The constructs
involved in the specification of associations among classes are defined within the OO-
Method class model. Moreover, the correct specification of the different modeling
aspects of the association is probably one of the most important and complex parts of
the OO-Method class model. For this reason, the OO-Method association has been
chosen to explain the linking approach presented in this article.

Thus, by integrating the modeling aspects of the OO-Method association into
UML, we obtain an extended UML association that provides appropriate modeling
information for its application in the OO-Method MDD process. To perform this
integration according to the MDA guide [OMG, 03] and the UML specification
[OMG, 09a] [OMG, 09b], we have considered the generation of a UML Profile.

2.3 The UML Profile Extension Mechanim

The UML profile extension mechanism is defined inside of the UML Infrastructure
[OMG, 09a]. It defines the mechanisms used to adapt existing metamodels to specific
platforms, domains, business objects, or software process modeling. Since this
extension mechanism is a part of the UML standard, it can be supported by UML
tools. This feature is one of the main advantages of the UML profile over other UML
customization mechanisms [Bruck, 07], which are not part of the UML standard and,
hence, are not supported by UML tools.

A UML profile is represented as a UML package that is stereotyped with the tag
<<profile>>. It has three main constructs for the definition of the required extensions:
stereotypes, tagged values, and OCL rules:

• The stereotype is the main construct for the specification of a UML profile.
It is a special kind of UML class (specialization of the metaclass Class from
the UML metamodel). Therefore, the semantics and notation of a stereotype
are very similar to a UML class. The stereotypes are identified by a unique
name and represent the set of the extensions that are applied over the classes
of the extended metamodel. The extended classes are identified by means of
extensions relationships that go from the stereotypes to the metaclasses that
they extend.

2356 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

• A tagged value is a property (specialization of the UML metaclass Property)
that is owned by a stereotype. A tagged value represents a new property that
is added to the metaclass extended by the corresponding stereotype.
According to the last UML specifications (UML 2.1 and above), the type of
the tagged values can be specified from data types, classes, and stereotypes.
Therefore, the tagged values can be used for the definition of new attributes,
and also for the definition of new associations.

• The OCL rules are defined by means of the Object Constraint Language
[OMG, 10a]. Each OCL rule is related to a specific stereotype and is used to
control the interaction among the different conceptual constructs (extended
metaclasses). Even though the name OCL makes reference to the definition
of constraints, according to the last OCL specification [OMG, 10a], OCL can
also be used as a query language and as a language for the specification of
functions and operations.

In general terms, the UML profiles that are present in the literature are manually

elaborated without a well-defined process. This situation is motivated by the lack of a
standard that specifies how the UML extensions must be defined [France, 06]. For
this reason, many of the existent UML profiles are invalid or of poor quality [Selic,
07]. To avoid this situation, we apply a well-defined process that is based on the
methodological solution introduced in [Giachetti, 09a], which consists in the
automatic generation of a UML profile from a metamodel that describes the abstract
syntax of the required conceptual constructs.

3 The Semantics Proposed to Customize the UML Association

This section introduces the semantics proposed to customize the UML association,
which is inherited from the OO-Method approach. However, since many concepts in
OO-Method already exist in the UML specification, we only focus on the aspects that
meaningfully contribute to improving the UML association in the context of the MDD
development process. [Marín, 08] shows a detailed case study of the OO-method
approach, where the modeling flexibility that the proposed OO-Method semantics
provides can be observed.

In the OO-Method context, an association is defined as a structural relationship
between classes that represents connections (links) between the objects of these
classes (participant classes). OO-Method associations are binary, so they only have
one or two participant classes (one class in the recursive associations). Thus, the
association concept used in this paper always refers to binary associations.

The association ends are the endpoints of an association, which connect the
association to its participant classes. The name of an association end corresponds to
the role of that end (the task that the participant class plays in the association). The
association ends are characterized by the multiplicity property, which specifies the
maximum/minimum number of objects that can/must be connected to an object of the
opposite end. The relevant concepts that must be added to UML for appropriate
definition of associations according to the OO-Method approach are:

• Unique identification for class instances (objects).

2357Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

• Precise behavior for aggregation and composition concepts.
• Precise behavior related to creation, deletion and update of links.

Passenger

id_passenger : String
passenger_name : String

Flight

flight_number : String
origin : String
destination : String

Reservation

reservation_date : DateTime

passenger flight
 [0..*] [0..*]

reservation

passenger
 { readOnly }

 [0..*]
reservation

flight
 { readOnly }

 [0..*]

Figure 2: Example UML model

Figure 2 shows a brief UML model that is used throughout this paper to illustrate
our proposal. This model was defined using the Eclipse UML2 tool [Eclipse, 10b]. It
shows an association between the classes Passenger and Flight, and an aggregation
between these two classes and the class Reservation. A passenger can make a
reservation for a specific flight, or can take a flight without a previous reservation.
The association between the classes Passenger and Flight indicates those passengers
that actually flew. Thus, a passenger with a reservation may not be related to a flight,
for instance, if the passenger misses the flight.

The specific modeling features that are integrated into UML are presented below.

3.1 Object Identification

In UML, it is not possible to uniquely identify the objects participating in an
association when the model is instantiated, since the UML specification [OMG, 09b]
does not define a mechanism for the identification of class instances. It is interesting
to observe that, even though the correct identification of objects is a relevant issue for
correcting compilation of the association, proposals that deal with the compilation of
the UML association usually omit this feature [Akehurst, 06] [Gessenharter, 08]. To
solve this problem, the concept of Identification Function is introduced in the OO-
Method approach.

The Identification Function corresponds to a set of structural properties that
allows the unique identification of class instances. Thus, the Identification Function is
specified by means of a set of attributes (one or more) owned by a class. In the
example shown in Figure 2, the attribute id_passenger is a clear candidate to conform
the Identification Function of the class Passenger; the same is true for the attribute
flight_number of the class Flight. The Identification Function is specified by adding
the Boolean property isIdentifier to the specification of class attributes. Thus,
isIdentifier is set to TRUE when a class attribute participates in the Identification
Function of the owning class.

3.2 Aggregation and Composition

In order to make the semantics of the aggregation concept more precise, we adopt the
following UML assertion: “An association may represent an aggregation (i.e., a
whole/part relationship). In this case, the association-end attached to the whole
element is designated, and the other association-end of the association represents the
parts of the aggregation. Only binary associations may be aggregations”. In OO-
Method, this definition is extended with additional semantics. Thus, the property of

2358 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

Identification Dependency of the whole with regard to the part is introduced to
represent the dependency that exists between composite (whole) and component
(part) classes. This dependency is discussed in works such as [Barbier, 03].

The identification dependency implies that the identifier of the composite class is
built using the identifier of the component classes (and, if necessary by adding some
attribute of the composite class). According to UML, the lower cardinality of the
association end related to the component class must be 1, that is, [1..x] cardinality.
However, to guarantee the correct compilation of the identification dependency in the
OO-Method development process, the upper cardinality of the association end related
to the component classes is constrained to 1, that is, [1..1] cardinality. This constraint
is defined since [1..*] cardinality implies that the identification function of the
composite class must be conformed by a multi-valued attribute. However, the target
implementation platforms of the OO-Method approach are based on relational
databases that do not provide support for multi-valued attributes, such as SQL Server
(see Figure 1). This situation is illustrated in Section 5.

In the aggregation example presented in Figure 2, the component classes are
Flight and Passenger (with cardinality [1..1]) and the composite class is Reservation
(with cardinality [0..*]). The Identification Function of Reservation is composed by
the attribute id_passenger from Passenger and flight_number from Flight2.

An aggregation can be specialized in a composition (composite aggregation in
UML), which presents additional features. These features are the following:

• A part must be included in, at most, one composite at a time.
• If a composite is deleted/modified, all its parts are deleted/modified with it.
• There is an identification dependency of the part with regard to the whole.

Thus, for the composition, the cardinality related to the composite class must
be [1..1]. Note that the identification dependency of composition is opposite
to the identification dependency of the aggregation.

3.3 Creation, Deletion, and Modification of Links

The creation, deletion, and modification of links are only required in dynamic
associations. A dynamic association is an association with two modifiable (dynamic)
association ends. In a UML model, this can be represented as a binary association
where the property readOnly of the two involved association ends is set as false. A
dynamic association implies that its links can be changed (inserted, deleted, or
updated) during the life of the participant objects.

In UML, it is necessary to manually define (in the participant classes) operations
to represent the management (creation, deletion, and modification) of links. These
operations must include the specification of the related behavior, which can be
specified using different languages, such as natural language, Action Semantics
[Sunye, 01] or the Object Constraint Language (OCL) [OMG, 10a]. For the definition
of these operations, it must be taken into account that the management of links
simultaneously affects properties of the two participant classes of the association.
Therefore, the involved operations must be simultaneously executed in the participant
classes. It is possible to observe that the definition of these operations is not trivial,

2 The specification of the identification function for the class Reservation is not required, since it can be

automatically inferred from the aggregated classes during the model compilation process.

2359Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

and, hence, the manual definition of the behavior that is related to these operations
makes the correct specification of the associations difficult and error-prone, which is
of great relevance when this specification is interpreted by an automatic model
compiler. To face this issue, certain works [Akehurst, 06] [Gessenharter, 08] have
proposed a direct implementation of operations related to controlling the associations’
behavior. In these proposals, the operations related to the management of links are
represented at the implementation level (programming code). Nevertheless, since
these operations do not have representation at the conceptual level, customization of
the behavior related to links management cannot be performed in the UML model.

Thus, our proposal introduces the concept of shared event to represent these
linking management operations. A shared event is a special kind of operation that
defines the behavior related to dynamic associations. It is owned by the two
participant classes, and its definition can be separately customized in each participant
class. Thus, a shared event has a definition that is distributed between the classes that
participate in the association. Events of this kind always require two input parameters,
either linked objects or objects to be linked. A shared event can be of three types:

• Insert Event: creates a link between an object at one end of the association
and an object at the opposite end.

• Delete Event: removes an existent link between an object at one end of the
association and a related object at the opposite end.

• Edit Event: changes an existent link between an object at one end of the
association and a related object at the opposite end.

The types of shared events depend on the cardinality of the association ends.

Cardinality [1..1] in an association end prevents an existent link from being deleted or
a new link from being created, that is, the execution of an insert or delete event is not
possible. In this case, a link is established during the creation of an object at the
opposite end, and it can only be deleted when one of the participant objects is deleted.
Hence, the dynamic association can only be managed by an edit shared event because
the only option is to change the existent link for another one. Thus, the edit shared
event has the effect of a simultaneous execution of an insert and deletion event, which
prevents the violation of the association cardinality. In any other case, the dynamic
associations are managed by the insert and delete events.

The behavior of a shared event can be customized by defining preconditions and
post-conditions, which must be specified by means of well-formed, first-order logic
formulas (this is exemplified in section 5.3). The case study presented in [Marín, 08]
provides more detailed examples about the customization and integration of shared
events in more complex services.

4 Integration of the Proposed Semantics into UML

In this section, we integrate the semantics proposed (in the previous section) into
UML by applying the process introduced in [Giachetti, 09a]. By means of this
Integration Process we obtain: 1) a specific metamodel that defines the abstract
syntax required for representing the proposed association semantics, and 2) the UML
profile that integrates our proposal into UML. The metamodel that represents the

2360 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

required abstract syntax is defined as an Integration Metamodel according to the
proposal presented in [Giachetti, 08]. This Integration Metamodel is an EMOF-based
metamodel [OMG, 06a] that allows the defined abstract syntax to be integrated into
UML by means of a UML profile that is automatically generated. This generation is
performed according to the set of transformation rules presented in [Giachetti, 09a],
which are oriented to obtain the corresponding UML Profile from the Integration
Metamodel. The Integration Process is comprised of three steps (see Figure 3): 1) the
definition of the Integration Metamodel; 2) the identification of the required UML
extensions (throughout the comparison of the Integration Metamodel and the UML
metamodel); and 3) the transformation of the Integration Metamodel into the
corresponding UML profile. The last two steps can be automatically performed.

Figure 3: Process to integrate a DSML into UML

4.1 Defining the Integration Metamodel

The first step of the Integration Process consists of defining the Integration
Metamodel to represent the abstract syntax of the modeling aspects that are required
by the reference MDD approach. There are four conditions that an Integration
Metamodel must hold for the automatic generation of the metamodel extensions.
These are the following:

• All the classes from the Integration Metamodel are mapped to class of the
UML Metamodel. This assures that the constructs from the MDD approach
can be represented from the UML constructs.

• The mapping is defined between elements of the same type (classes with
classes, attributes with attributes, and so on).

• An element from the Integration Metamodel is only mapped to one element
of the UML Metamodel.

• If the properties of a class A from the Integration Metamodel are mapped to
properties of a class B of the UML metamodel, then the class A is mapped to
the class B or a specialization of it.

Figure 4 shows the Integration Metamodel that describes the abstract syntax for

the semantics introduced in section 3. This corresponds to a subset of the whole
metamodel used by the industrial implementation of the OO-Method MDD approach.

The Integration Metamodel presented has been specified using the Eclipse UML2
Tool [Eclipse, 10b] since it provides automatic generation of EMF metamodels from
the defined UML2 metamodels. EMF [Budinsky, 03] is the Eclipse Modeling
Framework, which is based on the EMOF specification. Also, the generated EMF
metamodels are tagged with additional information to automatically obtain model
editors that have interpreters for the defined OCL rules and that support UML profile

2361Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

extensions. Additionally, the Eclipse UML2 project provides a complete
implementation of the UML metamodel, which is defined according to the official
UML specification. This facilitates that the artifacts involved in the application of our
proposal fulfill the OMG standards.

Service

SharedEvent

kind : SharedEventKind

Association

/endType : Class [1..2]

AggregationKind

none
aggregation
composition

SharedEventKind

insertEvent
deleteEvent
editEvent

Attribute

Type

DataType

DataValuedAttribute

isIdentifier : Boolean = false
nullsAllowed : Boolean = false

ObjectValuedAttribute

aggregation : AggregationKind = none
isStatic : Boolean = false
upperValue : UnlimitedNatural
lowerValue : Integer

Class

Parameter

direction : DirectionKind

DirectionKind

in
out

ownedService

owningClass

 [0..*]

ownedParameter

service

 [0..*]

opposite
 [0..1]

reqParameter

associationEnd

sharedEvent [0..2]

association

memberEnd [2]

ownedAttribute

owningClass

 [0..*]

type

type

/opposite

type

Figure 4: The Integration Metamodel of the proposed association semantics

According to the defined Integration Metamodel (Figure 4), the classes can own
data-valued attributes (class DataValuedAttribute) or object-valued attributes (class
ObjectValuedAttributes). The data-valued attributes are the typical class attributes,
such as the name of the passenger in the UML example (Figure 2). In the class
DataValuedAttribute, the attribute isIdentifier indicates whether the data-valued
attribute participates as (part of) the identifier of its owning class (isIdentifier = True),
and the attribute nullsAllowed specifies whether the data-valued attribute can take null
values. A data-valued attribute that participates as an identifier of a class cannot take
null values (nullsAllowed = False). An object-valued attribute represents an
association end, such as the passenger and flight related to a reservation in the UML
example of Figure 2, and it is related to the association by means of the association
memberEnd. In the context of binary associations, the object-valued attributes must
always have an opposite association end (association opposite). In the class
ObjectValuedAttributes, the attribute aggregation indicates (if necessary) the kind of
association (aggregation, composition, or none) related to the association end. The
class related to an association end is indicated by the association type. In an object-
valued attribute the attribute isStatic indicates if the association end is static (isStatic
= True) or dynamic (isStatic = False). The name of the object-valued attribute (which
is inherited from the class NamedElement) indicates the role name of the
corresponding association end. The class NamedElement and the related inheritance
hierarchy are not represented to simplify the Integration Metamodel diagram since all
the classes defined are specializations of NamedElement.

2362 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

Table 1 shows the OCL rules that object-valued attributes must fulfill to ensure
that the cardinality constraint related to the Identification Dependency feature of
aggregation and composition is not violated.

Description If the attribute aggregation of an association end holds the value #aggregation, then the

opposite end must have cardinality [1..1].
Context ObjectValuedAttribute
OCL self.aggregation = #aggregation implies self.opposite.lowerValue = 1 and

self.opposite.upperValue = 1
Description If the attribute aggregation of an association end holds the value #composition, this end

must have cardinality [1..1].
Context ObjectValuedAttribute
OCL self.aggregation = #composition implies self.lowerValue = 1 and

self.upperValue = 1

Table 1: OCL constraints for association ends

Description Shared events can only be defined when both association ends are dynamic.
Context ObjectValuedAttribute
OCL self.temporality = #static or self.opposite.temporality = #static

implies self.sharedEvent->isEmpty()
Description Only the shared event editEvent can be defined for dynamic associations when one of the

association ends has cardinality [1..1].
Context ObjectValuedAttribute
OCL ((self.temporality = #dynamic) and (self.opposite.temporality = #dynamic) and

(self.lowerValue = 1) and (self.upperValue = 1)) implies
self.sharedEvent.kind = #editEvent and self.sharedEvent->size() = 1

Description The insert and delete shared events must be defined for dynamic associations when both
association ends have cardinality [x..*].

Context ObjectValuedAttribute
OCL ((self.temporality = #dynamic) and (self.opposite.temporality = #dynamic) and

(self.upperValue > 1) and (self.opposite.upperValue > 1)) implies
self.sharedEvent->size() = 2 and self.sharedEvent->exists(se | se.kind = #insertEvent) and
self.sharedEvent->exists(se | se.kind = #deleteEvent)

Description A shared event requires an opposite shared event with the same name and kind, except in
the case of recursive associations.

Context SharedEvent
OCL self.associationEnd.type <> self.associationEnd.opposite.type implies

self.opposite->notEmpty() and
self.kind = sel.opposite.kind and self.name = self.opposite.name

Description In recursive associations, a shared event does not have an opposite event.
Context SharedEvent
OCL (self.associationEnd.type = self.associationEnd.opposite.type) implies

self.opposite->isEmpty()
Description A shared event cannot be opposite to itself.
Context SharedEvent
OCL self.opposite->notEmpty() implies self <> self.opposite

Table 2: OCL constraints for shared events

The definition of a shared event is distributed between the classes that participate
in the association because a shared event simultaneously changes properties of the
participant objects. To support this semantics, in the Integration Metamodel a shared

2363Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

event is represented as two dependent events, which are related by means of the
association opposite. Table 2 shows the OCL constraints defined for shared events.

A shared event must always participate in an association and is only related to
one object-valued attribute. This is represented by the association associationEnd
with the cardinality [1..1].

The association ownedParameter (inherited from Service) represents the
parameters of a shared event. One of the two parameters that are required by a shared
event (the two participant objects) is the object that executes the service, whose type
corresponds to the class that owns the service. However, this parameter does not need
to be defined in the model because it is implicit in the semantics of the service and it
can be inferred from the association owningClass. The second parameter required by
a shared event (the participant object of the opposite association end) is identified by
the association reqParameter.

According to the Integration Process, to complete the definition of the Integration
Metamodel it is necessary to identify the equivalences between this metamodel and
the UML metamodel. Table 3 presents these equivalences.

Integration Metamodel UML Metamodel Integration Metamodel UML Metamodel

AggregationKind AggregationKind ObjectValuedAttribute Property

.none .none .type .type

.aggregation .shared .association .association

.composition .composite .opposite .opposite

Association Association .aggregation .aggregation

.memberEnd .memberEnd .isStatic .isReadOnly

Attribute Property .upperValue .upper

.owningClass .class .lowerValue .lower

Class Class Parameter Parameter

.ownedAttribute .ownedAttribute .direction .direction

.ownedService .ownedOperation .service .operation

DataType DataType .type .type

DataValuedAttribute Property Service Operation

.type .type .owningClass .class

DirectionKind ParameterDirectionKind .ownedParameter .ownedParameter

. in .in SharedEvent Operation

.out .out Type Type

Table 3: Equivalences between the Integration Metamodel and the UML Metamodel

4.2 Comparing the Integration Metamodel and the UML Metamodel

The second step of the Integration Process requires a comparison between the
Integration Metamodel and the UML Metamodel to be performed. It allows the
identification of the differences between the Integration Metamodel and the UML
Metamodel. These differences correspond to the metamodel extensions that must be

2364 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

implemented in the UML profile generation. With regard to the conditions established
for the Integration Metamodel definition and the mapping information presented in
Table 3, this second step of the process is automatically performed. This prevents the
extra time, effort, and potential errors that are involved in a manual identification of
the required extensions. Table 4 summarizes the results of this comparison for the
presented example.

Integration Metamodel Difference

Association

.memberEnd lower bound (IM = 2; UML = *)

DataValuedAttribute

.type type (IM = DataType; UML = Type)

.isIdentifier new

.nullsAllowed new

ObjectValuedAttribute

.type type (IM = Class; UML = Type)

.association lower bound (IM = 1; UML = 0)

.opposite lower bound (IM = 1; UML = 0)

.sharedEvent new

SharedEvent

.kind new

.opposite new

.reqParameter new

.associationEnd new

SharedEventKind new

Table 4: Comparison between the Integration Metamodel and the UML Metamodel

In Table 4, the column Integration Metamodel shows the elements of the
Integration Metamodel that differ from the UML elements, and the column Difference
shows what the differences are by indicating the values that differ for the Integration
Metamodel element (IM) and the UML element (UML). The word new in the column
Difference indicates when the Integration Metamodel introduces an element that does
not exist in UML. Thus, the elements that must be introduced into UML to solve the
identified differences are the extensions that must be defined in the UML profile.

4.3 Generating the UML Profile

The third and last step of the Integration Process corresponds to the generation of the
final UML profile (Figure 5). The UML profile generation is performed by means of
a set of transformation rules (explained in [Giachetti, 09a]) that are applied over the
Integration Metamodel. These rules are applied taking into account the equivalences
presented in Table 3 and the differences presented in Table 4. The main features of
these transformation rules are the following:

2365Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

• Equivalent classes of the Integration Metamodel are transformed into
stereotypes that extend the corresponding UML class identified in Table 3. If
the class of the Integration Metamodel has the same name as the
corresponding UML class, then a prefix is added to differentiate the name of
the stereotype from the name of the extended class. In the example, the
prefix OOm is used. For instance, the class Association of the Integration
Metamodel generates the stereotype OOmAssociation (prefix + class name).

• The new properties (attributes and associations) that are identified in the
metamodel comparison (see Table 4) are represented as tagged values. For
instance, the attribute isIdentifier of the class DataValuedAttribute is defined
as a tagged value in the stereotype DataValuedAttribute (see Figure 5).

• Differences between equivalent properties are managed with OCL
constraints. For instance, the lower bound difference of the associations
opposite and association of the class ObjectValuedAttribute (see Table 4) are
managed with an OCL rule with the following structure:

self.[property]->size() >= [newLowerBound]

The OCL rules are defined in the stereotypes that are generated from the
involved classes; in this case, the stereotype ObjectValuedAttribute.

• The generated stereotypes have all the constraints defined in the transformed

classes. For each constraint, the elements of the Integration Metamodel are
replaced by the corresponding elements of the UML metamodel or by
elements of the generated UML profile in the case of new elements. For
instance, the first OCL rule defined in Table 1 is defined in the stereotype
ObjectValuedAttribute as follows:

self.aggregation = #shared implies
self.opposite.lower = 1 and self.opposite.upper = 1

In the presented OCL rule, the elements written in italics indicate the UML
elements that are used to replace the corresponding Integration Metamodel
elements according to the equivalences presented in Table 3.

«metaclass»
Association

«metaclass»
Property

«metaclass»
DataType

«metaclass»
Parameter

«metaclass»
Operation

«metaclass»
Type

«metaclass»
Class

«stereotype»

OOmClass
«stereotype»

Attribute
«stereotype»

Service

«stereotype»

SharedEvent

kind : SharedEventKind
opposite : SharedEvent
reqParameter : OOmParameter
associationEnd : ObjectValuedAttribute

«enumeration»

SharedEventKind

insertEvent
deleteEvent
editEvent

«stereotype»
ObjectValuedAttribute

sharedEvent : SharedEvent [0..2]

«stereotype»
DataValuedAttribute

isIdentifier : Boolean = false
nullsAllowed : Boolean = false

«stereotype»

OOmAssociation
«stereotype»

OOmDataType
«stereotype»

OOmParameter
«stereotype»

OOmType

{required}{required} {required} {required}{required}{required}{required}

Figure 5: UML Profile generated from the defined Integration Metamodel

2366 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

5 Compiling the Extended UML Association

Figure 6 shows the example UML model extended with the generated UML profile
and the tabular representation of this model, where the application of the different
stereotypes can be observed. The services for the management of links between
objects are defined as shared events by means of the stereotype sharedEvent, the
service new_association is defined as an insert event; and the service del_association
is defined as a delete event.

«OOmClass, OOmType»

Passenger

id_passenger : String
passenger_name : String

new_association(flight : Flight)
del_association(flight : Flight)

«OOmClass, OOmType»
Flight

flight_number : String
origin : String
destination : String

new_association(passenger : Passenger)
del_association(passenger : Passenger)

«OOmType, OOmClass»
Reservation

reservation_date : DateTime

passenger flight

 [0..*] [0..*]

reservation

passenger

 { readOnly }

 [0..*]
reservation

flight

 { readOnly }

 [0..*]

Figure 6: Example UML model extended with the generated UML profile

Once the UML model is correctly specified, it is compiled with the OO-Method
model compilation technology [Pastor, 04] by using a specific interchange proposal
[Giachetti, 09b], which is based on the generated UML profile and the mapping
information obtained during the application of the integration process. In the
compilation of the UML model, default services for the creation, deletion, and edition
of instances are automatically created for each class. These default services are not
created for those classes that already have these kinds of services.

It is important to remark that the extensions introduced in the UML model
provide a precise definition for the association at the conceptual level, which allows
the independence between the business logic and the implementation platforms. With
regard to this independence, the OO-Method compilation technology can generate
applications for different implementation platforms from the same UML model. For
instance, from an OO-Method model, the industrial OO-Method implementation can
currently generate software products in .Net, and J2EE developing platforms, and
Oracle, SQL Server, DB2, and PostgreSQL database servers (see Figure 1). The case
study presented in [Marín, 08] shows how the target platform is selected by using a
specific configuration tool for the model compilation process. We have selected the
.Net platform (.Net 2.0 framework and C# language) and SQL Server database as
implementation technologies for the example in this paper.

2367Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

5.1 Compilation of the object identification

The Identification Function has a direct impact on the database generated in the
compilation of the UML model (see Figure 7). In this database, the identification
function of each class is transformed into a primary key of the table that corresponds
to the compiled class. In addition, the table TM_PassengerFlight (not present in the
UML model) has been automatically generated for the implementation of the many-
to-many association.

Figure 7: Relational model of the database generated from the UML model example

5.2 Compilation of the Aggregation

In the example, the class Reservation is aggregated by Flight and Passenger. The
aggregation implies the identification dependency of the whole with regard to the
part. Figure 7 shows that to implement the identification dependency, the primary key
of the table Reservation is comprised of the primary keys of the tables Passenger and
Flight. This implementation is automatically inferred by the model compilation
process from the defined aggregation relationships. In addition, the cardinality [1..1]
in the component side is mandatory according to the semantics proposed for the
identification dependency.

Figure 8: Execution of the service that creates new instances of the class Reservation

2368 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

The cardinality [1..1], which is defined for the association ends related to the
classes Flight and Passenger, implies that a reservation must always be related to a
flight and a passenger. Thus, the links between a reservation and the corresponding
passenger and flight must be created at the same time as the creation of the
reservation. This particular semantics of the aggregation must be considered in the
compilation of the service that creates instances of the class Reservation. Figure 8
shows a screenshot of the application generated from the UML model, which is
related to the execution of the service for creation of new reservations.

Figure 8-A shows the form related to the execution of the service, and Figure 8-B
shows the result of the execution, which indicates the flight and the passenger linked
during the creation of the reservation. The navigation alternatives have been inferred
from the associations defined in the UML model.

Figure 8-A also shows that the service for the creation of an instance of the class
Reservation has three inbound arguments: the date of the reservation (defined in the
UML model) and the flight and passenger related to the new reservation (inferred
from the aggregations relationships).

5.3 Compilation of shared events

Figure 9 shows a screenshot of the application related to the execution of the shared
event del_association (executed from an instance of Passenger). This shared event
has two input arguments: the identifiers of the linked passenger and flight. The
execution of the shared event del_association destroys a link that exists between the
selected objects (the input arguments).

Class Passenger (UML Model Fragment)

Delete Shared Event
Execution ResultExistent link between

passenger 1 and flight 101

Input Argument Flight

This input argument is
automatically inferred
from the owning class

Delete Shared Event

Precondition

Figure 9: Execution of the service del_association with a precondition

Specific behavior for the management of links is defined at the conceptual level
by means of the customization of the defined shared events. Thus, in the shared event
del_association, we define the precondition: a link between a passenger and a flight
cannot be destroyed if there already exists a reservation related to these two objects.

2369Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

Figure 9 shows that the execution of the service del_association (from an instance
of the class Passenger) does not fulfill the precondition (already exists a reservation
for the selected passenger and flight); therefore, an error-message is displayed. This
situation shows the relevance of the Identification Function, since the identifiers of
the classes Passenger and Flight are used in the detection of pre-existent links.

6 Conclusions and Further Work

This article has presented two main contributions. The first of these is the application
of a well-defined process for linking UML and MDD approaches in order to allow the
automatic compilation of UML models by using existent MDD technologies. In
particular, we advocate customizing the semantics of the UML association with a
precise semantics that is obtained from an industrially applied MDD approach
[Pastor, 07]. The abstract syntax that supports this semantics is defined using an
Integration Metamodel [Giachetti, 08], which allows the automatic generation of a
UML profile that integrates the conceptual constructs and properties required for the
proposed semantics into UML. This reduces the complexity related to the correct
specification of UML extensions, providing an advantage over a manual UML profile
specification, which is a time-consuming and error-prone task [Selic, 07].
Furthermore, the proposed process takes advantage of the OMG standards and
existent open-source tools such as [Jouault, 08][Eclipse, 10a][Eclipse, 10b], which
facilitate the interchange of knowledge within the MDD community.

The second main contribution of this paper is the semantics proposed for the
UML association and the UML extensions generated to support this semantics. These
extensions provide the capability of precisely representing the structure and behavior
of the association at the conceptual level, which can be used to automatically obtain a
software product in different implementation platforms. This distinguishes our
proposal from others that provide a direct implementation of the UML association in a
specific language [Akehurst, 06] [Gessenharter, 08], which require a specific behavior
for the associations to be defined directly in the code. Thus, the proposed association
modeling representation can be used as a reference by different MDD approaches.

As future work, we plan the construction of a complete modeling suite for OO-
Method, which will be implemented on the Eclipse UML2 open-source tool following
the proposed linking approach. Thus, it will be possible to obtain an effective MDD
solution that takes advantage of the UML specification and the current open-source
MDD technologies that are based on the OMG standards.

Acknowledgments

This work has been developed with the support of MEC under the project SESAMO
TIN2007-62894 and GVA ORCA PROMETEO/2009/015.

2370 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

References

[Akehurst, 06] Akehurst, D.H., Howells, W.G.J., McDonald-Maier, K.D.: Implementing
Associations: UML 2.0 to Java 5. Journal of Software and Systems Modeling, vol. 6 nº 1, 1–33
(2006)

[Albert, 03] Albert, M., Pelechano, V., Fons, J., Ruiz, M., Pastor, O.: Implementing UML
Association, Aggregation, and Composition. A Particular Interpretation Based on a
Multidimensional Framework In: 15th Conference on Advanced Information Systems
Engineering (CAISE’03), pp. 143–158 (2003)

[Barbier, 03] Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.:
Formalization of the Whole-Part Relationship in the Unified Modeling Language. IEEE
Transactions on Software Engineering, vol. 29 nº 5, 459–470 (2003)

[Belloir, 03] Belloir, N., Bruel, J.-M., Barbier, F.: Whole-Part Relationships for Software
Component Combination. In: 29th EUROMICRO Conference (EUROMICRO’03), pp. 86–91.
IEEE Computer Society (2003)

[Booch, 04] Booch, G., Brown, A.W., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA
Manifesto. Business Process Trends/MDA Journal (2004)

[Bruck, 07] Bruck, J., Hussey, K.: Customizing UML: Which Technique is Right for You?
IBM (2007)

[Budinsky, 03] Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework, isbn:
0131425420. Pearson Education (2003)

[CARE, 10] CARE-Technologies Web Page, http://www.care-t.com (2010)

[Diskin, 06] Diskin, Z., Dingel, J.: Mappings, Maps and Tables: Towards Formal Semantics for
Associations in UML2. In: MoDELS 2006, pp. 230–244. LNCS (2006)

[Eclipse, 10a] Eclipse Foundation: Eclipse Model Development Tools Project,
http://www.eclipse.org/modeling/mdt/ (2010)

[Eclipse, 10b] Eclipse Foundation: Eclipse UML2 Project, http://www.eclipse.org/uml2/ (2010)

[France, 06] France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using UML 2.0: Promises and pitfalls. In: IEEE Computer, vol. 39 nº 2, 59–66 (2006)

[Genova, 04] Génova, G., Llorens, J., Fuentes, J.M.: UML Associations: A Structural and
Contextual View Journal of Object Technology, vol. 3 nº 7 (2004)

[Gessenharter, 08] Gessenharter, D.: Mapping the UML2 Semantics of Associations to Java
Code Generation Model In: MODELS 2008. LNCS, pp. 813–827. (2008)

[Giachetti, 08] Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile
Generation for MDA Industrial Development. 4th International Workshop on Foundations and
Practices of UML (FP-UML) – ER Workshop, vol. LNCS 5232, pp. 113–122. Springer (2008)

[Giachetti, 09a] Giachetti, G., Marín, B., Pastor, O.: Using UML as a Domain-Specific
Modeling Language: A Proposal for Automatic Generation of UML Profiles. In: CAiSE'09,
vol. LNCS 5565, pp. 110–124. Springer (2009)

[Giachetti, 09b] Giachetti, G., Marín, B., Pastor, O.: Using UML Profiles to Interchange
DSML and UML Models. In: Third International Conference on Research Challenges in
Information Science (RCIS), pp. 385–394. IEEE Computer Society (2009)

2371Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

[Giachetti, 09c] Giachetti, G., Marin, B., Pastor, O.: Integration of Domain-Specific Modeling
Languages and UML through UML Profile Extension Mechanism. International Journal of
Computer Science and Applications, vol. 6 nº 5, 145–174 (2009)

 [Gomez, 98] Gómez, J., Insfrán, E., Pelechano, V., Pastor, O.: The Execution Model: a
component-based architecture to generate software components from conceptual models. In:
Workshop on Component-based Information Systems Engineering (1998)

[Graham, 97] Graham, I., Bischof, J., Henderson-Sellers, B.: Associations considered a bad
thing. Journal of Object-oriented Programming vol. 9 nº 9, 1–48 (1997)

[Gueheneuc, 04] Guéhéneuc, Y., Albin-Amiot, H.: Recovering binary class relationships:
Putting icing on the UML cake In: Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA’04), pp. 301–314 (2004)

[Henderson-Sellers, 99a] Henderson-Sellers, B., & Barbier, F.: What is this thing called
aggregation? In: TOOLS 29, pp. pp. 216–230. IEEE Computer Society (1999)

[Henderson-Sellers, 99b] Henderson-Sellers, B., Barbier, F.: Black and white diamonds. In:
UML’99, pp. 550–565. LNCS (1999)

[Jouault, 08] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.
Science of Computer Programming, vol. 72 nº 1-2, 31–39 (2008)

[Marín, 08] Marín, B., Giachetti, G., Pastor, O.: The Photography Agency: A case study of the
OO-Method Approach. Technical Report DSIC-II/13/08, Universidad Politécnica de Valencia,
Valencia, España (2008)

[Milicev, 07] Milicév, D.: On the Semantics of Associations and Association Ends in UML.
IIEE Transactions on Software Engineering, vol. 33 nº 4 (2007)

[OMG, 10a] OMG: Object Constraint Language 2.2 Specification (2010)

[OMG, 10b] OMG: Object Management Group Web site, http://www.omg.org/ (2010)

[OMG, 09a] OMG: UML 2.2 Infrastructure Specification (2009)

[OMG, 09b] OMG: UML 2.2 Superstructure Specification (2009)

[OMG, 06a] OMG: MOF 2.0 Core Specification (2006)

[OMG, 05] OMG: UML 1.4.2 Specification (2005)

[OMG, 03] OMG: MDA Guide Version 1.0.1 (2003)

[Opdahl, 01] Opdahl, A.L., Henderson-Sellers, B., Barbier, F.: Ontological analysis of whole-
part relationships in OO-models. Information and Software Technology nº 43, 387–399 (2001)

[Pastor, 01] Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for
Information Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming. In: Information Systems. Elsevier Science, vol. 26 nº 7, 507–534 (2001)

[Pastor, 04] Pastor, O., Molina, J.C., Iborra, E.: Automated production of fully functional
applications with OlivaNova Model Execution. ERCIM News nº 57 (2004)

[Pastor, 07] Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modeling. 1st edition, isbn: 978-3-540-71867-3.
Springer, New York (2007)

2372 Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

[Selic, 07] Selic, B.: A Systematic Approach to Domain-Specific Language Design Using
UML. In: 10th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pp. 2–9 (2007)

[Snoeck, 01] Snoeck, M., Dedene, G.: Core modeling concepts to define aggregation. L’objet
vol. 7 nº 3 281–306 (2001)

[Stevens, 02] Stevens, P.: On the interpretation of binary associations in the Unified Modelling
Language. Journal on Software and System Modeling, vol. 1, 68–79 (2002)

[Sunye, 01] Sunyé, G., Pennaneac’h, F., Ho, W.-M., Guennec, A.L., Jézéquel, J.-M.: Using
UML Action Semantics for Executable Modeling and Beyond. In: CAiSE 2001, vol. LNCS
2068, pp. 433–447. Springer (2001)

[Völter, 07] Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki, K.: Model-
Driven Software Development: Technology, Engineering, Management. Wiley (2007)

2373Giachetti G., Albert M., Marin B., Pastor O.: Linking UML and MDD ...

